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Abstract

In this work a class of third order delay differential equations (where the non-
linear functions, especially the first two restoring terms, are sum of multiple

deviating arguments and the forcing term simultaneously depend explicitly on
the independent variable t for all i, the last restoring term has variable coeffi-

cient and deviating arguments τi(t) vary for all i) is considered.

By employing the direct technique of Lyapunov, where a complete Lya-

punov functional is constructed and used, we obtain sufficient conditions that
guarantee the existence of solutions which are periodic, uniformly asymptot-

ically stable, uniformly ultimately bounded. The behaviour of solutions as t
tends to infinity is studied. The obtained results are new and include many
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recent results in the literature. Finally, two examples are given to show the

feasibility of our results.

Keywords: Third order, nonlinear differential equation, uniform stability, uni-
form ultimate boundedness, periodic solutions

1 Introduction

Functional or delay differential equation is one of the major branches of differ-

ential equations because it generalizes most of the classical equations such as
ordinary differential equations, difference differential equations, integral equa-

tions and integro-differential equations. Accordingly, much attention has been
devoted to the study of delay differential equations. See for instance Bur-

ton [16, 17], Driver [18], Hale [20], Lakshmikantham et al. [21], Yoshizawa
[41, 42, 43] which contain basic background to the study. In a wide variety of
problems involving non linear delay differential equations of higher order, it is

essential to establish conditions on the solutions that are periodic, stable and
bounded. Third order nonlinear differential equations with and without delay

have attracted and still attracting the attention of many researchers because of
their importance in real world situations. We can mention for instance the pa-

pers of Ademola et al. [1]-[13], Adesina [14], Afuwape and Omeike [15], Olutimo
and Adams [22], Graef and Tunç [19],Omeike [23, 24], Remili et al. [25, 26],
Tunç [28]-[36], Tunç and Ergören [37], Tunç and Gözen [38], Tunç and Mo-

hammed [39], Yao and Wang [40], Zhu [44]. In this regard, these cited papers
and their references contain outstanding results on the qualitative behaviour of

solutions of considered differential equations.

In an interesting contribution, Tunç [33] discussed the asymptotic stability

and boundedness of solutions to a kind of nonlinear third order differential
equations with retarded arguments:

x′′′(t) + h(x(t), x′(t), x′′(t), x(t− τ(t)), x′(t− τ(t)), x′′(t− τ(t)))x′′

+ g(x(t− τ(t)), x′(t− τ(t))) + f(x(t− τ(t)))

= p(t, x(t), x′(t), x(t− τ(t)), x′(t− τ(t)), x′′(t))).

Tunç and Ergören [37] studied the third order delay equations with multiple
deviating arguments

x′′′(t) + f1(t, x(t))x
′′(t) + f2(t, x(t))x

′ + g0(t, x(t)) +
n

∑

i=1

gi(t, x(t− τi(t))) = p(t)
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and obtained conditions that guarantee the existence of solutions that are uni-

formly bounded.
Another contribution worthy of mentioning is the work of Remili and Oud-

jedi [25] which dwells on the stability and boundedness of the solutions of non
autonomous third order delay differential equation of form

[g(x(t))x′(t)]′′ + a(t)x′′(t) + b(t)x′ + c(t)f(x(t− τ)) = p(t),

where τ is a constant. Recently, Ademola et al. [12] established criteria for
stability, boundedness and existence of periodic solutions to third order delay

differential equations with multiple deviating arguments:

x′′′(t) +
n

∑

i=1

fi(t, x(t), x(t− τi(t)), x
′(t), x′(t− τi(t)), x

′′(t), x′′(t− τi(t)))

+

n
∑

i=1

gi(x
′(t− τi(t))) +

n
∑

i=1

hi(x(t− τi(t)))

=
n

∑

i=1

pi(t, x(t), x(t− τi(t)), x
′(t), x′(t− τi(t)), x

′′(t), x′′(t− τi(t))).

However, the problem of uniform asymptotic stability, uniform ultimate bound-
edness and existence of a unique periodic solution for the non autonomous third

order delay differential equation (1.1) (where the nonlinear functions are sum
of multiple deviating arguments, the functions fi, gi, pi simultaneously depend

explicitly on the independent variable t for all i, hi has variable coefficient and
τi(t) varies for all i) is yet to be explored. Regardless of the difficulties asso-

ciated with the construction of a suitable complete Lyapunov functional, the
aim of this paper therefore is to fill these vacuums. In effect,we will discuss the

equation

x′′′(t) +
n

∑

i=1

fi(·) +
n

∑

i=1

gi(t, x(t), x(t− τi(t)), x
′(t), x′(t− τi(t)))

+ φ(t)

n
∑

i=1

hi(x(t− τi(t))) =

n
∑

i=1

pi(·),

(1.1)

where

fi(·) = fi(t, x(t), x(t− τi(t)), x
′(t), x′(t− τi(t)), x

′′(t), x′′(t− τi(t)))

and

pi(·) = pi(t, x(t), x(t− τi(t)), x
′(t), x′(t− τi(t)), x

′′(t), x′′(t− τi(t)))
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with the equivalent system

x′(t) = y(t),

y′(t) = z(t)

z′(t) =

n
∑

i=1

pi(t, x(t), x(t− τi(t)), y(t), y(t− τi(t)), z(t), z(t− τi(t)))

−
n

∑

i=1

fi(t, x(t), x(t− τi(t)), y(t), y(t− τi(t)), z(t), z(t− τi(t)))

−
n

∑

i=1

gi(t, x(t), x(t− τi(t)), y(t), y(t− τi(t)))− φ(t)
n

∑

i=1

hi(x(t))

+ φ(t)

∫ t

t−τi(t)

n
∑

i=1

h′
i(x(s))y(s)ds,

(1.2)

where the functions fi, gi, hi, φ and pi in their respective arguments on R
+ ×

R
3n+3, R+ × R

2n+2, Rn, R+ and R
+ × R

3n+3 respectively with R
+ = [0,∞),

R = (−∞,∞), n ∈ N finite and 0 ≤ τi(t) ≤ γ, γ > 0 being a constant whose
value will be established later. Continuity of these functions is sufficient for the

existence of the solutions of equation (1.1). Furthermore, it is assumed that the
functions f , g and p in the equation (1.1) satisfy a Lipschitz condition in their

respective arguments. The primes stand for differentiation with respect to the
independent variable t and the derivatives h′

i and φ′ exist and continuous for

all t ≥ 0, x with hi(0) = 0.

This work is motivated by the recent works in [7, 12, 13, 22, 25, 26] and

[38]. The obtained results are new and include many existing results in the
literature. Despite the attention that has been given to the third order nonlinear

differential equation with deviating arguments, we are yet to come across a
situation where the unknown functions fi, gi and pi depend explicitly on the
independent variable t, the function hi has variable coefficient and τi(t) varies

for all i, (i = 1, 2, · · · , n). This is our principal contribution. In the next section,
we give basic preliminary results used in this work. The main results of the

paper are stated and proved in Section 3. Examples and discussions are given
in Section 4 while Section 5 is dedicated to conclusion of this work.
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2 Preliminary Results

Consider the following general nonlinear non-autonomous delay differential

equation

Ẋ =
dX

dt
= F (t, Xt), Xt = X(t+ θ), −r ≤ θ < 0, t ≥ 0, (2.1)

where F : R+×CH → R
n is a continuous mapping, F (t+ω, φ) = F (t, φ) for all

φ ∈ C and for some positive constant ω.We assume that F takes closed bounded

sets into bounded sets in R
n. (C, ‖·‖) is the Banach space of continuous function

ϕ : [−r, 0] → R
n with supremum norm, r > 0; for H > 0, we define CH ⊂ C by

CH = {ϕ ∈ C : ‖ϕ‖ < H, } CH is the open H−ball in C, C = C([−r, 0],Rn).

