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Abstract

In this paper, the behaviour of solutions of certain second order nonlinear non-
autonomous differential equations is considered. By employing the Lyapunov’s second
method, a suitable complete Lyapunov function is constructed and used to establish suffi-
cient conditions that guarantee existence of solutions that are periodic, uniformly asymp-
totically stable and uniformly ultimately bounded. Obtained results are not only new but
also include many outstanding recent results in the literature.
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1 Introduction

The investigation of the problems of qualitative behaviour of solutions such as
stability, boundedness, convergence, periodicity, to mention few, is an impor-
tant subject in the theory of ordinary differential equations. In this regards up
till today, Lyapunovs direct (or second) method is the most effective method
when dealing with these problems. Of course, when one applies this method,
finding a suitable complete Lyapunov function in general is always a big chal-
lenge. The major advantage of this method is that the behaviour of solutions
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of the equation in question can be obtained without any prior knowledge of
solutions.

So far, there have been many results about the qualitative behavior of solu-
tions of nonlinear differential equations see for instance the books of Yoshizawa
[11, 12] which contain general results on the subject matters other eminent au-
thors that have contributed immensely to the study of stability, boundedness,
asymptotic behaviour, existence and uniqueness of solutions of second order
ordinary differential equations include Alaba and Ogundare [1], Grigoryan [2],
Kroopnick [3], Ogundare and Afuwape [4], Ogunadare and Okecha [5], Tunç [6]
- [9], Yoshizawa [10] and the references cited therein.

Meanwhile, in 2011, Kroopnick [3], discussed conditions under which all
solutions of the second order differential equation

x′′ + q(t)b(x) = f(t)

are bounded on R+ = [0,∞). The results obtained are the generalizations of
the linear case.
In 2013, Grigoryan [2] established criteria for boundedness and stability for the
ordinary differential equation of the form

φ′′(t) + p(t)φ′(t) + q(t)φ(t) = 0, t ≥ t0.

Recently in 2014, Ogundare and Afuwape [4] studied conditions which guar-
antee boundedness and stability properties of solutions of generalized Lienard
equations

x′′ + f(x)x′ + g(x) = p(t, x, x′).

Furthermore, in [7] Tunç discussed boundedness of solutions to the second order
ordinary differential equation

x′′ + c(t, x, x′) + q(t)b(x) = f(t).

Finally, Alaba and Ogundare [1] gave conditions for asymptotic behaviour of
solutions of certain second order non-autonomous nonlinear ordinary differential
equation

x′′ + a(t)f(x, x′)x′ + b(t)g(x) = p(t, x, x′).

Most of these works were done by constructing suitably Lyapunov functions
except in [3] where the integral test was used.

However, the problem of stability, boundedness and existence of periodic
solutions of second order nonlinear non-autonomous ordinary differential equa-
tion

[φ(x(t))x′(t)]′ + g(t, x(t), x′(t))x′(t) + ϕ(t)h(x(t)) = p(t, x(t), x′(t)), (1.1)
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is yet to be considered. Setting x′(t) = φ−1(x(t))y(t), φ(x(t)) 6= 0, Eq. (1.1) is
equivalent to system of first order ordinary differential equations

x′(t) = φ−1(x(t))y(t),

y′(t) = −φ−1(x(t))y(t)g(t, x(t), φ−1(x(t))y(t))− ϕ(t)h(x(t))

+ p(t, x(t), φ−1(x(t))y(t)),

(1.2)

where ϕ : R+ → R; φ, h : R→ R; g, p : R+×R2 → R are continuous functions in
their respective argument and the derivatives φ′(x(t)), gt(t, x(t), φ−1(x(t))y(t)),
gx((t, x(t), φ−1(x(t))y(t))), gy(t, x(t), φ−1(x(t))y(t)) and ϕ′ exist and are contin-
uous for all values of t ≥ 0, x and y. Motivation for this work comes from the
papers in [1], [4] and [7], where stability, boundedness and asymptotic behaviour
of solutions of second order ordinary differential equation were proved.

2 Preliminaries

Consider the system of the form

X ′(t) = F (t,X(t)) (2.1)

where F ∈ C(R+ × Rn,Rn) and Rn is the n−dimensional Euclidean space.

