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Abstract

The purpose of this paper is to study the periodic solution of a certain class of third
and fourth order delay differential equation impulses with Fredholm operator of index
zero. We obtain the existence of periodic solution and Mawhin’s continuation theorem.
The delay conditions for the Schwarz inequality of the periodic solutions are also obtained.
An example is also furnished which demonstrates validity of main result. We establish
some new sufficient conditions which ensure that every solution of this equation impulses
to at least one periodic solution.
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1 Introduction

The theory of impulsive delay differential equations is promising as an important
role of investigation, since it is better than the corresponding theory of delay
differential equation without impulse effects. Furthermore, such equations may
demonstrate several real-world phenomena in physics,chemistry, biology, engi-
neering, etc. In the last few years the theory of periodic solutions and delay
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differential equations with impulses has been studied by many authors, respec-
tively [3, 5, 7, 8]. There are several books and a lot of papers dealing with the
periodic solution of delay differential equations [1, 2, 4, 6, 9]. Periodic solutions
of impulsive delay differential equations is a new research area and there are
many publications in this field. The paper deals with impulsive equations with
constant delay and Fredholm operator of index zero. We obtain the theorems
of existence of periodic solution based on the Mawhin’s continuation theorem.

In [11, 22, 23], the periodic solution of delay differential equations was
considered. Also, boundedness of solutions was investigated in [22]. Afterward,
many books and papers dealt with the delay differential equations and given
many results, for example, [10, 12, 13, 14, 18, 19], etc.In recent years, the
periodic solutions for some types of second and third-order delay differential
equation with deviating argument were investigated; see [15, 16, 17, 21]. In
[19], Sadek obtained stability and boundedness of a kind of third-order delay
differential equation system. By using the continuation theorem of Mawhin’s
coincidence degree theory [14], we obtain some new results which complement
and extend the corresponding works already known; see[15, 16, 17, 20, 21].

2 Preliminaries

Let PC(R,R) = {x : R→ R, x(t) be continuous everywhere except for some tk
at which x(t+k ) and x(t−k ) exist and x(t−k ) = x(tk)},
PC1(R,R) = {x : R → R, x(t) is continuous everywhere except for some tk at
which x′(t+k ) and x′(t−k ) exist and x′(t−k ) = x′(tk)}, as the space of continuous
everywhere and continuously differentiable everywhere functions excluding tk
points.
PC2(R,R) = {x : R → R, x(t) is continuous everywhere except for some tk at
which x′′(t+k ) and x′′(t−k ) exist and x′′(t−k ) = x′′(tk)}, as the space of continuous
everywhere and continuously differentiable everywhere functions excluding tk
points.
Let X = {x(t) ∈ PC1(R,R), x(t + T ) = x(t)} with norm ‖x‖ =
max{|x|∞, |x′|∞}, where |x|∞ = supt∈[0,T ] |x(t)|,
Y = PC(R,R) × Rn × Rn, with norm ‖y‖ = max{|u|∞, |c|}, where u ∈
PC(R,R), c = (c1, . . . c2n) ∈ Rn × Rn, |c| = max1≤k≤2n{|ck|}.
Z = PC(R,R) × Rn × Rn, with norm ‖z‖ = max{|v|∞, |d|}, where v ∈
PC(R,R), d = (d1, . . . d2n) ∈ Rn × Rn, |d| = max1≤k≤2n{|dk|}.
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Then X, Y and Z are Banach spaces. L : D(L) ⊂ X → Y and L : D(L) ⊂
Y → Z are a Fredholm operator of index zero, where D(L) denotes the domain
of L. P : X → X,Q : Y → Y,R : Z → Z are projectors such that

ImP = kerL, kerQ = ImL, kerR = ImL,

X = kerL⊕ kerP, Y = ImL⊕ ImQ, Z = ImL⊕ ImR.

It continues that
L|D(L)∩kerP : D(L) ∩ kerP → ImL

is invertible and we assume the inverse of that map by Kp. Let Ω be an open
bounded subset of X, D(L) ∩ Ω 6= ∅, the map N : X → Y will be called
L-compact in Ω, if QN(Ω) is bounded and Kp(I −Q)N : Ω→ X is compact.
Similarly it follows that

L|D(L)∩kerQ : D(L) ∩ kerQ→ ImL

is invertible and we assume the inverse of that map by Kq. Let Ω be an open
bounded subset of Y , D(L) ∩ Ω 6= ∅, the map N : Y → Z will be called L-
compact in Ω, if RN(Ω) is bounded and Kq(I −R)N : Ω→ Y is compact.

This paper obtains the existence of periodic solutions for the third-order
delay differential equations with impulses

x′′′(t) + f(t, x′′(t)) + g(t, x′(t)) + h(x(t− τ(t)) = p(t), t ≥ 0, t 6= tk,

∆x(tk) = Ik,

∆x′(tk) = Jk,

∆x′′(tk) = Kk.

(1)

where f(t+T, x) = f(t, x), g(t+T, x) = g(t, x), h(t+T ) = h(t), τ(t+T ) = τ(t),
p(t+ T ) = p(t) , τ(t) ≥ 0;
∆x(tk) = x(t+k ) − x(t−k ), x(t+k ) = limt→t+k x(t), x(t−k ) = limt→t−k x(t), x(t−k ) =
x(tk);
∆x′(tk) = x′(t+k ) − x′(t−k ), x′(t+k ) = limt→t+k x

′(t), x′(t−k ) = limt→t−k x
′(t),

x′(t−k ) = x′(tk);
∆x′′(tk) = x′′(t+k ) − x′′(t−k ), x′′(t+k ) = limt→t+k x

′′(t), x′′(t−k ) = limt→t−k x
′′(t),

x′′(t−k ) = x′′(tk).

