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Abstract

Using a new permeability - defined for anisotropic permanent magnets - we will demonstrate the refraction theorems of the three—
dimensional (3D) magnetic field lines at the separation surface of two anisotropic materials with permanent magnetization (two permanent
magnets), which have random magnetization main directions. Also, the general forms of demonstrated theorems are particularized for
diverse concrete cases and an example is given to illustrate the new defined quantities.
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1. INTRODUCTION

For materials with permanent magnetization, the relation law between flux density B, magnetic field intensity H and
magnetization M [1,2] it’s

B:#0H+:u0 Mr+,u0 Mp1 (l)
where g is the vacuum permeability. The separation in temporary ( M,) and permanent (M,) components of magnetization
M is unique only if M, is independent of H and M, — depending on H — is null at the same time with H. The value of B for
H = 0 represents the remanent flux density ( B, ), that is

Br = Blu=0 = 1o M. )

From relation (1) it follows that for materials with M, # 0 ( permanent magnets ), the “classical” tensor of magnetic
permeability /u/ (B = [u/H ) is not univocally determined by material, because M, could have more values at the same
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material (for diverse minor cycles of hysteresis which are possible, B, = o M, can have more values). In this context it is
useful to define another permeability for permanent magnets, which helps overcome the above-mentioned difficulty.

2. ANOTHER PERMEABILITY FOR ANISOTROPIC PERMANENT MAGNETS

The temporary magnetization value of anisotropic materials is depending on the direction of magnetic field, and the
temporary magnetization low is

M‘[:[X]mHv (3)

were, for the nonlinear materials, the components of magnetic susceptivity tensor [/, are depending on the magnetic field
intensity components. Consequently, in case on the nonlinear anisotropic permanent magnets, rel. (1) becomes

B=wo([1] +[(Jm)H+B:, Q)

were, the tensor’s components are nonlinear functions depending on the components of H.
If we introduce the calculation quantity

Bo=B-B=B-uM,, (5)
rel.(4) becomes

Bo =wo ([1] + [x/m) H. (6)

From rel. (4, 5, 6), the relative /u.,] and absolute /u,] calculation tensors permeability of permanent magnets are
defined with these relations :

[ = ([1]*[xIm): (1] = po [rp]- ()

Introducing By, vector (rel.5) and the new permeability /u,] (rel.7), for permanent magnets we obtain relation

Bp = [up] H, (8)

which, formally, is similarly with the “classical” relation B = [u] H , written for the materials without permanent
magnetization. For isotropic materials, even they are with permanent magnetization (isotropic permanent magnets), rel. (8)
becomes B, = x, H , which is showing that the lines spectra of B, and H are the same in this case. We known that for
permanent magnets (even isotropic one) the spectra lines of B and H are different [1, 4].

Since the definition relation of /u,] contain also permanent magnetization M,, using B, and /u,], we have
advantageously taken into account the non-linearity of the demagnetization curves of permanent magnets, for any minor
hysteresis cycle could be.

It’s known that following the magnetization main directions [2], tensor [x/n has only three components. If we note
these three directions (generally, non-rectangular) with x , y, z index, from rel. (4) results

B,=uo(I+ym)H, +B,,; v=x,y,0r z, 9
and all three components of tensor /u.,] are
,urpvz( Bv - Brv)/luo Hv = pr /,uO Hv; v=XY, Z (10)

If we take into account that for the point of function of a permanent magnet B < B, ( respectively B, <B,, ) and H <
0 ('the demagnetization curve is in the second quadrant of the hysterezis cycle ), results that the components of tensor /i ]
are positive and scalar quantities. It’s interesting to specify if we known all the three hysteresis cycles following the
magnetization main axes, we should determine the nonlinear functions x,,,(H,). For these three main directions x, y, z, the
nonlinear function plots will have similar forms, but they will be quantitative different, as like as the demagnetization
curves following the main three directions of the anisotropic magnet are different between them.

