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Abstract

In this article, we introduce a new generalized Laplace transform and derive the complex in-
version formula , convolution theorem and generalized product theorem for the transform. Fur-
thermore, the fundamental solutions of two Cauchy type fractional diffusion equation of single and
distributed order are given by means of new transform in terms of the Wright functions. Also,
applicability of this transform in evaluation of improper integrals of special functions is stated.
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1 Introduction

We consider the Laplace-type integral transform as follows

LE{f(x); p} =

∫ ∞
0

E ′(x)e−Φ(p)E(x)f(x)dx, (1-1)

where, f(x) is piecewise continuous and of the exponential order (i.e. |f(x)| ≤ MeΦ(c)E(x)) for
some constants c,M , complex parameter p and invertible function Φ(p). Also, E(x) =

∫
e−a(x)dx

is an integration of exponential function with invertible function a(x) .

By the definition (1-1), it is obvious that, the exponential Laplace transform is a generalization
of the following well known transforms.
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i) The Laplace transform (in the case Φ(p) = p, E(x) = x, and the abscissa of convergence c0)

L{f(x); p} = F (p) =

∫ ∞
0

e−pxf(x)dx,

f(x) =
1

2πi

∫ c+i∞

c−i∞
F (p)epxdp, c = <(p) > c0 (1-2)

ii) The Mellin transform [18] (in the case Φ(p) = −p, E(x) = ln(x))

M{f(x); p} = F (p) =

∫ ∞
0

xp−1f(x)dx,

f(x) =
1

2πi

∫ c+i∞

c−i∞
F (p)x−pdp, c = <(p). (1-3)

iii) The L2-transform 1 [21-23] (in the case Φ(p) = E(p) = p2)

L2{f(x); p} = F (p) =

∫ ∞
0

2xe−p
2x2f(x)dx,

f(x) =
1

2πi

∫ c+i∞

c−i∞
F (
√
p)epx

2

dp, <(p2) > c. (1-4)

Since the integral transform methods are applicable tools for analyzing boundary value prob-
lems , many researchers use these methods for studing the linear partial fractional differential
equations (LPFDEs) to find the fundamental solutions of these equations in terms of higher
transcendental functions such as Fox H-function and the Wright function. For example see
works of Gorenflo [9,10] and Mainardi [12-17].

In this paper we introduce the exponential Laplace transform (LE -transform) which is
technical merit to solve LPFDEs with non-constant coefficients by choosing the appropriate
function E(x).

In this regard, in section 2, we derive a new inversion formula for the LE -transform in
terms of Bromwich’s integral. Three theorems in the LE -transform of the Eδx-derivatives ,
convolution and generalized product properties are also established. These properties can be
useful for obtaining the solutions of some fractional diffusion on fractals. In sections 3 and 4 , we
find the fundamental solutions of single and distributed order fractional diffusion equation on
fractals introduced by Giona and Roman [8,18] by applying the L x√

x2+1
-transform and Lsinh−1(x)-

transform. These solutions can be expressed in terms of the higher transcendental functions of
the Wright type.

In section 5, by using the generalized product theorem another application of the LE -
transform in evaluation of infinite integrals with special function is discussed. Finally, in section
6, the main conclusions are drawn .

1At first , Yurekli and Sadek [23] introduced this transform and used the Parseval-Goldstein theorems involving
the L2-transform and other transforms to obtain identities involving several infinite integrals of elementary and special
functions. Later, Aghili and Ansari applied this transform to solve some systems of PFDEs and singular integral equations
with the special kernels [1,2].
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2 Some Properties of The Exponential Laplace Transform

In this section, we establish theorems on the exponential Laplace transform which can be useful
for solving LPFDEs. First, we derive a complex inversion formula for this transform in terms
of Bromwich’s integral.