The results is related to not only f, g, and h parameters with the impulses
Ik, Jk, Kk and the delay τ . We assume that the following conditions:
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(H1) f(t + T, x) = f(t, x), f ∈ C(R2,R) and g(t + T, x) = g(t, x), h(t + T ) =
h(t), h, g ∈ C(R,R), with τ(t + T ) = τ(t), τ(t) ≥ 0, p(t + T ) = p(t) ,
p, τ ∈ C(R,R);

(H2) {tk} satisfies tk < tk+1 and limk→±∞ tk = ±∞, k ∈ Z,
Ik(x, y), Jk(x, y), Kk(x, y) ∈ C(R2,R), and there is a positive n such that
{tk} ∩ [0, T ] = {t1, t2, . . . , tn}, tk+n = tk + T ,
Ik+n(x, y) = Ik(x, y), Jk+n(x, y) = Jk(x, y), Kk+n(x, y) = Kk(x, y).

(H3) There are constants σ, β ≥ 0 such that

|f(t, x)| ≤ σ|x|, ∀(t, x) ∈ [0, T ]× R, (2)

xf(t, x) ≥ β|x|2, ∀(t, x) ∈ [0, T ]× R; (3)

(H4) There are constants σ, β ≥ 0 such that

|g(t, x)| ≤ σ|x|, ∀(t, x) ∈ [0, T ]× R, (4)

x2g(t, x) ≥ β|x|2, ∀(t, x) ∈ [0, T ]× R; (5)

(H5) there are constants βi ≥ 0 (i = 1, 2, 3) such that

|h(x)| ≥ β1 + β2|x|, (6)

|h(x)− h(y)| ≤ β3|x− y|; (7)

(H6) there are constants γi > 0 (i = 1, 2, 3), such that |
∫ x+λJk(x,y)

x h(s)ds| ≤
|Jk(x, y)|(γ1 + γ2|x|+ γ3|Jk(x, y)|), ∀λ ∈ (0, 1);

(H7) there are constants ak, a
′
k, a
′′
k ≥ 0 such that |Kk(x, y)| ≤ ak|x|2 +a′k|x|+a′′k;

(H8) zKk(x, y) ≤ 0 and there are constants bk ≥ 0 such that |Kk(x, y)| ≤ bk.

Lemma 1 [[4]] Let L be a Fredholm operator of index zero and let N be L-
compact on Ω. We assume that the following conditions are satisfied:

(i) Lx 6= λNx, ∀x ∈ ∂Ω ∩D(L), λ ∈ (0, 1);

(ii) RNx 6= 0, for all x ∈ ∂Ω ∩ kerL;

(iii) deg{KRNx,Ω
⋂

kerL, 0} 6= 0, where K : ImR → kerL is an isomor-
phism.

Then the abstract equation Lx = Nx has at least one solution in Ω
⋂
D(L).
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We assume the operators L : D(L) ⊂ X → Y and L : D(L) ⊂ Y → Z by

Lx = (x′′′,∆x(t1), . . . ,∆x(tn),∆x
′(t1), . . . ,∆x

′(tn),∆x
′′(t1), . . . ,∆x

′′(tn)),
(8)

and N : X → Y , N : Y → Z by

Nx = (−f(t, x′′(t))− g(t, x′(t))− h(x(t− τ(t))) + p(t),

I1(x(t1)), . . . , In(x(tn)), J1(x
′(t1)), . . . , Jn(x

′(tn)), K1(x
′′(t1)), . . . , Kn(x

′′(tn))).

(9)

Lemma 2 [[4]] L is a Fredholm operator of index zero with

kerL = {x(t) = c, t ∈ R}, (10)

and

ImL(y, z, a1, . . . , an, b1, . . . , bn)

=

∫ T

0

(y(s) + z(s))ds+
n∑
k=1

bk(T − tk) +
n∑
k=1

ak + x′(0)T = 0.
(11)

Let the linear operators P : X → X, Q : Y → Y and R : Z → Z be defined by

Px = x(0), (12)

Q(y, a1, . . . , an, b1, . . . , bn)

=
2

T 2
[

∫ T

0

(T − s)y(s)ds+
n∑
k=1

bk(T − tk) +
n∑
k=1

ak + x′(0)T ], 0, . . . , 0),
(13)

and

R(z, a1, . . . , an, b1, . . . , bn)

=
2

T 2
[

∫ T

0

(T − s)z(s)ds+
n∑
k=1

bk(T − tk) +
n∑
k=1

ak + x′(0)T ], 0, . . . , 0).
(14)

Lemma 3 [[8]] If α > 0, x(t) ∈ PC2(R,R) with x(t+ T ) = x(t), then∫ T

0

∫ t

t−α
|x′(s)|2 ds dt = α

∫ T

0

|x′(t)|2dt (15)

and ∫ T

0

∫ t+α

t

|x′(s)|2 ds dt = α

∫ T

0

|x′(t)|2dt. (16)
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Let

A1(t, α) =
∑

t−α≤tk≤t
ak, A2(t, α) =

∑
t≤tk≤t+α

ak,

B1(t, α) =
∑

t−α≤tk≤t
a′k, B2(t, α) =

∑
t≤tk≤t+α

a′k,

C1(t, α) =
∑

t−α≤tk≤t
a′′k, C2(t, α) =

∑
t≤tk≤t+α

a′′k,

I1 =
(∫ T

0

A2
1(t, α)dt

)1/2

+
(∫ T

0

A2
2(t, α)dt

)1/2

,

I2 =
(∫ T

0

B2
1(t, α)dt

)1/2

+
(∫ T

0

B2
2(t, α)dt

)1/2

,

I3 =

∫ T

0

A2
1(t, α)dt+

∫ T

0

A2
2(t, α)dt,

I4 =

∫ T

0

A1(t, α)B1(t)dt+

∫ T

0

A2(t, α)B2(t)dt,

I5 =

∫ T

0

B2
1(t, α)dt+

∫ T

0

B2
2(t, α)dt

The following Lemma is important for us to the delay τ(t).