Definition 1 A solution X(t; t0, X0) of Eq. (2.1) is bounded, if there exists a
β > 0 such that ‖X(t; t0, X0)‖ < β for all t ≥ t0 where β may depend on each
solution.

Definition 2 The solutions X(t; t0, X0) of Eq. (2.1) are uniformly bounded, if
for any α > 0 and t0 ∈ R+, there exists a β(α) > 0 such that if ‖X0‖ < α
‖X(t; t0, X0)‖ < β for all t ≥ t0.

Definition 3 The solutions of Eq. (2.1) are uniformly ultimately bounded for
bound B if there exists a B > 0 and if corresponding to any α > 0 and t0 ∈ R+,
there exists a T (α) > 0 such that if ‖X0‖ < α implies that ‖X(t; t0, X0)‖ < B

for all t ≥ t0 + T (α).

Definition 4 (i) A function φ : R+ → R+, continuous, strictly increasing with
φ(0) = 0, is said to be a function of class K for such function, we shall write
φ ∈ K.
(ii) If in addition to (i) φ(r) → +∞ as r → ∞, φ is said to be a function of
class K∗ and we write φ ∈ K∗.
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If F (t, 0) = 0, and F ∈ C(R+ ×D,Rn), D is an open set in Rn, in Eq. (2.1)
we have the following definitions

Definition 5 [12] The zero solution X(t) ≡ 0 of Eq. (2.1) is stable, if for any
ε > 0 and any t0 ∈ R+, there exists a δ(t0, ε) > 0 such that ‖X0‖ < δ(t0, ε)
implies

‖X(t, t0, X0)‖ < ε for all t ≥ t0

where X(t, t0, X0) denotes the solution of Eq. (2.1) through the point (t0, X0).

Definition 6 [12] The zero solution X(t) ≡ 0 of Eq. (2.1) is uniformly stable,
if the δ in Definition 5 is independent of t0.

Definition 7 [12] The zero solution X(t) ≡ 0 of Eq. (2.1) is asymptotically
stable, if it is stable, and if there exists a δ(t0) > 0 such that ‖X0‖ < δ0(t0)
implies that

‖X(t, t0, X0)‖ → 0 as t→∞.

Definition 8 [11] The zero solution X(t) ≡ 0 of Eq. (2.1) is quasi-
equiasymptotically stable, if given any ε > 0 and any t0 ∈ R+, there exist
a δ0(t0) > 0 and a T (t0, ε) > 0 such that if ‖X0‖ < δ0(t0),

‖X(t, t0, X0)‖ < ε for all t ≥ t0 + T (t0, ε)

Definition 9 [12] The zero solution X(t) ≡ 0 of Eq. (2.1) is quasi-uniformly
asymptotically stable, if the δ0 and the T in Definition 8 are independent of t0.

Definition 10 [12] The zero solution X(t) ≡ 0 of Eq. (2.1) is uniformly asymp-
totically stable, if it is uniformly stable and is quasi-uniformly asymptotically
stable.

The following lemmas are very important in the proofs of our results.

Lemma 1 [10] Suppose that there exists a Lyapunov function V (t,X) defined
on R+, ‖X‖ < H which satisfies the following conditions:

(i) V (t, 0) ≡ 0;

(ii) a(‖X‖) ≤ V (t,X) ≤ b(‖X‖), a, b are continuous and increasing;

(iii) V(2.1)(t,X) ≤ −c(‖X‖) for all (t,X) ∈ R+ ×D.
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Then the trivial solution X(t) ≡ 0 of Eq. (2.1) is uniformly asymptotically
stable.

Lemma 2 [10, 11] Suppose that there exists a Lyapunov function V (t,X) de-
fined on R+, ‖X‖ ≥ R, where R may be large, which satisfies the following
conditions:

(i) a(‖X‖) ≤ V (t,X) ≤ b(‖X‖), where a(r) and b(r) are continuous and
increasing and a(r)→∞ as r →∞;

(ii) V ′(2.1)(t,X) ≤ −c(‖X‖), where c(r) is positive and continuous,

then solutions of Eq. (2.1) are uniformly ultimately bounded.

