ISSN 1817-2172, рег. Эл. № ФС77-39410, ВАК

Differential Equations and Control Processes
(Differencialnie Uravnenia i Protsesy Upravlenia)

Estimation of Topological Entropy for Cocycles with Cellular Automaton As a Base System

Author(s):

Viktoriia Evgenyevna Egorova

Student of Department of Applied Cybernetics,
Faculty of Mathematics and Mechanics
Saint-Petersburg State University.

egorova_ve2107@mail.ru

Volker Reitmann

Doctor of Physical and Mathematical Sciences,
Professor of the Department of Applied Cybernetics,
Faculty of Mathematics and Mechanics,
Saint-Petersburg State University.

vreitmann@aol.com

Abstract:

We study a discrete non-autonomous control system. It is shown that the cellular automaton has the structure of a dynamical system, therefore it can be considered as a base system. For a discrete non-autonomous control system, a cocycle consisting of a base system and an evolutionary system is constructed. An upper bound for the topological entropy for a cocycle of a discrete non-autonomous control system over a base system generated by a cellular automaton is obtained. As an example, we study the non-autonomous Henon system, whose parameters depends on the cellular automaton, for which the state of the cell is determined by the disjunction of the cell itself and two neighboring cells. The inequality for estimating the growth exponents of the Henon mapping is obtained. In addition, we obtain an estimate for the fractal dimension of the compact invariant set of the Henon system. The behavior of the trajectories of the non-autonomous Henon system with some certain parameters and certain initial data is demonstrated.

Keywords

References:

  1. Afrajmovich V. S., SHereshevskij M. A. On the Notion of topological dynamics of cellular automata. Metody kachestvennoj teorii i teorii bifurkacij. Mezhvuzovskij tematicheskij sbornik nauchnyh trudov. Pod redakciej L. P. SHaposhnikova. Gor'k. gos. universitet, 138-151, 1989. (In Russ. )
  2. Lakshtanov, E. L., Langvagen, E. S. Criteria for infinity value of topological entropy of multidimensional cellular automata, Problemy peredachi informacii, 40(2):70-72, 2004. (In Russ. )
  3. Lakshtanov, E. L., Langvagen, E. S. Entropy of multidimensional cellular automata. Problemy peredachi informacii, 42(1):43-51, 2006
  4. Kolmogorov, A. N. New Metric Invariant of Transitive Dynamical Systems and Endomorphisms of Lebesgue Spaces, DAN SSSR, 119(5):861-864, 1958. (In Russ. )
  5. Sinaj, YA. G. On the Notion of Entropy of a Dynamical System, DAN SSSR, 124(4):768-771, 1959. (In Russ. )
  6. Leonov, G. A. Formulas for the Lyapunov dimension of Henon and Lorenz. Algebra i analiz, 13(3):155-170, 2001. (In Russ. )
  7. Reitmann, V., Dinamicheskiye sistemy, attraktory i otsenki ikh razmernosti [Dynamical Systems, Attractors and Estimates of their Dimension]. St. Petersburg, St. Univ. Publ., 2013. (In Russ. )
  8. R. Adler, A. Konheim, H. McAndrew. Topological entropy. Transactions of the American Mathematical Society, 114(2):309-319, 1965
  9. V. A Boichenko, G. A. Leonov, V. Reitmann. Dimension Theory for Ordinary Differential Equations. Teubner, Wiesbaden, 2005
  10. R. Bowen. Entropy for group endomorphisms and homogeneous spaces. Transactions of the American Mathematical Society, 153:401-414, 1971
  11. M. D'amico, G. Manzini, L. Margara. On computing the entropy of cellular automata. Theoretical Computer Science, 290(3):1629 -1646, 2003
  12. P. Grassberger, H. Kantz, U. Moenig. On the symbolic dynamics of the Henon map. Journal of Physics A: Mathematical and General, 22(24):5217, 1989
  13. M. Henon. A two-dimensional mapping with a strange attractor. The Theory of Chaotic Attractors, 94-102. Springer, 1976
  14. B. Hunt. Maximum local Lyapunov dimension bounds the box dimension of chaotic attractors. Nonlinearity, 9(4):845, 1996
  15. C. Kawan. Metric entropy of nonautonomous dynamical systems. Nonautonomous dynamical systems, 1(1), 2014
  16. P. Kloeden, B. Schmalfuß. Nonautonomous systems, cocycle attractors and variable time-step discretization. Numerical Algorithms. Springer, 14(1- 3):141-152, 1997
  17. S. Kolyada, L. Snoha. Topological entropy of nonautonomous dynamical systems. Random and computational dynamics, 4(2):205, 1996
  18. A. A. Maltseva, V. Reitmann. Existence and dimension properties of a global B-pullback attractor for a cocycle generated by a discrete control system. Differential Equations, 53(13):1703-1714, 2017
  19. J. Milnor. On the entropy geometry of cellular automata. Complex Systems, 2(3):357-385, 1988
  20. A Noack. Hausdorff dimension estimates for time-discrete feedback control systems. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift fur Angewandte Mathematik und Mechanik, 77(12):891-899, 1997
  21. J. Von Neumann. The general and logical theory of automata. Cerebral mechanisms in behavior. New York: John Wiley& Sons, 1(41), 1951
  22. S. Wolfram. Statistical mechanics of cellular automata. Reviews of modern physics. APS, 55(3):601, 1983

Full text (pdf)