Theorem 2.1 (The complex inversion formula for the exponential Laplace
transform)
Let F (Φ−1(p)) be analytic function of p (assuming that F (Φ−1(p)) has not the branch point)
except at finite number of poles and each of poles lies to the left of the vertical line <p = c . If
F (Φ−1(p))→ 0 as p→∞ through the left plane <p ≤ c , and

LE{f(x); p} = F (p) =

∫ ∞
0

E ′(x)e−Φ(p)E(x)f(x)dx,

then

L−1
E {F (p)} = f(x) =

1

2πi

∫ c+i∞

c−i∞
F (Φ−1(p))epE(x)dp. (2-1)

Proof: By definition of the exponential Laplace transform (1-1) and letting Φ(p) = r, we
have

F (Φ−1(r)) =

∫ ∞
0

E ′(x)e−rE(x)f(x)dx,

now, by setting t = E(x) in the above relation, we obtain

F (Φ−1(r)) =

∫ ∞
0

e−rtf(E−1(t))dt = L{f(E−1(t)); r}.

At this point, by the complex inversion formula for the Laplace transform and setting back
E−1(t) = x, r = p, we get finally

f(x) =
1

2πi

∫ c+i∞

c−i∞
F (Φ−1(p))epE(x)dp.

Theorem 2.2 (The exponential Laplace transform of Eδx-derivatives)
Let f, f ′, ..., f (n−1) are continuous functions with piecewise continuous derivative f (n) on the
interval x ≥ 0 and if all functions are of exponential order eΦ(c)A(x) as x → ∞ (i.e. |f(x)| ≤
MeΦ(c)A(x)) for some constants c,M ,then for n = 1, 2, ...

LE{Eδnxf(x); p} = Φn(p)LE{f(x); p} − Φn−1(p)f(0+)

− Φn−2(p)(Eδxf)(0+)− · · · − (Eδ
n−1
x f)(0+) (2-2)

where the Eδx-derivative operator is defined as follows

Eδx =
1

E ′(x)

d

dx
= ea(x) d

dx
,
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and by notation

Eδ
2
x = (Eδx)(Eδx) =

1

E ′2(x)

d2

dx2
− E

′′(x)

E ′3(x)

d

dx
= e2a(x) d

2

dx2
− a′(x)e2a(x) d

dx
,

the Eδx-derivative for any positive integer power can be found.

Proof: Using the definitions of the exponential Laplace transform (1-1) and the Eδx-
derivative, by integration by parts, we obtain

LE{Eδxf(x); p} =

∫ ∞
0

e−Φ(p)E(x)f ′(x)dx = e−Φ(p)E(x)f(x) |∞0 + Φ(p)

∫ ∞
0

E ′(x)e−Φ(p)E(x)f(x)dx.

Since f is of exponential order eΦ(c)E(x) as x→∞, it follows that

lim
x→∞

e−Φ(p)E(x)f(x) = 0

consequently

LE{Eδxf(x); p} = Φ(p)LE{f(x); p} − f(0+).

Similarly by repeated application of the above relation once again, we get

LE{Eδ2
xf(x); p} = Φ(p)LE{Eδxf(x); p} − (Eδxf)(0+)

= Φ2(p)LE{f(x); p} − Φ(p)f(0+)− (Eδxf)(0+)

and by repeating the above scheme forEδ
n
xf(x), we can readily arrive at (2-2).

Theorem 2.3 (The convolution theorem for the exponential Laplace transform)
If F (p), G(p) are the exponential Laplace transform of the functions f(x), g(x) respectively, then

F (p)G(p) = LE{f∗g} = LE{
∫ x

0

E ′(t)g(t)f(E−1(E(x)− E(t)))dt} (2-3)

Proof: Using the definition of the exponential Laplace transform for F (p), G(p) , we have

F (p)G(p) = (

∫ ∞
0

E ′(y)e−Φ(p)E(y)f(y)dy)(

∫ ∞
0

E ′(t)e−Φ(p)E(t)g(t)dt)

=

∫ ∞
0

∫ ∞
0

E ′(y)E ′(t)e−Φ(p)(E(t)+E(y))f(y)g(t)dydt.