Lemma 3 [10, 11] If there exists a Lyapunov function satisfying the condition
of Lemma 2, then Eq. (2.1) has at least a periodic solution of period ω.

3 Main Results

We shall use the following notations. Let x(t) = x, y(t) = y,

g(t, x(t), φ−1(x(t))y(t)) = g(·) and p(t, x(t), φ−1(x(t))y(t)) = p(·). First, we shall
consider the case when p(t, x, x′) = 0 = p(·) so that equations (1.1) and (1.2)
become

[φ(x(t))x′(t)]′ + g(t, x(t), x′(t))x′(t) + ϕ(t)h(x(t)) = 0 (3.1)

and

x′(t) = φ−1(x(t))y(t),

y′(t) = −φ−1(x(t))y(t)g(t, x(t), φ−1(x(t))y(t))− ϕ(t)h(x(t)),
(3.2)

respectively where the functions φ, g, h and ϕ are defined in Section 1. Let
(x(t), y(t)) be any solution of (3.2), the continuously differentiable function
employed in the proof of our results is the function V = V (t, x, y) defined as

2V = 2ϕ(t)φ(x)

∫ x

0

h(s)ds+ (a2 + b2φ2(x))x2 + (bφ(x) + 1)y2 + 2xyg(·), (3.3)

where a and b are positive constants. We have the following result.

Theorem 1 Further to the basic assumptions of the functions φ, ϕ, g and h,
suppose that a, b, φ0, φ1, ϕ0, ϕ1, A,B are positive constants such that
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(i) ϕ0 ≤ ϕ(t) ≤ ϕ1 for all t ≥ 0, φ0 ≤ φ(x) ≤ φ1 for all x;

(ii) b ≤ h(x)
x ≤ B x 6= 0;

(iii) a ≤ g(·) ≤ A for all t ≥ 0, x, y; and

(iv) ϕ′(t) ≤ 0 for all t ≥ 0, xygt(·) ≤ 0, xgx(·) ≤ 0, φ′(x) ≥ 0, xygy(·) ≥ 0 for
all t ≥ 0, x, y.

Then the trivial solution of (3.2) is uniformly asymptotically stable.

Remark 1 (i) When [φ′(x)x′ + g(·)]x′ = ax′, ϕ(t)h(x) = b, φ(x) = 1 and
p(·) = 0 (1.1) reduces to a linear constant coefficients differential equation
and hypotheses (i) to (iv) of Theorem 1 reduce to the corresponding Routh-
Hurwitz criterion a > 0, b > 0.

(ii) If φ(x)x′′ = φ′′(t), [φ′(x)x′ + g(·)]x′ = p(t)φ′(t) and ϕ(t)h(x) = q(t)φ(t)
(3.2) specializes to linear ordinary differential equation of the second order
discussed in [2].

(iii) Whenever φ(x) = 1 = ϕ(t), g(·) = f(x), h(x) = g(x) and p(·) = 0 (3.2)
becomes the second order autonomous differential equation discussed in [4].

(iv) When φ(x) = 1, φ′(x) = 0, g(·) = a(t)f(x, y) and p(·) = 0 (3.2) reduces to
the second order non autonomous differential equation studied in [1].

(v) Thus, the result of Theorem 1 includes and extends the stability results
discussed in [1, 2] and [4].

Next, we shall state and prove a result that would be useful in the proof of
Theorem 1 and the preceding results.

Lemma 4 Under the hypotheses of Theorem 1, there exist constants D0 =
D0(a, b, φ0, ϕ0) > 0 and D1 = D1(a, b, φ1, ϕ1, A,B) > 0 such that

D0(x
2(t) + y2(t)) ≤ V (t, x(t), y(t)) ≤ D0(x

2(t) + y2(t)), (3.4)

for all t ≥ 0, x and y. Furthermore, there exists a constant D2 = D2(a, b, ϕ0) > 0
such that

dV

dt

∣∣∣∣
(3.2)