Definition 2.1. (See [20]). Suppose that F (t, 0) = 0 for all t ∈ R. The solution
Xt = 0 is said to be stable for any t0 ∈ R, ǫ > 0, there is a δ = δ(ǫ, t0) such

that ||φ||r < δ implies ||Xt(t; t0, φ)|| < ǫ for t ≥ t0 − r. The solution Xt = 0 of
(2.1) is uniformly stable on (t0,∞) if it is stable at each t0 and the number δ is

independent of t0 (i.e δ(ǫ) depends only on ǫ).

Definition 2.2. (See [20]). The solution Xt = 0 of (2.1) is said to be asymp-

totically stable at t0 if it is stable at t0 then there exists number δ1 = δ1(t0) > 0
such that whenever ||φ||r < δ1,

lim
t→∞

Xt(t; t0, φ) = 0.

The solution Xt = 0 of (2.1) is uniformly asymptotically stable if it is uniformly
stable and furthermore, there exits δ1 > 0 (independent of t0) such that for

each t0 and ||φ||r < δ1,
Xt(t; t0, φ) → 0

as t → ∞.

Definition 2.3. (See [21]). A solution of (2.1) is bounded if there is an M =
M(t0, φ) > 0 such that

‖Xt(t; t0, φ)‖ < M

for all t ≥ t0 − r.

Definition 2.4. (See [21]). The solutions of (2.1) are uniformly bounded if the
M in Definition 2.3 is independent of t0.
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Definition 2.5. (See [21]). The solutions of (2.1) are ultimately bounded for

bound M, if there exist an M > 0 and a T = T (t0, φ) > 0 such that for every
solution Xt(t0, φ) of (2.1)

‖Xt(t; t0, φ)‖ < M

for all t ≥ t0 + T.

Definition 2.6. (See [21]). The solutions of (2.1) are uniformly ultimately
bounded for bound M, if the T in Definition 2.5 is independent of t0.

Definition 2.7. (See [17]). A continuous function W : R+ → R
+ with W (0) =

0, W (s) > 0 if s 6= 0, and W strictly increasing is a wedge. (We denote wedges
by W or Wi, where i is an integer).

Lemma 2.1. (See [42]). Suppose that F (t, φ) ∈ C0(φ) and F (t, φ) is periodic
in t of period ω, ω ≥ r and consequently for any α > 0 there exists an L(α) > 0

such that φ ∈ Cα implies |F (t, φ)| ≤ L(α). Suppose that a continuous Lyapunov
functional V (t, φ) exists, defined on t ∈ R

+, φ ∈ S∗, S∗ is the set of φ ∈ C such

that with |φ(0)| ≥ H (H may be large) and that V (t, φ) satisfies the following
conditions:

(i) a(|φ(0)|) ≤ V (t, φ) ≤ b(‖φ‖), where a(r) and b(r) are continuous, increas-

ing and positive for r ≥ H and a(r) → ∞ as r → ∞;

(ii) V̇(2.1)(t, φ) ≤ −c(|φ(0)|), where c(r) is continuous and positive for r ≥ H.

Suppose that there exists an H1 > 0, H1 > H, such that

hL(γ∗) < H1 −H, (2.2)

where γ∗ > 0 is a constant which is determined in the following way: By the
condition on V (t, φ) there exist α > 0, β > 0 and γ > 0 such that b(H1) ≤ a(α),

b(α) ≤ a(β) and b(β) ≤ a(γ). γ∗ is defined by b(γ) ≤ a(γ∗). Under the above
conditions, there exists a periodic solution of (2.1) of period ω. In particular,

the relation (2.2) can always be satisfied if h is sufficiently small.

Lemma 2.2. (See [42]). Suppose that F (t, φ) is defined and continuous on
0 ≤ t ≤ c, φ ∈ CH and that there exists a continuous Lyapunov functional
V (t, φ, ϕ) defined on 0 ≤ t ≤ c, φ, ϕ ∈ CH which satisfy the following conditions:

(i) V (t, φ, ϕ) = 0 if φ = ϕ;

(ii) V (t, φ, ϕ) > 0 if φ 6= ϕ;
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(iii) for the associated system

ẋ(t) = F (t, xt), ẏ(t) = F (t, yt) (2.3)

we have V ′
(2.3)(t, φ, ϕ) ≤ 0, where for ‖φ‖ = H or ‖ϕ‖ = H, we understand

that the condition V ′
(2.3)(t, φ, ϕ) ≤ 0 is satisfied in the case V ′ can be

defined.

Then, for given initial value φ ∈ CH1
, H1 < H, there exists a unique solution of

(2.1).

Lemma 2.3. (See [42]). Suppose that a continuous Lyapunov functional V (t, φ)
exists, defined on t ∈ R

+, ‖φ‖ < H, 0 < H1 < H which satisfies the following

conditions:

(i) a(‖φ‖) ≤ V (t, φ) ≤ b(‖φ‖), where a(r) and b(r) are continuous, increasing

and positive,

(ii) V̇(2.1)(t, φ) ≤ −c(‖φ‖), where c(r) is continuous and positive for r ≥ 0,

then the zero solution of (2.1) is uniformly asymptotically stable.

Lemma 2.4. (See [16]). Let V : R
+ × C → R be continuous and locally

Lipschitz in φ. If

(i) W0(|Xt|) ≤ V (t, Xt) ≤ W1(|Xt|) +W2

(

t
∫

t−r(t)

W3(Xt(s))ds

)

and

(ii) V̇(2.1)(t, Xt) ≤ −W4(|Xt|)+N, for some N > 0 where Wi (i = 0, 1, 2, 3, 4)
are wedges.

Then Xt of (2.1) is uniformly bounded and uniformly ultimately bounded for
bound M.

3 Main Results

We shall give the following notations before we state our main results. Let

x(t) = x, y(t) = y, z(t) = z,
n
∑

i=1

fi(t, x(t), x(t− τi(t)), y(t), y(t− τi(t)), z(t), z(t−

τi(t))) =
n
∑

i=1

fi(·),
n
∑

i=1

gi(t, x(t), x(t − τi(t)), x
′(t), x′(t − τi(t))) =

n
∑

i=1

gi(·) and

n
∑

i=1

pi(t, x(t), x(t − τi(t)), y(t), y(t − τi(t)), z(t), z(t − τi(t))) =
n
∑

i=1

pi(·). Let
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(xt, yt, zt) be any solution of system (1.2), the continuously differentiable func-

tional employed in the proof of our results is V = V (t, xt, yt, zt) defined as
follows

2V = 2φ(t)

(

α +
n

∑

i=1

ai

)
∫ x

0

n
∑

i=1

hi(ξ)dξ + 4φ(t)y
n

∑

i=1

hi(x) + 2

(

α +
n

∑

i=1

ai

)

yz

+ 2z2 +

(

α2 + β +
n

∑

i=1

a2i + 2
n

∑

i=1

bi

)

y2 + β
n

∑

i=1

bix
2 + 2β

n
∑

i=1

aixy + 2βxz

+

∫ 0

−τi(t)

∫ t

t+s

[

λ1y
2(θ) + λ2z

2(θ)

]

dθds,

(3.1)

where α and β are positive constants satisfying the following inequalities

φ1

( n
∑

i=1

bi

)−1 n
∑

i=1

ci ≤ α ≤

n
∑

i=1

ai; (3.2)

0 < β < min

{ n
∑

i=1

bi,

(

α
n

∑

i=1

bi − φ1

n
∑

i=1

ci

)

A−1
1 ,

( n
∑

i=1

ai − α

)

A−1
2

}

; (3.3)

with

A1 := 2

[

1 +
n

∑

i=1

ai + φ−1
0

( n
∑

i=1

δi

)−1( n
∑

i=1

gi(·)

y
−

n
∑

i=1

bi

)2]

;

A2 := 4

[

1 + φ−1
0

( n
∑

i=1

δi

)−1( n
∑

i=1

fi(·)

z
−

n
∑

i=1

ai

)2]

and λ1 and λ2 are nonnegative constants which will be determined later.