The defining relative permeability of permanent magnets it’s an useful operation. For example, since the system is
generally nonlinear, the numerical solution for magnetic field problem in permanent magnets it’s obtained with an iterative
process ( see [5] for isotropic materials ). The parameter after which the convergence of the problem is followed could be
the relative permeability, defined with rel. (7), respectively rel. (10). It’s evident that for anisotropic materials the
convergence of the calculation is made with components of tensors [u,], respectively [uq,]. Through this defined
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calculation quantity we take univocally and advantageously into account the nonlinearity of the demagnetization curves,
indifferently if we talk about the major or minor demagnetization curves (for any permanent magnetization M,).

3. THE REFRACTION THEOREMS

We consider two different permanent magnets 1 and 2, at rest, separate by smooth surface S;, (Fig. 1). The general
demonstration is referring to the refraction of the magnetic field lines of H and of calculation flux density B, (defined by
rel. 5), for 3D field in anisotropic permanent magnets, having random magnetization main directions. For magnet 1 these
directions are noted with (X, Y1, z;) and unit vectors iy, j;, k1, and for magnet 2 are noted with (X,, y», z,,) and unit vectors i,
jo» K. These axes system (after magnetization main directions of the two permanent magnets) are, generally, non-
rectangular.

Fig.1. Reference axes systems 3D

In order to utterance of normal and tangent components of the magnetic field state quantities at the separation surface
S1», for both media we attach a rectangular axes system (n, t, h) with unit vectors n, t, and h. Unit vector n is perpendicular
on Sy, in point O, unit vector t is tangent on S, in point O and situated in the plane of H vectors, and unit vector Kk is
orthogonal on the plane determined by n and t.
It’s known that in permanent magnets the spectra lines of flux density B, of magnetic field intensity H and of
magnetization M, are different, both for anisotropic media and for isotropic media.
In order to write the projections on axes of quantities B,, H and M,, we introduce the angles:
- the angles between By, respectively By, and the axes of system (n, t, h) :
=< (B, n);a=<9Bu,V;a=<By, N, Ai=1or2; (11)
- the angles between By, respectively By, and the main directions of magnetization:
0= By i) oy =< By, ji); a:=< By, k), A=12; (12)
- the angles between H; respectively H, and the axes of system (n, t, h) :
Bn=<LMH ), =< H, Y Bu=<H, , h,A=12; (13)
- the angles between H;, respectively H, and the main directions of magnetizations:

ﬂ/Lv: J (Hili))’.ﬁ)y: 4 (Hlij/u) ;ﬁlz: d (H/llk/l);;{:LZ; (14)

- the angles between My, respectively M, and the axes of system (n, t, h) :
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Yin = J (Mp) ’ n) Ve = J (M[M ’ t) Yin = J (M[M ’ h) A= ] 2 (15)

- the angles between M, , respectively My, and the main directions of magnetization :
Pa= I My 1) 9= << My ) 7= My, Ky A= 1,2 (16)

- the angles between the axes of rectangular system (n, t, h) and the main directions of magnetization (X, yi, z;) —
medium 1, respectively (Xp, Y2, o) — in medium 2 :

P = L (N, 1) 02y = A (N, ) 0= (N, K) A=1,2; 17)
=S40 =20 =2t k) A= 2, (18)

Because the 3D systems (n, t, h) and (x;, y;, z;), with 4 = 1 or 2, generally have a random position, the angles “¢p”
must be defined. For example: a1,=< (Bp1, N), a1x = < (Bp , i1); because By, n and iy are not in the same plane, the angle
o1x = < (N, ig) can’t obtain from a combination between the angles ay, and ai,. Also, it is remark that between the angles
of B, H and M, vectors W|th the normal, respectively with the tangent directions, the sum is not 90°, because it’s 3D
system. Namely, a;, + a; # 90°, because B,1, nand t generally are not in the same plane. Similarly, £, +/3;;¢ 90° and Vin +
pu#90° (2= 1, 2).

The normal components of magnetic flux density B of the separation surface S;, it’s preserved (the local form of
magnetic flux law), i.e.