= V ′(3.2)(t, x, y) ≤ −D2(x
2(t) + y2(t)) (3.5)

for all t ≥ 0, x and y.
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Proof 1 (Proof) Let (x(t), y(t)) be any solution of (3.2), if x(t) = 0 = y(t),
it follows from (3.3) that

V (t, 0, 0) = 0. (3.6)

From the hypotheses of Theorem 1 we have ϕ(t) ≥ ϕ0 for all t ≥ 0, φ(x) ≥ φ0

for all x, h(x) ≥ bx, x 6= 0 and g(·) ≥ a for all t ≥ 0, x and y so that the
function V defined in (3.3) becomes

V ≥ (ax+ y)2 + bφ0(bφ0 + ϕ0)x
2 + bφ0y

2 ≥ δ0(x
2 + y2) (3.7)

for all t ≥ 0, x and y, where

δ0 :=
1

2
min

{
min{a, 1}+ bφ0(bφ0 + ϕ0), min{a, 1}+ bφ0

}
.

From the inequality (3.7), we observed that V (t, x, y) = 0 if and only if x2+y2 =
0 and V (t, x, y) > 0 if and only if x2 + y2 6= 0, it follows that

V (t, x, y)→ +∞ as x2 + y2 →∞. (3.8)

Moreover, applying the upper estimates, defined in Theorem 1, for each of the
functions ϕ(t), φ(x), h(x) and g(·), (3.3) yields

V ≤ (a2 + b2φ2
1 +Bϕ1φ1 + A)x2 + (1 + A+ bφ1)y

2 ≤ δ1(x
2 + y2) (3.9)

for all t ≥ 0, x and y where

δ1 := max{a2 + b2φ2
1 +Bϕ1φ1 + A, 1 + A+ bφ1}.

Hence, from estimates (3.7) and (3.9) the inequality (3.4) is established with
δ0 = D0 and δ1 = D1 respectively.

Next, we shall establish the inequality (3.5). To see this, let (x(t), y(t)) be
any solution of (3.2), the derivative of the function V defined in (3.3), with
respect to the independent variable t along the solution path of (3.2) after sim-
plification is

V ′(3.2) =
3∑

i=1

Ui − U4 −
[
bφ(x)

(
ϕ(t)

h(x)

x
− b
)

+ φ−1(x)

(
g2(·)− a2

)]
xy (3.10)

where:

U1 := ϕ′(t)φ(x)

∫ x

0

h(s)ds+ xygt(·);

U2 := yφ′(x)

[
b2x2 +

1

2
bφ−1(x)y2 + ϕ(t)φ−1(x)

∫ x

0

h(s)ds

]
;

U3 := xgx(·)φ−4(x)φ′(x)y4; and

U4 :=

[
ϕ(t)g(·)h(x)

x
+ ygy(·)ϕ(t)φ−1(x)

h(x)

x

]
x2 +

[
xgy(·)φ−1(x) + bg(·)

]
y2.
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Now since ϕ′(t) ≤ 0 for all t ≥ 0, φ(x) ≥ φ0 for all x, h(x) ≥ bx for x 6= 0, and
xygt(·) ≤ 0 for all t ≥ 0, x and y, it follows that

U1 = ϕ′(t)φ(x)

∫ x

0

h(s)ds+ xygt(·) ≤ 0

for all t ≥ 0, x and y.
Also, from the hypotheses of Theorem 1 φ′(x) ≥ 0 for all x, φ(x) ≤ φ1 for all
x, ϕ(t) ≥ ϕ0 for all t ≥ 0, and h(x) ≥ bx for all x 6= 0, so that

φ′(x)

[
b2x2 +

1

2
bφ−1(x)y2 + ϕ(t)φ−1(x)

∫ x

0

h(s)ds

]
≥ 0

for all t ≥ 0, x and y. Recall y < 1 + y2 it follows that

U2 := yφ′(x)

[
b2x2 +

1

2
bφ−1(x)y2 + ϕ(t)φ−1(x)

∫ x

0

h(s)ds

]
≤ 0

for all t ≥ 0, x and y.
Moreover, xgx(·) ≤ 0 for all t ≥ 0, x, y, φ(x) ≤ φ1 for all x and φ′(x) ≥ 0 for
all x, we have