Now, by substitution E(t)+E(y) = E(x) and changing the order of integration in the double
integral ,we get

F (p)G(p) =

∫ ∞
0

E ′(x)eΦ(p)E(x)dx

∫ x

0

E ′(t)g(t)f(E−1(E(x)− E(t)))dt

= LE{
∫ x

0

E ′(t)g(t)f(E−1(E(x)− E(t)))dt}.
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Theorem 2.4 (Generalized product theorem)

Let LE{f(x); p} = F (p) and assuming that Ψ1(p), Ψ2(p) are analytic functions such that,
LE{k(x, t); p} = Ψ1(p)E ′(t)e−E(t)Φ(Ψ2(p)), then the following relation holds true

LE
{∫ ∞

0

k(x, t)f(t)dt

}
= Ψ1(p)F (Ψ2(p)). (2-4)

Proof: By applying the LE -transform on the integral, we can easily get the result.

LE
{∫ ∞

0

k(x, t)f(t)dt

}
=

∫ ∞
0

E ′(x)e−Φ(p)E(x)

∫ ∞
0

k(x, t)f(t)dt

=

∫ ∞
0

f(t)dt

∫ ∞
0

E ′(x)e−Φ(p)E(x)k(x, t)dx

= Ψ1(p)

∫ ∞
0

E ′(t)e−Φ(Ψ2(p))E(t)f(t)dt = Ψ1(p)F (Ψ2(p)).

In view of the theorems of the exponential Laplace transform expressed in this section we
may apply this transform to LPFDEs in the next sections.

3 The Time-Fractional Diffusion Equation of Single Order on Frac-
tals

Problem 3.1: In connection with initial-value problems we consider diffusion-type partial
fractional differential equation in the Riemann-Liouville sense in the form [8,19]

tD
α
0+u(x, t) = −C

√
(x2 + 1)3

∂u(x, t)

∂x
, C > 0, 0 < α ≤ 1, (3-1)

with Cauchy type initial and boundary conditions as

tD
α−1
0+ u(x, 0+) = f(x), u(0, t) = 0, x, t ∈ R+, (3-2)

since, the equation (3-1) is a LPFDE with non-constant coefficients we set

E(x) =

∫
e−

3
2

ln(x2+1)dx =
x√
x2 + 1

,Φ(p) = p (3-3)

in the integral (1-1) and apply this new integral transform (the L x√
x2+1

-transform) in space and

the Laplace transform in time as follows

L{u(x, t); s} = ũ(x, s) =

∫ ∞
0

e−stu(x, t)dt, <s > 0

L x√
x2+1
{u(x, t); p} = û(p, t) =

∫ ∞
0

1√
(x2 + 1)3

e
−p x√

x2+1u(x, t)dx, <p > 0.

Then ,by using the Laplace transform of the Riemann-Liouville derivative [18] and the
L x√

x2+1
-transform of the equation (3-1), we obtain

L{tDα
0+u(x, t); s} = sαũ(x, s)− tD

α−1
0+ u(x, 0+),

L x√
x2+1
{
√

(x2 + 1)3u(x, t); p} = pû(p, t)− u(0, t)
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where by utilizing the Cauchy type initial conditions (3-2), we arrive at

ˆ̃u(p, s) =
1

sα + Cp
F (p) (3-4)

where F (p) is the L x√
x2+1

-transform of the initial conditionf(x).

At this point, by considering the complex inversion formula for the L x√
x2+1

-transform (2-1)

and the convolution theorem (2-3), we obtain

ũ(x, s) =
1

2πi

∫ c+i∞

c−i∞
ˆ̃u(p, s)e

p x√
x2+1dp =

1

C
L−1

x√
x2+1

{ 1
sα

C
+ p
}∗f(x) =

1

C
e
−sα x

C
√
x2+1∗f(x)

where the convolution of the two functions f, g for the L x√
x2+1

-transform ,can be expressed by

the relation (2-3) as follows

f∗g =

∫ x

0

1√
(t2 + 1)3

g(t)f

 x√
x2+1
− t√

t2+1√
1− ( x√

x2−1
− t√

t2+1
)2

 dt.