Remark 3.1. The following remarks hold for the continuously differentiable

functional (3.1):

(i) if φ(t)hi(x) = hi(x) and gi(·) = gi(y) then the functional (3.1) reduces to
that used in [12];

(ii) whenever α2 = α,
n
∑

i=1

ai = a, the functional V in equation (3.1) specializes

to the functional V defined in [7]; and

(iii) when α2 = α,
n
∑

i=1

ai = a,
n
∑

i=1

bi = b,
n
∑

i=1

ci = c and
n
∑

i=1

δi = δ, the functional

V in equation (3.1) specializes to that used in [2] and [3].
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Thus the functional V defined in equation (3.1) is an improvement on the one

used in [2, 3, 7] and [12].

In what follows we state the main results and give their proofs.

Theorem 3.1. In addition to the basic assumptions on the functions fi, gi, hi, φ
and pi
i = 1, 2, · · · , n, suppose that ai, bi, ci, δi, ǫ, β0,Mi, φ0, φ1 and γ are positive con-
stants such that

(i) φ0 ≤ φ(t) ≤ φ1 and |φ′(t)| < ǫ for all t ≥ 0;

(ii) ai ≤ fi(·)/z for all t ≥ 0, x, y, z 6= 0, x(t−τi(t)), y(t−τi(t)) and z(t−τi(t));

(iii) bi ≤ gi(·)/y for all t ≥ 0, x, y 6= 0, x(t− τi(t)) and y(t− τi(t));

(iv) hi(0) = 0, δi ≤ hi(x)/x ≤ ci for all t ≥ 0 and x 6= 0, and φ1ci ≤ aibi;

(v) τi(t) ≤ γ, τ ′i(t) ≤ β0 β0 ∈ (0, 1) where

γ < min

{

(

φ1

n
∑

i=1

ci

)−1

A3, A4 · A5, A6

}

(3.4)

where

A3 = βφ0

n
∑

i=1

δi − 2ǫ
n

∑

i=1

ci

(

1 + α+
n

∑

i=1

ai

)

A4 =

( n
∑

i=1

ai

n
∑

i=1

bi − φ1

n
∑

i=1

ci − 2ǫ
n

∑

i=1

ci(1 + α +
n

∑

i=1

ai)

)

A5 =

{

[

α +
n

∑

i=1

ai + (1− β0)
−1(2 + α + β +

n
∑

i=1

ai)

]

φ1

n
∑

i=1

ci

}−1

,

A6 =

[ n
∑

i=1

ai − α

][

4φ1

n
∑

i=1

ci

]−1

; and

(vi) |pi(·)| ≤ Mi, for all t ≥ 0, x, y, z, x(t− τi(t)), y(t− τi(t)) and z(t− τi(t)).

Then the solution (xt, yt, zt) of system (1.2) is uniformly bounded and uniformly
ultimately bounded.

Remark 3.2. We observed the following:
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(i) If fi(·) = aẍ, gi(·) = bẋ, φ(t)hi(x(t − τi(t))) = cx and pi(·) = 0, then the

equation (1.1) reduces to a linear constant coefficients third order differen-
tial equation

x′′′ + ax′′ + bx′ + cx = 0,

and hypotheses (i) to (vi) of Theorem 3.1 reduce to Routh Hurwitz criteria

a > 0, b > 0, ab > c and c > 0 for asymptotic stability for third order
differential equation.

(ii) When i = 1, we have f1(·) = h(·), g1(·) = g(·) and φ(t)h1(x(t− τ1(t))) =

f(x(t− τ(t))) where h(·), g(·) and h(·) are independent of t, then the equa-
tion (1.1) becomes the case discussed in [31].

(iii) Whenever i = 1, we have f1(·) = ϕ(x, x′)x′′, g1(·) = g(x′(t − τ(t))),

φ(t)h1(x(t − τ1(t))) = f(x(t − τ(t))) and pi(·) = p(t, x, x′, x′′) with
0 ≤ τ1 ≤ γ, then (1.1) is a special case discussed in [24].

(iv) If i = 1, we have f1(·) = a(t)x′′, g1(·) = b(t)g1(x
′(t − τ)) + g2(x

′),

φ(t)h1(x(t − τ1(t))) = h(x(t − τ)) and pi(·) = p(t, x, x((t− τ)), x′, x′((t −
τ)), x′′) then the equation (1.1) is a special case considered in [33].

(v) whenever i = 1, so that τ1(t) = τ(t), f1(·) = a(t)h(x(t), x′(t))x′′,

g1(·) = g(x′(t − τ(t))), φ(t)h1(x(t − τ1(t))) = c(t)f(x(t − τ(t))) and
pi(·) = p(t, x, x((t − τ)), x′, x′((t − τ)), x′′) then the equation (1.1) is a
special case of the recent work discussed in [22].

(vi) When the nonlinear functions g and h are independent of the independent
variable t, then the equation (1.1) is a case discussed in [12].

Hence, Theorem 3.1 includes and extends the results in [2]-[15], [22]-[40] and
the references cited therein.

Next, we will state and prove a result that would be useful in the proof of
Theorem 3.1 and the succeeding ones.

Lemma 3.1. Under the assumptions of Theorem 3.1, there exist constants D0 =
D0(α, β, ai, bi, ci,
δi, φ0, φ1) > 0, D1 = D1(α, β, φ1, ai, bi, ci) > 0 and D2 = D2(λ1, λ2) > 0 such

that

D0(x
2(t) + y2(t) + z2(t)) ≤ V (t, xt, yt, zt) ≤ D1(x

2(t) + y2(t) + z2(t))

+D2

∫ 0

τi(t)

∫ t

t+s

(y2(θ) + z2(θ))dθds
(3.5)
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for all t ≥ 0, x, y and z. In addition, there exist constants D3 =

D3(α, β, β0, γ, δi, ǫ, γ, ai, bi, ci, φ0,
φ1,Mi) > 0 and D4 = D4(2, α, β, ai,M1) > 0 such that

V ′
(1.2) ≤ −D3(x

2(t) + y2(t) + z2(t)) +D4, (3.6)

for all t ≥ 0, x, y and z.

Proof . Let (xt, yt, zt) be any solution of system (1.2). Setting xt = yt = zt = 0
in equation (3.1), we find that

V (t, 0, 0, 0) = 0

for all t ≥ 0. Also, from hypothesis (iv) of Theorem 3.1, hi(0) = 0, it follows
that the functional V defined in the equation (3.1) can be written in the form

V = φ(t)

( n
∑

i=1

bi

)−1 ∫ x

0

[(

α
n

∑

i=1

bi +
n

∑

i=1

ai

n
∑

i=1

bi

)

− 2φ(t)
n

∑

i=1

h′
i(ξ)

] n
∑

i=1

hi(ξ)dξ +

( n
∑

i=1

bi

)−1(

φ(t)
n

∑

i=1

hi(x) +
n

∑

i=1

biy

)2

+
1

2

(

βx+
n

∑

i=1

aiy + z

)2

+
1

2
(αy + z)2 +

1

2
βy2 +

1

2
β

( n
∑

i=1

bi − β

)

x2

+
1

2

∫ 0

−τi(t)

∫ t

t+s

[

λ1y
2(θ) + λ2z

2(θ)

]

dθds.