U3 = xgx(·)φ−4(x)φ′(x)y4 ≤ 0

for all t ≥ 0, x and y.
Finally, since xygy(·) ≥ 0 for all t ≥ 0, x and y we find that

U4 ≥ ab(ϕ0x
2 + y2)

for all t ≥ 0, x and y. Using estimates Ui (i = 1, 2, 3, 4) in (3.10) we obtain

V ′(3.2) ≤ −
1

2
ab(ϕ0x

2 + y2)−
6∑

i=5

Ui (3.11)

where

U5 :=
ab

4

[
ϕ0x

2 + 4a−1φ(x)

(
ϕ(t)

h(x)

x
− b
)
xy + y2

]
and

U6 :=
ab

4

[
ϕ0x

2 + 4a−1b−1φ−1(x)

(
g2(·)− a2

)
xy + y2

]
.

Employing the inequalities

16a−2φ2(x)

[
ϕ(t)

h(x)

x
− b
]2

< ϕ0 and 16a−2b−2φ−2(x)

[
g2(·)− a2

]2

< ϕ0
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in U5 and U6 respectively we obtain,

U5 ≥
ab

4

[
√
ϕ0|x| − |y|

]2

≥ 0 and U6 ≥
ab

4

[
√
ϕ0|x| − |y|

]2

≥ 0, (3.12)

for all t ≥ 0, x, y. Using the inequalities (3.12) in (3.11), there exists a constant
δ2 > 0 such that

V ′(3.2) ≤ −δ2(x
2 + y2) (3.13)

for all t ≥ 0, x and y where

δ2 :=
ab

2
min{ϕ0, 1}.

From the inequality (3.13) estimate (3.5) is established with δ2 ≡ D2 respec-
tively. This completes the proof of Lemma 4.

Proof 2 (Proof of Theorem 1) Let (x(t), y(t)) be any solution of system of
first order Eq. (3.2). From Eq. (3.6), the inequalities (3.7), (3.9) and (3.13) all
hypotheses of Lemma 1 hold hence, by Lemma 1 the trivial solution X(t) ≡ 0
of (3.2) is uniformly asymptotically stable where X = (x, y) ∈ R2.

Next, if p(·) 6= 0 in Eq. (1.1) (in particular Eq. (1.2)) we have the following
result.

Theorem 2 In addition to the assumptions of Theorem 1, suppose that

|p(·)| ≤M, 0 < M <∞, (3.14)

then the solutions of (1.2) are uniformly ultimately bounded.

Remark 2 (i) If φ(x) = 1, g(·) = f(x) and ϕ(t) = 1. Equation (1.1) reduces
to that discussed in [4].

(ii) Whenever φ(x) = 1, x′(t) = 1 and p(·) = f(t), (1.1) specializes to that
studied in [7].

(iii) When φ(x) = 1 and g(·) = a(t)f(x, x′), then (1.1) reduces to the second
order non-autonomous non linear ordinary differential equation discussed
in [1].

(iv) The boundedness result presented in Theorem 2 includes and extends the
results in [1], [4] and [7].
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Proof 3 (Proof of Theorem 2) Let (x(t), y(t)) be any solution of Eq. (1.2).
The Lyapunov’s function defined in Eq. (3.3) gives rise to the inequalities (3.7),
(3.9) and the expression in (3.8) hold for Eq. (1.2). Furthermore, the derivative
of the function V defined by Eq. (3.3) with respect to the independent variable
t along the solution path of Eq. (1.2) is

V ′(1.2) = V ′(3.2) +

[
x

(
ygy(·) + g(·)

)
+ y

(
bφ(x) + 1

)]
p(·). (3.15)

From the inequality (3.13) V ′(3.2) ≤ −δ2(x
2 + y2) for all t ≥ 0, x, y and in view

of hypotheses Theorem 1 we find Eq. (3.15) to be

V ′(1.2) ≤ −δ2(x
2 + y2) +K0(|x|+ |y|)|p(·)| (3.16)

for all t ≥ 0, x and y where

K0 := max

{
A, bφ1 + 1

}
.