Lemma 4 Suppose τ(t) ∈ C(R,R) with τ(t+ T ) = τ(t) and τ(t) ∈ [−α, α] for
all t ∈ [0, T ], x(t) ∈ PC1(R,R) with x(t + T ) = x(t) and there is a positive
n such that {tk} ∩ [0, T ] = {t1, t2, . . . , tn}, ∆x(tk) = λIk(x(tk), x

′(tk)) for all
λ ∈ (0, 1) and tk+n = tk + T, Ik+n(x, y) = Ik(x, y). Furthermore there exist
nonnegative constants ak, ak such that |Ik(x, y)| ≤ ak|x|+ a′k. Then∫ T

0

|x(t)− x(t− τ(t))|2dt

≤ 2α2

∫ T

0

|x′(t)|2dt+ 2αI1|x(t)|∞
(∫ T

0

|x′(t)|2dt
)1/2

+ 2αI2

(∫ T

0

|x′(t)|2dt
)1/2

+ I3|x(t)|2∞ + I4|x(t)|∞ + I5.

(17)

3 Third-order delay differential equation

We establish the theorems of existence of periodic solution based on the follow-
ing two conditions.

Electronic Journal. http://www.math.spbu.ru/diffjournal 21



Differential Equations and Control Processes, N 3, 2015

Theorem 1 We assume that (H1)–(H8) hold. Then (1) has at least one T -
periodic solution and

n∑
k=1

ak < 1, (18)

[
γ2(

n∑
k=1

ak) + γ3(
n∑
k=1

a2
k)
]
M 2 + β3

[
2|τ(t)|2∞

+ 2|τ(t)|∞I1(|τ(t)|∞)M + I3(|τ(t)|∞)M 2
]1/2

< β,

(19)

where

M =
1

1−
∑n

k=1 ak
(

σ

β2T 1/2
+ T 1/2).

proof: Consider the abstract equation Lx = λNx, with λ ∈ (0, 1), where
L and N are given by (8) and (9). Let

Ω1 = {x ∈ D(L) : kerL,Lx = λNx for some λ ∈ (0, 1)} .

For x ∈ Ω1, (1) Integrating the interval on [0, T ], using Schwarz inequality,
we get

|
∫ T

0

h(x(t− τ(t))dt|

= |
∫ T

0

p(t)dt−
∫ T

0

f(t, x′′(t))dt−
∫ T

0

g(t, x′(t))dt+
n∑
k=1

Kk(x(tk), x
′′(tk))|

≤ T |p(t)|∞ + σ

∫ T

0

|x′′(t)|dt+
n∑
k=1

bk

≤ σT 1/2
(∫ T

0

|x′′(t)|2dt
)1/2

+ T |p(t)|∞ +
n∑
k=1

bk.

From the above formula, there is a interval on t0 ∈ [0, T ] such that

|h(x(t0 − τ(t0))| ≤
σ

T 1/2
(

∫ T

0

|x′′(t)|2dt)1/2 + |p(t)|∞ +
1

T

n∑
k=1

bk.

From (6),we get

β1 + β2|x(t0 − τ(t0))| ≤
σ

T 1/2
(

∫ T

0

|x′′(t)|2dt)1/2 + |p(t)|∞ +
1

T

n∑
k=1

bk.
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Then

|x(t0 − τ(t0))| ≤
σ

β2T 1/2

(∫ T

0

|x′′(t)|2dt
)1/2

+ d,

where d =
(
||p(t)|∞ + 1

T

∑n
k=1 bk − β1|

)
/β2. So there is an integer m and an

interval t1 ∈ [0, T ] such that t0 − τ(t0) = mT + t1. Therefore

|x(t1)| = |x(t0 − τ(t0))| ≤
σ

β2T 1/2

(∫ T

0

|x′′(t)|2dt
)1/2

+ d,

x(t) = x(t1) +

∫ t

t1

x′′(s)ds+
∑

t1≤tk<t
Kk(x(tk), x

′′(tk)).

Thus

|x(t)|∞ ≤ |x(t1)|+
∫ t

t1

|x′′(s)|ds+
∑

t1≤tk<t
|Kk(x(tk))|

≤ σ

β2T 1/2
(

∫ T

0

|x′′(t)|2dt)1/2 + d+

∫ T

0

|x′′(t)|dt+
n∑
k=1

ak|x|∞ +
n∑
k=1

a′k +
n∑
k=1

a′′k

≤ |x|∞
n∑
k=1

ak + (
σ

β2T 1/2
+ T 1/2)

(∫ T

0

|x′′(t)|2dt
)1/2

+ d+
n∑
k=1

a′k +
n∑
k=1

a′′k.