(3.7)

Applying assumptions (i), (iv), the inequalities (3.2), (3.3) and the positivity
of the double integrals in equation (3.7), there exists a positive constant K0 =

K0(α, β, δ, φ0, φ1, δi, ai, bi, ci) such that

V ≥ K0(x
2 + y2 + z2) (3.8)

for all t ≥ 0, x, y and z. We have the following conclusions emanating from
inequality (3.8):

(i) Inequality (3.8) establishes the lower inequality in (3.5) with K0 equivalent
to D0;

(ii) It is clear from the inequality (3.8) that

V (t, xt, yt, zt) = 0 if and only if x2 + y2 + z2 = 0; (3.9)

V (t, xt, yt, zt) > 0 if and only if x2 + y2 + z2 6= 0; and (3.10)

V (t, xt, yt, zt) → +∞ as x2 + y2 + z2 → ∞. (3.11)
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Furthermore, φ(t) ≤ φ1 for all t ≥ 0, hi(x)/x ≤ ci for all x 6= 0, and from the

inequality 2mn ≤ m2 + n2 for all m, n ∈ R, it follows from (3.1), the existence
of positive constants K1 and K2 such that

V ≤ K1(x
2 + y2 + z2) +K2

∫ 0

−τi(t)

∫ t

t+s

(y2(θ) + z2(θ))dθds (3.12)

for all t ≥ 0, x, y and z, where

K1 :=
1

2
max

{

2

(

1 + α +

n
∑

i=1

ai

)

φ1

n
∑

i=1

ci + β

(

1 +

n
∑

i=1

ai +

n
∑

i=1

bi

)

,

2

( n
∑

i=1

bi + φ1

n
∑

i=1

ci

)

+ α(1 + α) +

(

1 +

n
∑

i=1

ai

)(

β +

n
∑

i=1

ai

)

,

2 + α + β +
n

∑

i=1

ai

}

and
K2 := max{λ1, λ2}.

Inequality (3.12) satisfies the upper estimate in (3.5) withK1 andK2 equivalent
to D1 and D2 respectively. Combining estimates (3.8) and (3.12), inequality
(3.5) hold.

Next, the derivative of the functional V defined in the equation (3.1), with
respect to the independent variable t along the solution path of system (1.2)

and simplify to give

V ′
(1.2) = −

5
∑

j=1

Wj − [1− τ ′i(t)]

∫ t

t−τi(t)

[

λ1y
2(θ) + λ2z

2(θ)

]

dθds

+ (λ1y
2 + λ2z

2)τi(t) +

7
∑

j=6

Wj +

[

βx+

(

α +

n
∑

i=1

ai

)

y

+ 2z

] n
∑

i=1

pi(·) + β

[ n
∑

i=1

aiy
2 + 2yz

]

,

(3.13)

where

W1 :=
1

2
βφ(t)

n
∑

i=1

hi(x)

x
x2 +

1

2

[(

α +
n

∑

i=1

ai

) n
∑

i=1

gi(·)

y
− 2φ(t)

n
∑

i=1

h′
i(x)

]

y2
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+
1

2

[

2

n
∑

i=1

fi(·)

z
−

(

α +

n
∑

i=1

ai

)]

z2;

W2 :=
1

4
βφ(t)

n
∑

i=1

hi(x)

x
x2 + β

[ n
∑

i=1

gi(·)

y
−

n
∑

i=1

bi

]

xy

W3 :=
1

4
βφ(t)

n
∑

i=1

hi(x)

x
x2 + β

[ n
∑

i=1

fi(·)

z
−

n
∑

i=1

ai

]

xz;

W4 :=
1

4

{

[(

α +
n

∑

i=1

ai

) n
∑

i=1

gi(·)

y
− 2φ(t)

n
∑

i=1

h′
i(x)

]

y2

+ 8

( n
∑

i=1

gi(·)

y
−

n
∑

i=1

bi

)

yz +

[

2
n

∑

i=1

fi(·)

z
−

(

α +
n

∑

i=1

ai

)]

z2

}

W5 :=
1

4

{

[(

α +

n
∑

i=1

ai

) n
∑

i=1

gi(·)

y
− 2φ(t)

n
∑

i=1

h′
i(x)

]

y2 + 4

[(

α+

n
∑

i=1

ai

)

×

n
∑

i=1

fi(·)

z
−

(

α2 +

n
∑

i=1

a2i

)]

yz +

[

2

n
∑

i=1

fi(·)

z
−

(

α +

n
∑

i=1

ai

)]

z2

}

W6 :=

[(

α +
n

∑

i=1

ai

)
∫ x

0

n
∑

i=1

hi(ξ)dξ + 2y
n

∑

i=1

hi(x)

]

φ′(t); and

W7 :=

[

βx+

(

α +
n

∑

i=1

ai

)

y + 2z

]

φ(t)

∫ t

t−τi(t)

n
∑

i=1

h′
i(x(s))y(s)ds.

Applying the assumptions (i) to (iv) of the Theorem 3.1 in W1, we obtain the

following estimates

W1 ≥
1

2
βφ0

n
∑

i=1

δix
2+

1

2

[(

α
n

∑

i=1

bi+
n

∑

i=1

ai

n
∑

i=1

bi

)

−2φ1

n
∑

i=1

ci

]

y2+
1

2

( n
∑

i=1

ai−α

)

z2,

for all t ≥ 0, x, y and z. In view of assumptions (i) and (iv) of the Theorem 3.1

and noting that β, φ0, δi are positive constants, with the view that

[

x+ 2φ−1
0

( n
∑

i=1

δi

)−1( n
∑

i=1

gi(·)

y
−

n
∑

i=1

bi

)

y

]2

≥ 0

and
[

x+ 2φ−1
0

( n
∑

i=1

δi

)−1( n
∑

i=1

fi(·)

z
−

n
∑

i=1

ai

)

z

]2

≥ 0
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for all t ≥ 0, x, y and z, it follows that

W2 ≥ −βφ−1
0

( n
∑

i=1

δi

)−1( n
∑

i=1

gi(·)

y
−

n
∑

i=1

bi

)2

y2

and

W3 ≥ −βφ−1
0

( n
∑

i=1

δi

)−1( n
∑

i=1

fi(·)

z
−

n
∑

i=1

ai

)2

z2

for all t ≥ 0, x, y and z. Next, we employ the inequalities

64

( n
∑

i=1

gi(·)

y
−

n
∑

i=1

bi

)2

<

[(

α +
n

∑

i=1

ai

) n
∑

i=1

gi(·)

y
− 2φ(t)

n
∑

i=1

h′
i(x)

]

×

[

2
n

∑

i=1

fi(·)

z
−

(

α +
n

∑

i=1

ai

)]

and

16

[(

α +

n
∑

i=1

ai

) n
∑

i=1

fi(·)

z
−

(

α2 +

n
∑

i=1

a2i

)]2

<

[

2

n
∑

i=1

fi(·)

z
−

(

α+

n
∑

i=1

ai

)]

×

[(

α+
n

∑

i=1

ai

) n
∑

i=1

gi(·)

y
− 2φ(t)

n
∑

i=1

h′
i(x)

]

in W4 and W5 respectively, to arrive at

W4 = W5 ≥
1

4

[

√

√

√

√

[(

α +
n

∑

i=1

ai

) n
∑

i=1

gi(·)

y
− 2φ(t)

n
∑

i=1

h′
i(x)

]

y

−

√

√

√

√

[

2

n
∑

i=1

fi(·)

z
−

(

α+

n
∑

i=1

ai

)]

z

]2

≥ 0,

for all t ≥ 0, x, y and z. In addition, since |φ′(t)| < ǫ for all t ≥ 0, ǫ > 0 is
chosen sufficiently small, hi(x)/x ≤ ci for all x 6= 0, x ≤ |x| and the inequality

2x1x2 ≤ x2
1 + x2

2 for all x1, x2 ∈ R, we find that

W6 ≤ ǫ

(

1 + α +

n
∑

i=1

ai

) n
∑

i=1

ci

(

x2 + y2
)
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for all t ≥ 0, x, y and z. Finally, since φ(t) ≤ φ1 for all t ≥ 0 and hi(x)/x ≤ ci
for all x 6= 0, we obtain

W7 ≤
1

2
φ1

n
∑

i=1

ci

[

[

βx2 +

(

α +

n
∑

i=1

ai

)

y2 + 2z2
]

τi(t)