Now, in regard to the inverse Laplace transform of the functions e
−sα x

C
√
x2+1 via the Wright

functions [11]

L−1{e−s
α x

C
√
x2+1} =

1

t
W (−α, 0;− x

C
√
x2 + 1

t−α),

we get the explicit solution of the Cauchy type problem (3-1)-(3-2) as follows

u(x, t) =

∫ x

0

1√
(τ 2 + 1)3

Gα(
x√
x2 + 1

− τ√
τ 2 + 1

, t)f(τ)dτ, (3-5)

where the Green function Gα is given by

Gα(x, t) =
1

Ct
W (−α, 0;− x

C
t−α), (3-6)

provided that the integral on the right-hand side of (3-5) is convergent.

4 The Time-Fractional Difussion Equation of Distributed Order

The earlier idea of fractional derivative of distributed order was developed by Caputo [5-7]
and later other researchers study some linear and non-linear fractional differential equations of
distributed order by analyzing some interesting cases of the order-density function see [3], [20].
In this paper by the notion of fractional derivative of distributed order, we consider other form
of Giona and Roman Equation .
Problem 4.1: The following equation∫ 1

0

b(α)[Ct D
α
0+u(x, t)]dα =

√
1 + x2

∂u(x, t)

∂x

x, t > 0 , b(α) ≥ 0,

∫ 1

0

b(α)dα = 1 (4-1)
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is called the fractional diffusion of distributed order equation subject to initial and bound-
ary conditions u(x, 0) = f(x), u(0, t) = 0 and the order-density function b(α) which enables us
to determine the intensity of diffusions.

In order to solve the equation (4-1), we extend the approach by Mainardi [13] and Naber [17]
to find a general representation of the fundamental solution related to a generic order-density
function b(α). In this respect, by applying the Laplace transform of fractional derivative in the
Caputo sense with respect to t [18]

L{Ct Dα
0+u(x, t); s} = sαũ(x, s)− sα−1u(x, 0+)

and the Lsinh−1(x)-transform with respect to x and setting n = 1,Φ(p) = p in (2-2)

Lsinh−1(x){
√

1 + x2
∂u(x, t)

∂x
}; p} = Lsinh−1(x){sinh−1(x)δxu(x, t); p} = pû(p, t)− u(0, t)

we obtain

(

∫ 1

0

b(α)sαdα)ˆ̃u(p, s) + pˆ̃u(p, s) =
1

s
(

∫ 1

0

b(α)sαdα)F (p)

from which

ˆ̃u(p, s) =
B(s)

s(B(s)− p)
F (p), <s > 0 (4-2)

where F (p) is the Lsinh−1(x)-transform of the function f(x) and

B(s) =

∫ 1

0

b(α)sαdα.

By inverting the Lsinh−1(x)-transform of (4-2) ,we get the remaining Laplace transform as the
following expression

ũ(x, s) = f(x)∗−B(s)

2s
esinh−1(x)B(s) (4-3)

where the convolution of the two functions f, g for the Lsinh−1(x)-transform by (2-3) ( by using

the fact that sinh−1(x) = ln(x+
√
x2 + 1) ) can be written as

f∗g =

∫ ∞
−∞

1√
1 + t2

g(t)f(sinh(sinh−1(x)− sinh−1(t))dt,

=

∫ ∞
−∞

1√
1 + t2

g(t)f(
1

2
(
x+
√
x2 + 1

t+
√
t2 + 1

− t+
√
t2 + 1

x+
√
x2 + 1

))dt. (4-4)

By virtue of the Titchmarsh theorem [4] for the inverse Laplace transform of the function

ũ1(x, s) =
−B(s)

2s
esinh−1(x)B(s)

which has branch cut on the real negative semiaxis we have the following
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u1(x, t) = − 1

π

∫ ∞
0

e−rt={ũ1(x, reiπ)}dr. (4-5)

In order to simplify the above relation (4-5), we need to evaluate the imaginary part of the
function −ũ1(x, reiπ) along the ray s = reiπ, r > 0 where the branch cut of the function sα is
defined . In this regard, by writing

B(reiπ) = ρ cos γπ + iρ sin γπ,

{
ρ = ρ(r) = |B(reiπ)|
γ = γ(r) = 1

π
arg[B(reiπ)]

and substituting in the above relation, (4-5) leads to the following

u1(x, t) = − 1

2π

∫ ∞
0

ρ

r
e−rt+sinh−1(x)ρ cos(πγ) sin(πγ + sinh−1(x)ρ sin(πγ))dr.