Bln = BZn = Bn . (19)

Considering that the separation surface (at rest) is not containing a current skin-deep repartition, result the
conservation of the tangent components of H (the local form of magnetic circuit law):

Hyt = Hx = H:. (20)

For 3D field in anisotropic media with permanent magnetization, from rel. (6, 7) considering for both media, results
BPA = [:upi] H/l h A= ]r 2 ’ (21)

where [ 1,; 1 = [ tpae Hpsy 142- ] are the tensors for calculation absolute permeability.
If we emphasize the components following the magnetization main directions (see also rel. (10), where o, = 0 ),
rel. (21) becomes

Bpiv = ,up;uvHiv 5 A= 1, 2 SVEX ) Z. (22)

We can see that between B, and H components could be written relations like (22) only following the magnetization
main directions (x;, y;, Z;), but not following rectangular directions (n, t, h) [1, 2, 5].
With the projections following the magnetization main directions, in both media, we can write these relations:

B

P~:B

D = Mp/lx i/l+ Mp/lyjﬂ_'_ Mpiz kﬂ, (23)

b+ By i+ Bk, Hi=Hy i+ Hy ji+Heky, My,

where 1 = 1, 2. Because it is the general case (anisotropic permanent magnets having random magnetization main
directions), we remark that [3] : B, # (B2 +B%,,+B%,.)"% H, # (H2 A+ H2, +H2 )Y 5 M, # (M2 NP, +M2,0) 2

If we write the vectors B,,, H, and M,, depending on the components following the rectangular system (n, t, h), we
could write the relations :

B,, =B, N+ B, t+B,;,h=B, (cos a,, n + cos oy t + cos ay, h);

H;=H,n+H,t+H;h=H,(os f,n+cos ft + cos p h);
Mp;' = Mp).n n-+ Mp;',t + Mp/lh h= '\/'1,;L (COS Y N+ cos y, U+ cos yy, h) , (24)

where 1 = 1, 2, for the two media.

3.1. The refraction theorem of magnetic field intensity lines H

The normal component of flux density B in medium 1 we can write as sum of the projections on normal direction of
three components (Biy, By, By,) following the magnetization main directions :

Bin = Bixn + Biyn + Buan (25)
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Writing rel. (5) for medium 1 (B; = By, +1 Mpy), the three components are :
B1yn = Bpivn T o Mp1vn s v =X Y, Z,. (26)
where By, are the projections on normal axe (n) of the components By, of the calculation flux density By, following the
magnetization main directions (X, y1, z;) of the medium 1; My, ,,, - similarly, but regarding permanent magnetization My, of
medium 1. These components are illustrated in rel. (27) - for By, - and in rel. (28) for Mp,.
Bp1 = Bpix + Bpy + Bz, Bpiv = Bpayn N+ Byt + Bpyn h, vaXy, z; (27)
Mp1 = Mpix + Mpyy + My, Moy = Mggpn i+ Myt + Mpon b v=x,y, 2 (28)
From rel.(25) and (26) we obtain
B10=Bp1n+Bpryn*Bpiznt20(Mp1xn+Mp1yn+Mp1zn), (29)
where the components are :
Bp1vn=Bp1v cos @10y ; Mp1yn=Mp1, €OS @105 V=X, Y, Z. (30)
Taking into account these and rel. (22), expression (29) becomes

Bln:Bplx cos (plnx+Bp1y cos ¢1ny+Bplz €OS P1n; THo ( Mplxn+Mplyn+Mplzn )=
=Hpix Hyx cos P1nxTHp1y Hly €OS Qiny T Up1z Hy, cos g1n T ( Mplxn+Mp1yn+Mplzn )- (31)

Similarly, for normal components of flux density in medium 2 we can write
Ban = Boxn + Boyn + B (32)
Writing rel. (5) for medium 2 (B, = By, +uo M), the three components are :
B2yvn = Bpavn T o Mp2yn s V=X, 2, (33)
where By, are the projections on normal axe (n) of the components By,, of the calculation flux density B, following the
magnetization main directions (X, Y2, z) of the medium 2; My,,,, - similarly, but regarding permanent magnetization M, of
medium 2. These components are illustrated in rel. (34) - for By, - and in rel. (35) for Mp,.
Bp2 = Bpox + Bpay + Bpaz s Bpaw = Bpayn N+ Bpoyit+ Brayn b, v=x,y, 75 (34)
Mpz = Mpox + My + Mz, M2y = Mzun N+ Mgy it + Mppun b v=x,y, 2, (35)
From rel.(32) and (33) we obtain
Ban = BypaxntBpzyntBpazm+0(Mp2n+Mpzyn+Mpzzn) (36)
where the components are :
Bp2vn=Bp2, cos gan,; Mp2vn=Mpay cos gon,; V=X, Y, Z. (37)
Taking into account these and rel. (22), expression (36) becomes