+

(

2 + α+ β +
n

∑

i=1

ai

)
∫ t

t−τi(t)

y2(s)ds

]

for all t ≥ 0, x and y. Substituting estimatesWj (j = 1, 2, · · · , 7) in the equation
(3.13), we obtain

V ′
(1.2) ≤ −

1

2
βφ0

n
∑

i=1

δix
2 −

1

2

( n
∑

i=1

ai

n
∑

i=1

bi − φ1

n
∑

i=1

ci

)

y2

−
1

4

( n
∑

i=1

ai − α

)

z2 − (1− τ ′i(t))λ2

∫ t

t−τi(t)

z2(θ)dθ

−

{

1

2

(

α
n

∑

i=1

bi − φ1

n
∑

i=1

ci

)

− β

[

1 +
n

∑

i=1

ai + φ−1
0

( n
∑

i=1

δi

)−1

×

( n
∑

i=1

gi(·)

y
−

n
∑

i=1

bi

)2]
}

y2 −

{

1

4

( n
∑

i=1

ai − α

)

− β

[

1 + φ−1
0

( n
∑

i=1

δi

)−1( n
∑

i=1

fi(·)

z
−

n
∑

i=1

ai

)2]
}

z2

−

[

(1− τ ′i(t))λ1 −
1

2

(

2 + α+ β +

n
∑

i=1

ai

)

φ1

n
∑

i=1

ci

]

×

∫ t

t−τi(t)

y2(θ)dθ + ǫ

(

1 + α +
n

∑

i=1

ai

) n
∑

i=1

ci

(

x2 + y2
)

+

[

β|x|+

(

α +
n

∑

i=1

ai

)

|y| + 2|z|

] n
∑

i=1

|pi(·)|,+
1

2
τi(t)

[

βx2

+

(

α +

n
∑

i=1

ai

)

y2 + 2z2
]

φ1

n
∑

i=1

ci +

(

λ1y
2 + λ2z

2

)

τi(t)

(3.14)

for all t ≥ 0, x, y and z. Noting that τi(t) ≤ γ and τ ′i(t) ≤ β0, 0 < β0 < 1 for

all t ≥ 0, choose

λ1 = 2−1(1− β0)

(

2 + α + β +
n

∑

i=1

ai

)

φ1

n
∑

i=1

ci > 0, λ2 = 0 (3.15)
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ǫ > 0 sufficiently small such that

βφ0

n
∑

i=1

δi > 2ǫ

(

1 + α +
n

∑

i=1

ai

) n
∑

i=1

ci,

n
∑

i=1

ai

n
∑

i=1

bi − φ1

n
∑

i=1

ci > 2ǫ

(

1 + α +
n

∑

i=1

ai

) n
∑

i=1

ci

and use inequalities (3.2) (3.3) and (3.15) in estimate (3.14), we obtain

V ′
(1.2) ≤ −

1

2

[

βφ0

n
∑

i=1

δi − 2ǫ

(

1 + α +
n

∑

i=1

ai

) n
∑

i=1

ci − βφ1

n
∑

i=1

ciγ

]

x2

−
1

2

[

α

n
∑

i=1

bi − φ1

n
∑

i=1

ci − 2ǫ

(

1 + α +

n
∑

i=1

ai

) n
∑

i=1

ci

−

[

2ǫ

(

1 + α+

n
∑

i=1

ai

) n
∑

i=1

ci

]

φ1

n
∑

i=1

ciγ

]

y2

−
1

4

( n
∑

i=1

ai − α− 4φ1

n
∑

i=1

ciγ

)

z2

+

[

β|x|+

(

α +
n

∑

i=1

ai

)

|y| + 2|z|

] n
∑

i=1

|pi(·)|,

(3.16)

for all t ≥ 0, x, y and z. In view of estimate (3.14) there exist positive constants
K3 and K4 such that inequality (3.16) becomes

V ′
(1.2) ≤ −K3(x

2 + y2 + z2) +K4(|x|+ |y| + |z|)
n

∑

i=1

|pi(·)| (3.17)

for all t ≥ 0, x, y and z, where

K3 :=
1

2
min

{

βφ0

n
∑

i=1

δi − 2ǫ

(

1 + α +
n

∑

i=1

ai

) n
∑

i=1

ci − βφ1

n
∑

i=1

ciγ,

n
∑

i=1

ai

n
∑

i=1

bi − φ1

n
∑

i=1

ci − 2ǫ

(

1 + α +

n
∑

i=1

ai

) n
∑

i=1

ci

−

[

2ǫ

(

1 + α+

n
∑

i=1

ai

) n
∑

i=1

ci

]

φ1

n
∑

i=1

ciγ,

n
∑

i=1

ai − α− 4φ1

n
∑

i=1

ciγ

}
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and

K4 := max

{

β, α+

n
∑

i=1

ai, 2

}

.

In view of the inequality |x| < 1+x2 and hypothesis (vi) of Theorem 3.1, there

exist positive constants K5 and K6 such that

V ′
(1.2) ≤ −K5(x

2 + y2 + z2) +K6 (3.18)

for all t ≥ 0, x, y and z, where

K5 = K3 −K4

n
∑

i=1

Mi and K6 = 3K4

n
∑

i=1

Mi.

The inequality (3.18) satisfies estimate (3.6) of Lemma 3.1 with K5 and K6

equivalent to D3 and D4 respectively. This completes the proof of Lemma
3.1.

Proof of Theorem 3.1. Let (xt, yt, zt) be any solution of the system (1.2).

From the inequalities (3.8), (3.12) and (3.18), assumptions (i) and (ii) of Lemma
2.4 are satisfied. Thus by Lemma 2.4, solution (xt, yt, zt) of (1.2) is uniformly

bounded and uniformly ultimately bounded. This completes the proof of the
Theorem 3.1.

Next, we will state and proof existence and uniqueness results for the system
(1.2).

Theorem 3.2. If all conditions of the Theorem 3.1 are satisfied, then there

exists a periodic solution of the system (1.2) of period ω.

Proof . Let (xt, yt, zt) be any solution of the system (1.2), the proof of the

Theorem 3.2 will depend upon the same scalar valued functional defined in
(3.1), as used in the proof of Lemma 3.1. In view of estimates (3.8), (3.11) and

(3.12) hypothesis (i) of Lemma 2.1 hold. Furthermore, using condition (vi) of
the Theorem 3.1 and the inequality (|x|+ |y|+ |z|)2 ≤ 3(x2+y2+z2) in estimate

(3.17) there exist positive constants K7 and K8 such that

V ′
(1.2) ≤ −K7(x

2 + y2 + z2) (3.19)

for all t ≥ 0, x, y and z provided that

(x2 + y2 + z2)1/2 ≥ K8 (3.20)

Electronic Journal. http://diffjournal.spbu.ru/ 49



Differential Equations and Control Processes, N. 1, 2019

where K7 :=
1
2K3 and K8 := 2×31/2K−1

3 K4

n
∑

i=1

Mi. In view of inequalities (3.19)

and (3.20) condition (ii) of Lemma 2.1 follows. Thus by Lemma 2.1 a periodic
solution of system (1.2) of period ω is assured. This completes the proof of the
Theorem 3.2.

Theorem 3.3. If all assumptions of the Theorem 3.1 hold, then for any given
initial value in R

3 there exists a unique solution of the system (1.2).

Proof . Let (xt, yt, zt) be any solution of the system (1.2), the proof of the
Theorem 3.3 also depends on the continuously differentiable functional (3.1).

From inequalities (3.8), (3.9) and (3.10) conditions (i) and (ii) of Lemma 2.2
hold. Furthermore, from inequalities (3.19) and (3.20), we obtain

V ′
(1.2) ≤ 0, (3.21)

for all t ≥ 0, x, y and z. Inequality (3.21) satisfies condition (iii) of Lemma 2.2,

hence by Lemma 2.2, the existing solution of the system (1.2) is unique. This
completes the proof of the Theorem 3.3.

Next, we will establish the bound on the solution (xt, yt, zt) for the system

(1.2).