It continues that

|x(t)|∞ ≤
d+

∑n
k=1 a

′′
k

1−
∑n

k=1 ak
+

1

1−
∑n

k=1 ak
(

σ

β2T 1/2
+ T 1/2)(

∫ T

0

|x′′(t)|2dt)1/2

= c1 +M(

∫ T

0

|x′′(t)|2dt)1/2,

(20)

where c1 is a positive constant. On the other hand, multiplying both side of
(1) by x′(t), we have ∫ T

0

x′′′(t)x′′(t)dt+ λ

∫ T

0

f(t, x′′(t))x′(t)dt

+λ

∫ T

0

g(t, x′(t))x′(t)dt+ λ

∫ T

0

h(t, x(t− τ(t))x′(t)dt

= λ

∫ T

0

p(t)x′(t)dt.

Since ∫ T

0

x′′′(t)x′′(t)dt = −1

2

n∑
i=1

[(x′′(t+k ))2 − (x′′(tk))
2],
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Our assumption (H7) that

(x′(t+k ))2 − (x′(tk))
2

= (x′(t+k ) + x′(tk))(x
′(t+k )− (x′(tk))

= ∆x′(tk)(2x
′(tk) + ∆x′(tk))

= λKk(x(tk), x
′(tk))(2x

′(tk) + λKk(x(tk), x
′(tk))

= 2λKk(x(tk), x
′(tk))x

′(tk) + [λKk(x(tk), x
′(tk))]

2 ≤ b2
k.

In (5), by use Schwarz inequality

β

∫ T

0

|x′′(t)|2dt

≤ −
∫ T

0

h(x(t− τ(t))x′(t)dt+

∫ T

0

p(t)x′(t)dt+
1

2

n∑
k=1

b2
k

=

∫ T

0

[h(x(t)− h(x(t− τ(t))]x′(t)dt−
∫ T

0

h(x(t))x′(t)dt

+

∫ T

0

p(t)x′(t)dt+
1

2

n∑
i=1

b2
k

≤
∫ T

0

|h(x(t))− h(x(t− τ(t))||x′(t)|dt+ |p(t)|∞
∫ T

0

|x′(t)|dt

+ |
∫ T

0

h(x(t))x′(t)dt|+ 1

2

n∑
i=1

b2
k

≤
[( ∫ T

0

|h(x(t))− h(x(t− τ(t)))|2dt
)1/2

+ |p(t)|∞T 1/2
]( ∫ T

0

|x′(t)|2dt
)1/2

+ |
∫ T

0

h(x(t))x′(t)dt|+ 1

2

n∑
i=1

b2
k.

(21)
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From (H5) and (H6), we get

|
∫ T

0

h(x(t))x′(t)dt|

= |
∫ x(t1)

x(0)

h(s)ds+

∫ x(t2)

x(t+1 )

h(s)ds+ · · ·+
∫ x(T )

x(t+n )

h(s)ds|

= |
∫ x(T )

x(0)

h(s)ds−
n∑
k=1

∫ x(t+k )

x(tk)

h(s)ds|

≤
n∑
k=1

|
∫ x(tk)+λKk(x(tk),x′(tk))

x(tk)

h(s)ds|

≤
n∑
k=1

[|Kk(x(tk), x
′(tk))|(γ1 + γ2|x(tk)|+ γ3|Kk(x(tk), x

′(tk))|)]

≤ [γ2(
n∑
k=1

ak) + γ3(
n∑
k=1

a2
k)]|x(t)|2∞ + c2|x(t)|∞ + c3,

where c2, c3 are constants. From (20), we get

|
∫ T

0

h(x(t))x′(t)dt|

≤ [γ2(
n∑
k=1

ak) + γ3(
n∑
k=1

a2
k)]M

2

∫ T

0

|x′(t)|2dt+ c4(

∫ T

0

|x′(t)|2dt)1/2 + c5,

(22)

where c4, c5 are constants. From Lemma 4, we get∫ T

0

|h(x(t)− h(x(t− τ(t)))|2dt

≤ β2
3

∫ T

0

|x(t)− x(t− τ(t))|2dt

≤ β2
3 [2|τ(t)|2∞

∫ T

0

|x′(t)|2dt+ 2|τ(t)|∞I1(|τ(t)|∞)|x(t)|∞
(∫ T

0

|x′(t)|2dt
)1/2

+ 2|τ(t)|∞I2(|τ(t)|∞)
(∫ T

0

|x′(t)|2dt
)1/2

+ I3(|τ(t)|∞)|x(t)|2∞

+ I4(|τ(t)|∞)|x(t)|∞ + I5(|τ(t)|∞)].
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Substituting (20) into the above inequality, we get∫ T

0

|h(x(t)− h(x(t− τ(t)))|2dt

≤ β2
3 [2|τ(t)|2∞ + 2|τ(t)|∞I1(|τ(t)|∞)M

+ I3(|τ(t)|∞)M 2]

∫ T

0

|x′(t)|2dt+ c6

(∫ T

0

|x′(t)|2dt
)1/2

+ c7,

where c6, c7 are constants. From above inequality

(a+ b)1/2 ≤ a1/2 + b1/2 for a ≥ 0, b ≥ 0, (23)

we get(∫ T

0

|h(x(t))− h(x(t− τ(t)))|2dt
)1/2

≤ β3[2|τ(t)|2∞ + 2|τ(t)|∞I1(|τ(t)|∞)M

+ I3(|τ(t)|∞)M 2]1/2
(∫ T

0

|x′(t)|2dt
)1/2

+ c
1/2
6

(∫ T

0

|x′(t)|2dt
)1/4

+ c
1/2
7 .