Now by estimate (3.14) and noting the fact that (|x| + |y|)2 ≤ 2(x2 + y2), it
follows from the inequality (3.16) that

V ′(1.2) ≤ −δ3(x
2 + y2) (3.17)

for all t ≥ 0, x and y where δ3 :=
δ2

2
> 0 provided that

(x2 + y2)1/2 = ‖X‖ ≥ K1 = 23/2K0Mδ−1
2 > 0

for all X = (x, y) ∈ R2, where K1 may be large. Now from the inequalities
(3.7), (3.9) and (3.17) the hypotheses of Lemma 2 hold. Hence, by Lemma 2
the solutions of Eq. (1.2) are uniformly ultimately bounded.

Next, we shall state and prove a result on the periodic solutions of the system
of Eq. (1.2).

Theorem 3 If all the assumptions of Theorem 2 hold, then Eq. (1.2) has at
least a periodic solution of period ω.

Proof 4 (Proof) Let (x(t), y(t)) be any solution of Eq. (1.2). Since the Lya-
punov’s function defined in (3.3) satisfies the assumptions of Theorem 2, which
in turn satisfy the assumptions of Lemma 2. Thus by Lemma 2 and Lemma 3
equation (1.2) has at least a periodic solution of period ω. This completes the
proof of Theorem 3.
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Finally, if the forcing term p(·) is replaced with the function p(t), p ∈ C[R+,R]
in Eq. (1.1) we have

[φ(x(t))x′(t)]′ + g(t, x(t), x′(t))x′(t) + ϕ(t)h(x(t)) = p(t), (3.18)

and Eq. (3.18) is equivalent to system of first order ordinary differential equa-
tions

x′(t) = φ−1(x(t))y(t),

y′(t) = −φ−1(x(t))y(t)g(t, x(t), φ−1(x(t))y(t))− ϕ(t)h(x(t)) + p(t).
(3.19)

We have the following result.

Theorem 4 Further to the assumptions of Theorem 1, suppose that∫ x

0

|p(µ)|dµ ≤ N, 0 ≤ N <∞, (3.20)

then there exists a constant D4 = D4(x0, y0, a, b, φ0, φ1, ϕ0, ϕ1) > 0 such that
any solution (x(t), y(t)) of Eq. (3.19) determined by x(0) = x0, y(0) = y0, for
t = 0, satisfies

|x(t)| ≤ D4, |y(t)| ≤ D4, ∀ t > 0. (3.21)

Proof 5 (Proof) Let (x(t), y(t)) be any solution of Eq.(3.19). In view of the
Lyapunov’s function defined in Eq. (3.3), estimate (3.7) holds for Eq. (3.19).
The derivative of the function V with respect to t along the solution path of Eq.
(3.19) is

V ′(3.19) = V ′(3.2) +

[
x

(
ygy(·) + g(·)

)
+ y

(
bφ(x) + 1

)]
p(t). (3.22)

Now from the inequality (3.13), V ′(3.2) ≤ 0 for all t ≥ 0, x, y and by the assump-
tions of Theorem 1, Eq. (3.22) yields

V ′(3.19) ≤ K0(|x|+ |y|)|p(t)|

for all t ≥ 0, x and y. From the inequality (3.7), the fact that |x| < 1 + x2 and
|y| < 1 + y2 we find that

V ′(3.19) −K2|p(t)|V ≤ 2K0|p(t)| (3.23)

for all t ≥ 0, x and y, where K2 = k0δ
−1
0 . Solving this first order differential

inequality using the integrating factor

exp

[
−K2

∫ x

0

|p(s)|ds
]
,
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together with estimate (3.20), Eq. (3.23) becomes

V (t, x, y) ≤ (V (0) + 1)eK2N − 1 (3.24)

where V (0) = V (0, x0, y0) for t = 0. Engaging estimate (3.7) in the right hand
side of the inequality (3.24) we obtain

|x(t)| ≤ K3, |y(t)| ≤ K3

for all t > 0, where

K3 :=

[
(V (0) + 1)eK2N − 1

]1/2

δ
−1/2
0 .

This establish the inequalities (3.21) with K3 = D4. The proof of Theorem 4 is
established.
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