Theorem 3.4. If conditions (i) to (v) of Theorem 3.1 hold and condition (vi)

is replaced by
∫ t

t0

n
∑

i=1

|pi(·)|ds ≤
n

∑

i=1

Ni, 0 < Ni < ∞, (3.22)

then for any given finite xt0, yt0, zt0, there exists a positive constant M =

M(xt0, yt0, zt0, α, β, β0, δi,
ǫ, φ0, φ1, ai, bi, ci, t0) such that the unique solution (xt, yt, zt) of the system (1.2)
which satisfies the initial condition

xt(t0) = xt0, yt(t0) = yt0, zt(t0) = zt0, (3.23)

satisfies
|xt| ≤ M, |yt| ≤ M, |zt| ≤ M, (3.24)

for all t ≥ t0.

Proof . Let (xt, yt, zt) be any solution of the system (1.2), the proof of the
Theorem 3.4 is also based on the continuously differentiable functional (3.1).
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Since K3(x
2 + y2 + z2) ≥ 0 for all x, y and z, inequality (3.17) becomes

V ′
(1.2) ≤ 3K4

n
∑

i=1

|pi(·)|+K3(x
2 + y2 + z2)

n
∑

i=1

|pi(·)| (3.25)

for all t ≥ 0, x, y and z. Applying inequality (3.8) in (3.25), there exists a

positive constant K9 such that

V ′
(1.2) −K9

n
∑

i=1

|pi(·)|V ≤ K9

n
∑

i=1

|pi(·)| (3.26)

for all t ≥ 0, x, y and z, where K9 := max{K−1
0 K3, 3K4}. Solving the first

order differential inequality (3.26) using integrating factor

exp

[

−K9

∫ t

t0

n
∑

i=1

|pi(·)|ds

]

,

we find that

V (t) ≤ V (t0) exp

[

K9

∫ t

t0

n
∑

i=1

|pi(·)|ds

]

+ k9

[

exp

(

K9

∫ t

t0

n
∑

i=1

|pi(·)|ds

)

− 1

]

,

(3.27)

where V (t) = V (t, xt, yt, zt). Using inequality (3.22) and (3.23) in estimate
(3.27), there exists a positive constant K10 such that

V (t) ≤ K10 (3.28)

for all t ≥ 0, x, y and z, where

K10 := V (t0, xt0, yt0, zt0) exp

[

K9

n
∑

i=1

Ni

]

+ k9

[

exp

(

K9

n
∑

i=1

Ni

)

− 1

]

.

Finally, using inequality (3.8) in (3.28), there exists a positive constant K11

such that
|xt| ≤ K11, |yt| ≤ K11, |zt| ≤ K11, (3.29)

for all t ≥ t0, where K11 := (K−1
0 K10)

1/2. Inequalities (3.29) establish inequali-
ties (3.24) with K11 equivalent to M. This completes the proof of the Theorem

3.4.
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Next, we will discuss the behaviour of solution (xt, yt, zt) of the system (1.2)

as t → ∞.

Theorem 3.5. If all conditions of the Theorem 3.1 hold and in addition, for

all i, (i = 1, 2, · · · , n)

(i)′ fi(t, 0, x(t − τi(t)), 0, y(t − τi(t)), 0, z(t − τi(t))) = 0 for all t ≥ 0, x(t −

τi(t)), y(t− τi(t)) and z(t− τi(t)),

(ii)′ gi(t, 0, x(t−τi(t)), 0, y(t−τi(t))) = 0 for all t ≥ 0, x(t−τi(t)) and y(t−τi(t)).

Then every solution (xt, yt, zt) of the system (1.2) is uniformly bounded and

xt → 0, yt → 0, zt → 0, (3.30)

as t → ∞.

Proof . Let (xt, yt, zt) be any solution of the system (1.2). The proof of the The-

orem 3.5 depends on the functional V defined in the equation (3.1). Theorem
3.1 established uniform boundedness of solution (xt, yt, zt) of the system (1.2).

From the inequality (3.19), we define a positive definite function (or wedge) as

W1(Xt) := K7(x
2 + y2 + z2), Xt = (xt, yt, zt) ∈ R

3

with respect to a closed set

Ω1 :=

{

(xt, yt, zt) : xt = 0, yt = 0, zt = 0

}

and
V ′
(1.2) ≤ −W1(Xt).

Since φ(t) ≤ φ1 for all t ≥ 0, it follows from the system (1.2) that

F (t, Xt) =











y

z

−φ(t)
n
∑

i=1

hi(x)−
n
∑

i=1

gi(·)−
n
∑

i=1

fi(·) + A7











where

A7 := φ(t)

t
∫

t−τi(t)

n
∑

i=1

h′
i(x(s))y(s)ds
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and

G(t, Xt) =











0

0
n
∑

i=1

pi(·)











.

Since fi, gi and hi are continuous functions in their respective arguments it
follows that F (t, Xt) is bounded for all t when Xt belongs to any compact
subset of R3. From conditions (i)′ and (ii)′ of the Theorem 3.5 and the fact that

xt = yt = zt = 0 for all t on Ω1, we have

X ′ = F (t, Xt) =







0

0

0






= F (Xt) (3.31)

so that every solution (xt, yt, zt) of the system (1.2) approaches the largest semi

invariant set of
X ′ = F (Xt) (3.32)

contained in Ω1, as t → ∞. From the systems (3.31) and (3.32), we find that







x′
t

y′t
z′t






=







0

0

0







which has solution






xt

yt

zt






=







C1

C2

C3






,

where Ci(i = 1, 2, 3) is a constant. To remain in Ω1, we must have C1 =
C2 = C3 = 0. Therefore the only solution of (3.32) which remains in Ω1 is
Xt = (0, 0, 0)T , that is the largest invariant set of the system (3.32) contained

in Ω1 is the set {(0, 0, 0)}. Thus the relation (3.30) holds as t → ∞. This
completes the proof of Theorem 3.5.

Next, if pi(·) = 0 in (1.1), we have

x′′′ +

n
∑

i=1

fi(·) +

n
∑

i=1

gi(·) + φ(t)

n
∑

i=1

hi(x(t− τi(t))) = 0 (3.33)
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or its equivalent system

x′ = y,

y′ = z,

z′ = − φ(t)

n
∑

i=1

hi(x)−

n
∑

i=1

fi(·)−

n
∑

i=1

gi(·)

+ φ(t)

∫ t

t−τi(t)

n
∑

i=1

hi(x(s))y(s)ds

(3.34)

Theorem 3.6. If conditions (i) to (v) of the Theorem 3.1 hold, then the zero

solution of the system (3.34) is uniformly asymptotically stable.

Proof . Let (xt, yt, zt) be any solution of the system (3.34). The main tool in

the proof of the Theorem 3.6 is the functional V of the equation (3.1). From the
inequalities (3.8) and (3.12), condition (i) of Lemma 2.3 hold. Setting pi(·) = 0

in the inequality (3.17), we have

V ′
(3.34) ≤ −K3(x

2 + y2 + z2) (3.35)

for all t ≥ 0, x, y and z. Inequality (3.35) satisfies hypothesis (ii) of Lemma
2.3, hence by Lemma 2.3 the zero solution of the system (3.34) is uniformly

asymptotically stable. This completes the proof of Theorem 3.6.

If the function pi(·) of the system (1.2) is replaced by p(t) and p(t, x, y, z)
defined on R

+ and R
+ × R

3 respectively. We have the following equations

x′ = y,

y′ = z,

z′ = p(t)− φ(t)

n
∑

i=1

hi(x)−

n
∑

i=1

fi(·)−

n
∑

i=1

gi(·)

+ φ(t)

∫ t

t−τi(t)

n
∑

i=1

hi(x(s))y(s)ds

(3.36)
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and

x′ = y,

y′ = z,

z′ = p(t, x, y, z)− φ(t)
n

∑

i=1

hi(x)−
n

∑

i=1

fi(·)−
n

∑

i=1

gi(·)

+ φ(t)

∫ t

t−τi(t)

n
∑

i=1

hi(x(s))y(s)ds,

(3.37)

with the following results:

Corollary 3.1. If conditions (i) to (v) of the Theorem 3.1 hold, and condition

(vi) is replaced by boundedness of the function p(t), then the solution (xt, yt, zt)
of the system (3.36) is uniformly bounded and uniformly ultimately bounded.