Substituting the above formula and (22) in (21), we get

{
β − [γ2(

n∑
k=1

ak) + γ3(
n∑
k=1

a2
k)]M

2 − β3[2|τ(t)|2∞

+ 2|τ(t)|∞I1(|τ(t)|∞)M + I3(|τ(t)|∞)M 2]1/2
}∫ T

0

|x′(t)|2dt

≤ c8(

∫ T

0

|x′(t)|2dt)
3
4 + c9(

∫ T

0

|x′(t)|2dt)1/2 + c10,

where c8, c9, c10 are constants. There is a constant M1 > 0 such that∫ T

0

|x′(t)|2dt ≤M1. (24)

From (20), we get

|x(t)|∞ ≤ d+M(

∫ T

0

|x′(t)|2dt)1/2 ≤ d+M(M1)
1/2.
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Then there is a constant M2 > 0 such that |x(t)|∞ ≤M2. Therefore, integrating
(1) on the interval [0, T ], using Schwarz inequality, we get∫ T

0

|x′′′(t)|dt =

∫ T

0

| − f(t, x′′(t))− g(t, x′(t))− h(x(t− τ(t))) + p(t)|dt

≤
∫ T

0

|f(t, x′′(t))|dt+

∫ T

0

|g(t, x′′(t))|dt+

∫ T

0

|h(x(t− τ(t)))|dt+

∫ T

0

|p(t)|dt

≤ σ

∫ T

0

|x′′(t)|dt+ hδT + T |p(t)|∞

≤ σT 1/2(

∫ T

0

|x′′(t)|2dt)1/2 + hδT + T |p(t)|∞

≤ σT 1/2(M1)
1/2 + hδT + T |p(t)|∞,

where hδ = max|x|≤δ |g(x)|. Then there is a constant M3 > 0 such that∫ T

0

|x′′(t)|dt ≤M3. (25)

From (24),then there are t2 ∈ [0, T ] and c > 0 such that |x′(t2)| ≤ c for t ∈ [0, T ]

|x′(t)|∞ ≤ |x′(t2)|+
∫ T

0

|x′′(t)|dt+
n∑
k=1

bk. (26)

Then there is a constant M4 > 0 such that

|x′(t)|∞ ≤M4. (27)

It follows that there is a constant I2 > max{M2,M4} such that ‖x‖ ≤ I2, Thus
Ω1 is bounded.

Let Ω2 = {x ∈ kerL,RNx = 0}. If x ∈ Ω2, then x(t) = c ∈ R and satisfies

RN(x, 0) = (− 2

T 2

∫ T

0

[f(t, 0) + g(t, 0) + h(c)− p(t)]dt, 0, . . . , 0) = 0. (28)

we get ∫ T

0

[f(t, 0) + g(t, 0) + h(c)− p(t)]dt = 0. (29)

In (29),there must be a interval t0 ∈ [0, T ] such that

h(c) = −f(t0, 0)− g(t0, 0) + p(t0). (30)
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From (30) and assumption (H3), (H4), we get

β1 + β2|c| ≤ |h(c)| ≤ |f(t0, 0)|+ |g(t0, 0)|+ |p(t0)| ≤ σ × 0 + |p(t)|∞. (31)

Then

|c| ≤ ||p(t)|∞ − β1|
β2

(32)

which implies Ω2 is bounded. Let Ω be a non-empty open bounded subset of X
such that Ω ⊃ Ω1 ∪ Ω2 ∪ Ω3, where Ω3 = {x ∈ X : |x| < ||p(t)|∞ − β1|/β2 + 1}.
By Lemmas 2, we can see that L is a Fredholm operator of index zero and N
is L-compact on Ω. Then by the above argument,

(i) Lx 6= λNx for all x ∈ ∂Ω ∩D(L), λ ∈ (0, 1);

(ii) RNx 6= 0 for all x ∈ ∂Ω ∩ kerL.

Finally we prove that (iii) of Lemma 1 is satisfied. We take H(x, µ) : Ω×[0, 1]→
X,

H(x, µ) = µx+
2(1− µ)

T 2

∫ T

0

[−f(t, x′′(t))− g(t, x′(t)) + h(x(t− τ(t)) + p(t)]dt.

From assumptions (H3) and (H4), we can easily verify H(x, µ) 6= 0, for all
(x, µ) ∈ ∂Ω ∩ kerL× [0, 1], which results in

deg{KRNx,Ω ∩ kerL, 0} = deg{H(x, 0),Ω ∩ kerL, 0}
= deg{H(x, 1),Ω ∩ kerL, 0} 6= 0,

where K(x, 0, . . . , 0) = x. Therefore, by Lemma 1, Equation (1) has at least
one T -periodic solution.

4 Fourth-order delay differential equation

We establish criteria for the existence of positive periodic solutions to the fol-
lowing fourth-order delay differential equation. The simplified model takes the
form
....
x (t) + a

...
x (t) + f1(ẍ(t− τ(t))) + g1(ẋ(t− τ(t))) +h1(x(t− τ(t))) = p1(t). (33)

where f1(t + T, x) = f1(t, x), g1(t + T, x) = g1(t, x), h1(t + T ) = h1(t),
τ(t+ T ) = τ(t), p1(t+ T ) = p1(t) , τ(t) ≥ 0.