Finally, by using the convolution product given by relation (4-4) ,u(x, t) is expressed as an
integral representation

u(x, t) = − 1

2π
f(x) ∗ {

∫ ∞
0

ρ

r
e−rt+sinh−1(x)ρ cos(πγ) sin(πγ + sinh−1(x)ρ sin(πγ))dr}

= − 1

2π

∫ ∞
0

e−rt

r

∫ ∞
−∞

x+
√
x2 + 1

τ +
√
τ 2 + 1

ρeρ cos(πγ)

× sin(πγ + ln(
x+
√
x2 + 1

τ +
√
τ 2 + 1

)ρ sin(πγ))f(τ) dτdr (4-6)

provided that the integrals on the right-hand side of (4-6) are convergent.
The explicit solution (4-6) of the time-fractional diffusion equation of distributed order (4-1) can
be simplified in particular cases. For example if we set the order density function with respect
to Dirac delta function b(α) = δ(α − n), 0 < n < 1 the time-fractional diffusion equation of
distributed order (4-1) is converted to time-fractional disturbance equation of single order n,
so that

B(s) = sn, ρ = ρ(r) = rn, γ = n.

In this case since the inverse Laplace transform of s
n
2
−1esinh−1(x)s

n
2 in (4-3) can be easily

obtained in terms of the Wright functions [11]

L−1{s
n
2
−1esinh−1(x)s

n
2 } =

1

t
n
2

W (−n
2
, 1− n

2
; sinh−1(x)t−

n
2 )

and the formal solution u(x, t) (4-6), takes the form

u(x, t) = − 1

2πt
n
2

∫ ∞
−∞

W (−n
2
, 1− n

2
; ln(

x+
√
x2 + 1

τ +
√
τ 2 + 1

)t−
n
2 )f(τ)dτ. (4-7)

5 Evaluation of Integrals

In this section by using the generalized product theorem for LE -transform (2-4) we may obtain
the values of some improper integrals of elementary and special functions.The integrands of
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these integrals are coincident to kernels of generalized product theorem integral (2-4).
Problem 5.1: By using generalized product theorem for the Lxβ -transform,show that∫ ∞

0

Erfc(
τβ

2x
β
2

)dτ =
2

1
β

√
π

Γ(
β + 1

2β
)x

1
2 ,

β + 1

2β
6= −k, k ∈ Z (5-1)

where Erfc is complementary error function.

By setting Φ(p) = p and applying the Lxβ -transform on the right hand side of above relation

and using the fact that Lxβ{Erfc( τβ

2x
β
2

)} = e−τ
β√p

p
, we get

Lxβ{
∫ ∞

0

Erfc(
1

2

τβ

2x
β
2

)dτ} = Lxβ{
∫ ∞

0

τβ−1Erfc(
τβ

2x
β
2

)
1

τβ−1
dτ}

=
1

p

(
Lτβ{

1

τβ−1
}
)
p→√p

=
Γ( 1

β
)

p
1
2β

+1

which, by using complex inversion formula for
Γ( 1
β

)

p
1
2β

+1
we obtain

L−1
xβ
{

Γ( 1
β
)

p
1
2β

+1
} = 2β

Γ( 1
β
)

Γ( 1
2β

)
x

1
2 .

Now, by recalling the Legendre’s duplication formula for the Gamma function as follows

Γ(z)Γ(z +
1

2
) = 21−2z

√
π Γ(2z)

we finally get

∫ ∞
0

Erfc(
τβ

2x
β
2

)dτ =
2

1
β

√
π

Γ(
β + 1

2β
)x

1
2 .

6 Conclusions

This paper provides some new results in the area of fractional calculus and a new integral
transform (LE -transform ) which was implemented to solve two Cauchy type fractional diffusion
equations of single and distributed order.
It may be concluded that the LE -transform method is very powerful efficient technique in
finding exact solution for LPFDEs with non-constant coefficients and this method could lead
to a promising approach for many applications in applied sciences.
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