Corollary 3.2. If conditions (i) to (v) of the Theorem 3.1 are satisfied and in
addition the function p(t, x, y, z) is bounded, then the solution (xt, yt, zt) of the

system (3.37) is uniformly bounded and uniformly ultimately bounded.

Proof . The Proofs of Corollaries 3.1 and 3.2 are similar to the proof of the
Theorem 3.1, hence they are omitted.

In what follows, we give two examples to justify our obtained results.

4 Examples and Discussions

Example 4.1. Consider a third order delay differential equation with multiple

deviating arguments for all n ∈ N finite

x′′′ + A8x
′′ + A9x

′ + (2 + sin(0.001t))×
(

2 +

n
∑

i=1

x′(t− τi(t))

)(

1 +

n
∑

i=1

x′(t− τi(t))

)−1

= 1 + sin

(

π/2 + txx′x′′
n

∑

i=1

x′(t− τi(t))x
′′(t− τi(t))

)]

.

(4.1)

where

A8 :=

5 + 4[t2 + |xx′x′′|+
n
∑

i=1

[x2(t− τi(t)) + x′2(t− τi(t)) + x′′2(t− τi(t))]]

1 + t2 + |xx′x′′|+
n
∑

i=1

[(t− τi(t)) + x′2(t− τi(t)) + x′′2(t− τi(t))]
,
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A9 :=

[4 + 3(t+ |xx′|+
n
∑

i=1

[|x(t− τi(t))|+ |x′(t− τi(t))|)]

1 + t+ |xx′|+
n
∑

i=1

[|x(t− τi(t))|+ |x′(t− τi(t))|]

Its equivalent form is

x′ = y

y′ = z

z′ = 1 + sin

(

π/2 + txyz
n

∑

i=1

[y(t− τi(t))z(t− τi(t))]

)

−

(

2 + x2

1 + x2

)

(2 + sin(0.001t))−A10z −A11y

+ (2 + sin(0.001t))

∫ t

t−τi(t)

[

(1 + x2(s))2 + 1− x2(s)

(1 + x2(s))2

]

ds.

(4.2)

where

A10 :=

5 + 4[t2 + |xyz| +
n
∑

i=1

[x2(t− τi(t)) + y2(t− τi(t)) + z2(t− τi(t))]]

1 + t2 + |xyz|+
n
∑

i=1

[x2(t− τi(t)) + y2(t− τi(t)) + z2(t− τi(t))]

and

A11 :=

4 + 3[t+ |xy|+
n
∑

i=1

[|x(t− τi(t))|+ |y(t− τi(t))|]]

1 + t+ |xy|+
n
∑

i=1

[|x(t− τi(t))|+ |y(t− τi(t))|]

From the systems (1.2) and (4.2), we observed the following.

(i) Set the function
φ(t) := 2 +D(t),

where
D(t) := sin(0.001t).

Since
−1 ≤ D(t) ≤ 1

for all t, it follows that

1 = φ0 ≤ φ(t) ≤ φ1 = 3
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for all t ≥ 0. See Figure 1 for the bounds on the function D(t) and φ(t).

Moreover,

φ′(t) := 0.001 cos(0.001t)

so that
|φ′(t)| ≤ ǫ = 0.001,

for all t ≥ 0. See Figure 2 for a bound on |φ′(t)|.

Figure 1: Bounds on the functions φ(t) and D(t)

(ii) Let the function

n
∑

i=1

fi(·) :=

5 + 4[t2 + |xyz|+
n
∑

i=1

[x2(t− τi(t)) + y2(t− τi(t)) + z2(t− τi(t))]]

1 + t2 + |xyz|+
n
∑

i=1

[x2(t− τi(t)) + y2(t− τi(t)) + z2(t− τi(t))]

]

z

or
n

∑

i=1

fi(·)

z
= 4+

1

1 + t2 + |xyz|+
n
∑

i=1

[x2(t− τi(t)) + y2(t− τi(t)) + z2(t− τi(t))]
.

Since

1

1 + t2 + |xyz| +
n
∑

i=1

[x2(t− τi(t)) + y2(t− τi(t)) + z2(t− τi(t))]
> 0

for all t, x, y, z, x(t− τi(t)), y(t− τi(t)) and z(t− τi(t)). It follows that

n
∑

i=1

fi(·)

z
≥

n
∑

i=1

ai = 4

for all t, x, y, z 6= 0, x(t− τi(t)), y(t− τi(t)) and z(t− τi(t)).
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Figure 2: A Bound on |φ′(t)|

(iii) Let the function

n
∑

i=1

gi(·) :=

[4 + 3[t+ |xy|+
n
∑

i=1

[|x(t− τi(t))|+ |y(t− τi(t))|]]

1 + t+ |xy|+
n
∑

i=1

[|x(t− τi(t))|+ |y(t− τi(t))|]

]

y

or
n

∑

i=1

gi(·)

y
:= 3 +

1

1 + t+ |xy|+
n
∑

i=1

[|x(t− τi(t))|+ |y(t− τi(t))|]
.

It is not difficult to show that

n
∑

i=1

gi(·)

y
≥

n
∑

i=1

bi = 3

for all t, x, y 6= 0, x(t− τi(t)) and y(t− τi(t)).

(iv) Let the function
n

∑

i=1

hi(x) :=
x(2 + x2)

1 + x2

or
n

∑

i=1

hi(x)

x
= 1 +H(x),

where

H(x) :=
1

1 + x2
.

Since
0 < H(x) ≤ 1
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for all x, we conclude from the inequality that

1 =

n
∑

i=1

δi ≤

n
∑

i=1

hi(x)

x
≤

n
∑

i=1

ci = 2,

for all x 6= 0. Moreover,
n

∑

i=1

hi(0) = 0

and
n

∑

i=1

|h′
i(x)| ≤

n
∑

i=1

ci = 2

for all x. See the behaviour of h(x)/x,H(x) and |h′(x)| in Figure 3 for

n = 1.

Figure 3: The behaviour of h(x)/x,H(x) and |h′(x)|.

(v) We note, from items (i) to (iv) of Example 4.1, the following relations

(a) inequality (3.2) becomes
2 < α < 4

and we choose α = 3;

(b) inequality (3.3) yields

β < min

{

3,
3

10
,
1

4

}

=
1

4

and we choose β =
1

5
; and
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(c) inequality (3.4) yields

γ < min

{

28

1000
,

39

1000
,

42

1000

}

=
28

1000
.

(vi) Finally, for the function

n
∑

i=1

pi(·) := 1 + sin

(

π/2 + txyz
n

∑

i=1

[y(t− τi(t))z(t− τi(t))]

)

,

it is not difficult to show that

n
∑

i=1

pi(·) ≤
n

∑

i=1

Mi = 2

for all t, x, y, z, x(t− τi(t)), y(t− τi(t)) and z(t− τi(t)).

From items (i) to (vi) of Example 4.1, all assumptions of the Theorems 3.1 to
3.5 hold. Thus their respective conclusion follows for the system (4.2). Also,

from items (i) to (v) of Example 4.1, conditions of the Theorem 3.6 hold. Thus
by the Theorem 3.6, the trivial solution of the system (4.2) is uniformly asymp-
totically stable.