We assume that the following conditions:
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(H9) |f1(x)| ≤ K + δ1|x| for x ∈ R

(H10) xg1(x) > 0 and |g1(x)| > K + |p1|0 + δ1|x| for |x| ≥ D

(H11) x2h1(x) > 0 and |h1(x)| > K + |p1|0 + δ2|x| for |x| ≥ D

(H12) limx→−∞
h1(x)
x2 ≤ δ3.

The main purpose of this paper is to establish the existence of positive
periodic solutions to (33). An example to compute the main result is given.

Lemma 5 [[4]] Let X and Z be two Banach space. Consider a Fredholm oper-
ator equation

Lx = λN(x, λ), (34)

where L : DomL∩X → Z is a operator of index zero, λ ∈ (0, 1) is a parameter.
Let P and Q denote two projectors such that

P : X → kerL, and Q : Z → Z/ImL.

Assume that N : Ω̄ × (0, 1) → Z is L-compact on Ω̄ × (0, 1), where Ω is open
bounded in X. In addition, suppose that

(a) For each λ ∈ (0, 1) and x ∈ ∂Ω ∩DomL, Lx 6= λN(x, λ)

(b) For each x ∈ ∂Ω ∩ kerL, QNx 6= 0,

(c) deg{QN,Ω ∩ kerL, 0} 6= 0.

Then Lx = N(x, 1) has at least one solution in Ω̄.

Theorem 2 Suppose that exist positive constants δ1, δ2, δ3 ≤ 0, K > 0 and
D > 0, such that (H9–H12).Then (33) has at least one ω-periodic solution for
aω + 2δ1|b|2ω

3
2 + 2δ2|b|2ω

5
2 + 2ω2(1 + ω)δ3 < 1.

Proof: To use Lemma 5 for (33), we take X = {x ∈ C3(R, R) : x(t+ ω) =
x(t) for all t ∈ R} and Z = {z ∈ C(R,R) : z(t + ω) = z(t) for all t ∈ R} and
denote |x|0 = maxt∈[0,ω] |x(t)| and
‖x‖ = max{|x|0, |ẋ|0, |ẍ|0 |

...
x |0}. Then X and Z are Banach spaces, for x ∈ X

and z ∈ Z, able with the norm forms ‖ · ‖ and | · |0, respectively. Let

Lx(t) =
....
x , x ∈ X, t ∈ R;

N(x(t), λ) = −a...
x (t)− λf1(ẍ(t− τ(t)))− λg1(ẋ(t− τ(t)))− h1(x(t− τ(t)))

+λp1(t), x ∈ X, t ∈ R;

Px(t) =
1

ω

∫ ω

0

x(t)dt, Qz(t) =
1

ω

∫ ω

0

z(t)dt, x ∈ X, t ∈ R;
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where x ∈ X, z ∈ Z, t ∈ R, λ ∈ (0, 1).

We prove that L is a Fredholm mapping of index 0, that P : X → kerL
and Q→ Z/ ImL are projectors, and that N is L-compact on Ω̄ for any given
open and bounded subset Ω in X.

The equivalent differential equation for the operator Lx = λN(x, λ), λ ∈
(0, 1), takes the form

....
x (t)+λa

...
x (t)+λ2f1(ẍ(t−τ(t)))+λ2g1(ẋ(t−τ(t)))+λh1(x(t−τ(t))) = λ2p1(t).

(35)
Let x ∈ X be a solution of (35) for a certain λ ∈ (0, 1). Integrating (35) over
[0, ω], we obtain∫ ω

0

[
λ2f1(ẍ(t− τ(t))) + λ2g1(ẋ(t− τ(t))) + λh1(x(t− τ(t)))− λ2p1(t)

]
dt = 0.

(36)
Thus, there is a point ξ ∈ [0, ω], such that

λ2f1(ẍ(ξ − τ(ξ))) + λ2g1(ẋ(ξ − τ(ξ))) + λh1(x(ξ − τ(ξ)))− λ2p1(ξ) = 0

Thus using the condition (H9),

|h1(x(ξ − τ(ξ)))| ≤ |f1(ẍ(ξ − τ(ξ)))|+ |g1(ẋ(ξ − τ(ξ)))|+ |p1(ξ)|
≤ K + δ1|ẍ(ξ − τ(ξ))|+ δ2|ẋ(ξ − τ(ξ))|+ |p1|0

≤ K + |p1|0 + δ2|ẍ|0 + δ1|ẋ|0 .
(37)

We will prove that there is a point t0 ∈ [0, ω] such that

|x(t0) < |ẍ|0 + |ẋ|0 +D. (38)

Case 1: δ1, δ2 = 0. If |x(ξ−τ(ξ))| > D, (H9)–(H12) and (37) ensure K+|p1|0 <
|h1(x(ξ − τ(ξ)))| ≤ K + |p1|0, which is a contradiction. So

|x(ξ − τ(ξ))| ≤ D. (39)

Case 2: δ1, δ2 > 0. If |x(ξ − τ(ξ))| > D, then K + |p1|0 + δ1|ẋ(ξ − τ(ξ))| +
δ2|x(ξ − τ(ξ))| < |h1(x(ξ − τ(ξ)))| ≤ K + |p1|0 + δ1|ẍ|0 + δ2|ẋ|0. So that

|x(ξ − τ(ξ))| ≤ |ẍ|0. (40)

Hence from (39) and (40), we see in either case 1 or case 2 that

|x(ξ − τ(ξ))| ≤ |ẍ|0 +D.
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Let ξ − τ(ξ) = 2kπ + t0, where k is an integer and t0 ∈ [0, ω]. Then

|x(t0)| = |x(ξ − τ(ξ))| < |ẍ|0 +D.

So (38) holds, and then

|x|0 ≤ |ẋ(t0)|+
∫ ω

0

|ẍ(s)|ds < (ω + 1)|ẍ|0 +D. (41)

Let G(θ) = aω+2δ1|b|2ω
3
2 +2δ2|b|2ω

5
2 +2ω2(1+ω)(δ3 +θ), θ ∈ [0,∞). From the

assumption G(0) = aω + 2δ1|b|2ω
3
2 + 2δ2|b|2ω

5
2 + 2ω2(1 + ω)δ3 < 1 and G(θ) is

continuous on [0,∞), we know that there must be a small constant θ0 > 0 such
that G(θ) = aω+ 2δ1|b|2ω

3
2 + 2δ2|b|2ω

5
2 + 2ω2(1 +ω)(δ3 + θ) < 1, θ ∈ (0, θ0]. Let

ε = θ0/2, once we can obtain that aω+2δ1|b|2ω
3
2 +2δ2|b|2ω

5
2 +2ω2(1+ω)(δ3+ε) <

1 For such a small ε > 0, in view of assumption (H4), we find that there must
be a constant ρ > D, which is independent of λ and x, such that

h1(x)

x2
< (δ3 + ε), for x < −ρ. (42)

Thus putting ∆1 = {t : t ∈ [0, ω], x(t − τ(t)) > ρ}, ∆2 = {t : t ∈ [0, ω], x(t −
τ(t)) < −ρ}, ∆3 = {t : t ∈ [0, ω], |x(t− τ(t))| ≤ ρ} , ∆4 = {t : t ∈ [0, ω], |x(t−
τ(t))| ≥ ρ} and hρ = sup|x|≤ρ h1(x), we have∫

∆1

|h1(t− τ(t))|dt < ω(δ1 + ε)|x|0,
∫

∆2

|h1(t− τ(t))|dt < ω(δ2 + ε)|x|0,∫
∆3

|h1(t− τ(t))|dt < ω(δ3 + ε)|x|0,
∫

∆4

|h1(t− τ(t))|dt ≤ ωhρ.

From (36), we have∫ ω

0

h1(x(t− τ(t)))dt =
(∫

E1

+

∫
E2

+

∫
E3

+

∫
E4

)
h1(x(t− τ(t)))dt

≤
∫ ω

0

|f1(ẍ(t− τ(t)))|dt

+

∫ ω

0

|g1(ẋ(t− τ(t)))|dt+

∫ ω

0

|h1(x(t− τ(t)))|dt+

∫ ω

0

|p1(t)|dt.

(43)

That is ∫
E1

|h1(x(t− τ(t)))|dt ≤
∫
E2

|h1(x(t− τ(t)))|dt+

∫
E3

|h1(x(t− τ(t)))|dt

+

∫
E4

|h1(x(t− τ(t)))|dt

+

∫ ω

0

|f1(ẍ(t− τ(t)))|dt+

∫ ω

0

|g1(ẋ(t− τ(t)))|dt+

∫ ω

0

|h1(x(t− τ(t)))|dt+ ω|p1|0.

(44)
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Using the condition (H9), we have∫ ω

0

|f1(ẍ(t− τ(t)))|dt =

∫ ω−τ(ω)

−τ(0)

1

1− τ̈(ν(s))
|f1(ẍ(s))|ds

=

∫ ω

0

1

1− τ̈(ν(s))
|f1(ẍ(s)|ds

≤
∫ ω

0

δ1

1− τ̈(ν(s))
|ẍ(s)|ds+

∫ ω

0

K

1− τ̈(ν(s))
ds

≤ δ1|b|2
(∫ ω

0

|ẍ(s)|ds
)1/2

+ |b|2K
√
ω.

(45)

Thus, by (44) and (45), we have∫ ω

0

|....x (s)|ds ≤ a

∫ ω

0

|...x (s)|ds+

∫ ω

0

|f1(ẍ(t− τ(t)))|dt+

∫ ω

0

|g1(ẋ(t− τ(t)))|dt

+

∫ ω

0

|h1(x(t− τ(t)))|dt+ ω|p1|0

= a

∫ ω

0

|...x (s)|ds+

∫ ω

0

|f1(ẍ(t− τ(t)))|dt+

∫ ω

0

|g1(ẋ(t− τ(t)))|dt

+
(∫

∆1

+

∫
∆2

+

∫
∆3

+

∫
∆4

)
|h1(x(t− τ(t)))|dt+ ω|p1|0

≤ a
√
ω
(∫ ω

0

|...x (s)|2ds
)1/2

+ 2δ1|b|2
(∫ ω

0

|ẍ(s)|2ds
)1/2

+ 2δ2|b|2
(∫ ω

0

|ẋ(s)|2ds
)1/2

+2ω(δ3 + ε)|x|0 + 2K
√
ω|b|2 + 2ωfρ + 2|p1|0.