Example 4.2. Consider the third order delay differential equation with multiple
deviating arguments

x′′′ + B1x
′′ + B2x

′ + (3 + exp(0.01t))(1 + exp(0.01t))−1×

[1 +
n
∑

i=1

[x2(t− τi(t)) + sin(x(t− τi(t)))]

1 +
n
∑

i=1

x2(t− τi(t))

] n
∑

i=1

x(t− τi(t)) = B3,
(4.3)

B1 :=

3 + 2(| sin t|+
n
∑

i=1

[|xx′(t− τi(t))|+ |x(t− τi(t))x
′|+ |x′′x′′(t− τi(t))|)]

1 + | sin t|+
n
∑

i=1

[|xx′(t− τi(t))|+ |x(t− τi(t))x′|+ |x′′x′′(t− τi(t))|]
,

B2 :=

4 + 3(2t+ cos(xx′) + 2
n
∑

i=1

|x′(t− τi(t))|)

1 + 2t+ cos(xx′) + 2
n
∑

i=1

|x′(t− τi(t))|
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and

B3 :=

2 + 2t2|xx′x′′|+
n
∑

i=1

[|x(t− τi(t))|+ x′2(t− τi(t)) + |x′′(t− τi(t))|]

1 + 2t2|xx′x′′|+
n
∑

i=1

[|x(t− τi(t))|+ x′2(t− τi(t)) + |x′′](t− τi(t))|
,

Its equivalent system of first order is given by

x′ = y

y′ = z

z′ = −

(

3 + exp(0.01t)

1 + exp(0.01t)

)(

1 + x2 + sin x

1 + x2

)

x

−

[4 + 3(2t+ cos(xy) + 2
n
∑

i=1

|y(t− τi(t))|)

1 + 2t+ cos(xy) + 2
n
∑

i=1

|y(t− τi(t))|

]

y −B5z

+

(

3 + exp(0.01t)

1 + exp(0.01t)

)
∫ t

t−τi(t)

B6(s)ds+ B4,

(4.4)

where

B4 =

2 + 2t2|xyz| +
n
∑

i=1

[|x(t− τi(t))|+ y2(t− τi(t)) + |z(t− τi(t))|]

1 + 2t2|xyz| +
n
∑

i=1

[|x(t− τi(t))|+ y2(t− τi(t)) + |z(t− τi(t))|]
,

B5 :=

3 + 2(| sin t| +
n
∑

i=1

[|xy(t− τi(t))|+ |x(t− τi(t))y|+ |zz(t− τi(t))|)]

1 + | sin t|+
n
∑

i=1

[|xy(t− τi(t))|+ |x(t− τi(t))y|+ |zz(t− τi(t))|]

and

B6 :=
1 + x2 + (1− x2) sinx+ x(1 + x2) cosx

(1 + x2)2
.

Now, let us compare the system (1.2) with the system (4.4).

(i) Set the function

φ(t) :=
3 + exp(0.01t)

1 + exp(0.01t)
=

1

2
+D(t),

where

D(t) :=
1

1 + exp(0.01t)
.
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Figure 4: Bounds on φ(t) and D(t) for Example 4.2

Since
0 < D(t) ≤ 1

for all t, it follows that

1

2
= φ0 ≤ φ(t) ≤ φ1 =

3

2
for all t ≥ 0. Furthermore,

φ′(t) = −
exp(0.01t)

100(1 + exp(0.01t))2
.

It is not difficult to show that

|φ′(t)| < ǫ = 0.0025

for all t ≥ 0. (See Figure 5).

Figure 5: Bound on |φ′(t)| for Example 4.2

(ii) Let the function

n
∑

i=1

fi(·) :=

[3 + 2(| sin t|+
n
∑

i=1

[|xy(t− τi(t))|+ |x(t− τi(t))y|+ |zz(t− τi(t))|)]

1 + | sin t|+
n
∑

i=1

[|xy(t− τi(t))|+ |x(t− τi(t))y|+ |zz(t− τi(t))|]

]

z
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or
n

∑

i=1

fi(·)

z
:= 2+

1

1 + | sin t|+
n
∑

i=1

[|xy(t− τi(t))|+ |x(t− τi(t))y|+ |zz(t− τi(t))|]
.

It is clear from the above equation that

n
∑

i=1

fi(·)

z
≥

n
∑

i=1

ai = 2

for all t ≥ 0, x, y, z 6= 0, x(t− τi(t)) and z(t− τi(t)).

(iii) Let the function

n
∑

i=1

gi(·) :=

[4 + 3(2t+ cos(xy) + 2
n
∑

i=1

|y(t− τi(t))|)

1 + 2t+ cos(xy) + 2
n
∑

i=1

|y(t− τi(t))|

]

y

or
n

∑

i=1

gi(·)

y
= 3 +

1

1 + 2t+ cos(xy) + 2
n
∑

i=1

|y(t− τi(t))|
.

Obviously,
n

∑

i=1

gi(·)

y
≥

n
∑

i=1

bi = 3

for all t ≥ 0, x, y 6= 0, x(t− τi(t)) and y(t− τi(t)).
(iv) Let the function

n
∑

i=1

hi(x) :=

(

1 + x2 + sin x

1 + x2

)

x

or
n

∑

i=1

hi(x)

x
:= 1 +H(x)

where

H(x) :=
sin x

1 + x2
.

Since
−0.44 ≤ H(x) ≤ 0.44

for all x, it follows that
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Figure 6: The Behaviour of H(x), h(x)/x and |h′(x)| for Example 4.2

0.6 ≤
n

∑

i=1

δi ≤
n

∑

i=1

hi(x)

x
≤

n
∑

i=1

ci = 1.44

for all x 6= 0 and
n

∑

i=1

hi(0) = 0.

Furthermore,

n
∑

i=1

h′
i(x) :=

1 + x2 + (1− x2) sinx+ x(1 + x2) cosx

(1 + x2)2

and the estimate
n

∑

i=1

|h′
i(x)| ≤

n
∑

i=1

ci = 1.58

is obtained for all x. Thus we choose

n
∑

i=1

ci = max{1.44, 1.58} = 1.58.

See the behaviour of functions H(x), h(x)/x and |h′(x)| in Figure 6;
(v) From items (i) to (iv) of the Example 4.2, we have the following relations

(a) inequality (3.2) yields
0.79 < α < 2

and we choose α = 1;

(b) inequality (3.3) becomes

β < min{3, 0.11, 0.25}= 0.11

we choose β = 0.1
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(c) inequality (3.4) yields

γ < min{0.003, 0.115, 0.105}= 0.003.

and finally

(vi) the function

n
∑

i=1

|pi(·)| :=

2 + 2t2 + |xyz| +
n
∑

i=1

[|x(t− τi(t))|+ y2(t− τi(t)) + |z(t− τi(t))|]

1 + 2t2 + |xyz| +
n
∑

i=1

[|x(t− τi(t))|+ y2(t− τi(t)) + |z(t− τi(t))|]

or
n

∑

i=1

|pi(·)| = 1+
1

1 + 2t2 + |xyz| +
n
∑

i=1

[|x(t− τi(t))|+ y2(t− τi(t)) + |z(t− τi(t))|]
.

It is not very difficult to show that
n

∑

i=1

|pi(·)| ≤
n

∑

i=1

Mi = 2.

From items (i) to (vi) of the Example 4.2 all assumptions of the Theorems

3.1 to 3.5 hold. Thus their respective conclusion follows for the system (4.4).
Also, from items (i) to (v) of the Example 4.2, conditions of the Theorem 3.6

hold. Thus by Theorem 3.6 the trivial solution of the system (4.4) is uniformly
asymptotically stable.

5 Conclusion

In this paper, we study the behaviour of solutions for a certain third order
nonlinear differential equations with multiple deviating arguments. Sufficient

conditions for the existence of a unique solution that is periodic, uniformly
asymptotically stable, uniformly ultimately bounded are established by virtue

of a complete Lyapunov functional. As applications, two examples are presented
to illustrate the main results.
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[28] Tunç; On the qualitative behaviors of solutions of some differential equa-
tions of higher order with multiple deviating arguments. J. Franklin Inst.
351(2), 643 - 655 (2014)
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