(46)
Since x(0) = x(ω), there exists t1 ∈ [0, ω], such that ẍ(t1) = 0, Hence for
t ∈ [0, ω],

|ẍ|0 ≤
∫ ω

0

|...x (t)|dt ≤
√
ω
(∫ ω

0

|...x (s)|2ds
)1/2

, (47)(∫ ω

0

|ẍ(s)|2ds
)1/2

≤
√
ω max
t∈[0,ω]

|ẍ(t)| ≤ ω
(∫ ω

0

|...x (s)|2ds
)1/2

. (48)

Since x(t) is periodic function, for t ∈ [0, ω], we have

|...x (t)| ≤
∫ ω

0

|....x (t)|dt, (49)(∫ ω

0

|ẍ(s)|2ds
)1/2

≤
√
ω max
t∈[0,ω]

|...x (t)| ≤
√
ω

∫ ω

0

|....x (t)|dt. (50)
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Substituting (50) in (47), we have

|ẍ|0 ≤ ω

∫ ω

0

|....x (t)|dt. (51)

Substituting (51) in (41),

|x|0 ≤ D + ω(1 + ω)

∫ ω

0

|....x (t)|dt. (52)

Substituting (48),(50) and (52) in (46), and using inequality (49), we have

|...x |0 ≤
∫ ω

0

|....x (t)|dt ≤ 2K
√
ω|b|2 + 2ωhρ + 2ω|p1|0 + 2ω(δ2 + ε)D

1− aω − 2δ1|b|2ω
3
2 − 2δ2|b|2ω

5
2 − 2ω2(1 + ω)(δ3 + ε)

≡ A3.

(53)
Substituting (53) in (51) and (52), we have

|x|0 ≤ D + ω(1 + ω)A3 ≡ A1, |ẋ|0 ≤ ωA3 ≡ A2. (54)

Let A0 = max{A1, A2, A3, A4} and take Ω = {x ∈ X : ‖x‖ ≤ A0}. The priori
bounds show that condition (a) of Lemma 5 is satisfied. If x ∈ ∂Ω ∩ kerL =
∂Ω ∩ R, then x is a constant with x(t) = A0 or x(t) = −A0. Then

QN(x, 0) =
1

ω

∫ ω

0

[
− a...

x (t)− h1(x(t− τ(t))
]
dt

=
1

ω

∫ ω

0

−f1(x)dt =
1

ω

∫ ω

0

−f1A0dt 6= 0

Finally, consider the homotopy mapping

H(x, µ) = µx+
1− µ
ω

∫ ω

0

h1(x)dt, µ ∈ [0, 1].

Since for every µ ∈ [0, 1] and x in the intersection of kerL and ∂Ω, we have

xH(x, µ) = µx2 +
1− µ
ω

∫ ω

0

xh1(x)dt > 0,

This continues that

deg{QN(x, 0),Ω ∩ kerL, 0} = deg{−h1(x),Ω ∩ kerL, 0}
= deg{−x,Ω ∩ kerL, 0}
= deg{−x,Ω ∩R, 0} 6= 0.

All conditions in Lemma 5 are satisfied; therefore, (33) has at least one solution
in Ω. Our results complement and extend known results and are given with
examples.
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Example 1

Consider the third order delay differential equation with impulses

x′′′(t) +
1

3
x′′(t) +

1

6
x′(t) +

1

21
x(t− 1

10
cos t) = sin t, t 6= k,

Ik(x, y) =
sin kπ

3

120
x+

y

1 + y2
,

Jk(x, y) = − 2x2y

1 + x4y2
,

Kk(x, y) = − 4x4y

1 + x8y2
,

(55)

where tk = k, f(t, x) = 1
3x

2,g(t, x) = 1
6x, h(y) = 1

21y, p(t) = sin t, τ(t) = 1
10 cos t,

it is easy to see that |τ(t)|∞ = 1
10 , T = 2π, {k} ∩ [0, 2π] = {1, 2, 3, 4, 5, 6, 7, 8},

σ = β = 1
3 , β1 = 0, β2 = β3 = 1

21 . Since |Ik(x, y)| ≤ 1
120|x|+

1
2 ,

|Jk(x, y)| ≤ 1,|
∫ x+Ik(x,y)

x h(s)ds| ≤ |Ik(x, y)|( 1
21|x|+

1
42 |Ik(x, y)|),

|Kk(x, y)| ≤ 1,|
∫ x+Jk(x,y)

x h(s)ds| ≤ |Jk(x, y)|( 1
21|x|+

1
42|Jk(x, y)|),

then we take ak = 1
120 , a′k = 1

2 , b′k = 1 (k = 1, 2, 3, 4, 5, 6, 7, 8), γ1 = 0, γ2 = 1/21,
γ3 = 1/42.

8∑
k=1

ak =
1

20
< 1,

M =
1

1−
∑n

k=1 ak
(

σ

β2T 1/2
+ T 1/2) =

1

1− 1
20

(
1
3

1
21(2π)1/2

+ (2π)1/2) < 8.

By Theorem 1, Equation (55) has at least one 2π-periodic solution.

Example 2

Consider the fourth order delay differential equation with impulses

....
x (t) +

1

2π

...
x (t) +

7

3π2
ẍ(t− cos 2t)) +

7

2π2
ẋ(t− cos 2t))

+
3

2
e−(ẋ(t−cos 2t))2 + h1(x(t− cos 2t)) =

1 + sin 2t

4

where p1(t) = (1 + sin 2t)/4, τ(t) = cos 2t, f1(u) = 7
3π2u + 3

2e
−u2, g1(u) =
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7
2π2u+ 3

2e
−u2 and

h1(u) =


7

3π2u+ 3
2 + tan−1u, for u > D,(

7
2π2 + 3

2 + π
2

)
, for |u| ≤ D,

7
3π2u− 3

2 + tan−1u, for u < −D.

So we can chose δ1 = δ2 = δ3 = 7/(3π2), D = 1, K = 1, |p1|0 = 1/2, |b|2 <
√
ω,

ω = π/4. Therefore, fourth order delay differential equation has at least one
periodic solution.
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