Baon=Bpox cos pantBpay cos @anyt+Bypo, cos pon, + ,UO(Mp2xn+Mp2yn+Mp22n)=
=tipox Hox €08 @anxtitp2 yHay cOS @anyTiip2, Hay cos (02nz+,u0(Mp2xn+MpZyn"'MpZzn)- (38)

By replacing (31) and (38) in (19) we obtain

(/uplx Hixcos Pinx = Up2x Haccos ¢2nx)+ (ﬂply Hly COS Q1ny = Up2y H2y cos WZny)+ (,uplz Hy, cos P1inz = Up2z H, cos ¢7an) +
+ 1o [(Mp1xn — Mpaxn) + (Mp1yn — Mp2yn) + (Mpgzn — Mp2ze)] =0 . (39)

If we emphasize the projections on normal direction of the components following the main magnetization axes for H,
(2 =1, 2), from (39) results

Electronic Journal. http://www.neva.ru/journal, http://www.math.spbu.ru/user/diffjournal 5




Differential Equations and Control Processes, /21, 2010

Cuplx Han - Hp2x H2xn) + Cuply Hlyn - Hp2y HZyn) + (,uplz Hizn - Hp2z Hazn ) +
+ Ho [(Mplxn - Mp2xn) + (Mplyn - MpZyn) +(Mplzn - MpZzn)] =0 ’ (40)

where H,,, = H,, cos ¢, , With 1 = 1, 2 and v = x, y, z. Components B,;,,, H,.,, and M,,,, are positive or negative
depending on the concrete laying of vectors B,,;, H, and M,,; in comparison with the axes system.
Consequently, the normal components of magnetic field intensity H (components which are not conserved) are

respecting rel.(40); this relation will be named the theorem of the 3D magnetic field intensity lines refraction, in anisotropic
permanent magnets with random magnetization main directions.

3.2. The refraction theorem of calculation flux density lines B,

The tangent component of H in medium 1 could be written as a sum of projections on tangent direction of the three
components (Hyy, Hiy, Hy,) following the magnetization main directions:

Hi = Hyx + Hayye + Hype (41)
Regarding the meaning of Hiy, Hyy and Hyy, as well as rel.(22), expression (41) becomes

Hi = Hix cos g1 + Hyy cos puy + Hy, cos g1, =
= (Bpax /tp1x) oS @1x + (Bpay /ipry) €05 @1ty + (Bp1z /itp1d) oS 91y, (42)

Alike, for the tangent component of H from medium 2 we can write

Hat = Hox + Hayt + Hax = Hox cos pa + Hyy cos pay + Hy, cos o, =
= (Boax /ttpay) €05 @ + (Bay /tpay) €08 pay + (Bpaz /jip2r) €05 9oz - (43)

By replacing (42) and (43) in (20) we can write

[(Bplx Htp1x) €OS P1ix - (Bp2x /ipax) €OS P 1+ [(Bply itp1y) €OS 1ty - (BpZy Nipay) oS €02ty] +
+[(Bplz /ﬂplz) COS P1tz - (BpZZ /,UpZZ) COS P2t ]=0. (44)

If we put into evidence the projections on the tangent of the components following magnetization main axes for B,
(2 =1, 2), from rel.(44) results

(Bplxt /,uplx - Bprt /,up2x) + (Bplyt /,Uply - BpZyt /,upZy) + (Bplzt /ﬂplz - BpZzt /,UpZZ):O, (45)
where B,,;,, = B,,, cos ¢;, , with . = 1, 2 and v = x, y, z. Components B,,,, and H,,, are positive or negative depending on the
concrete laying of vectors B,,; and H, in comparison with the axes systems.
Consequently, the tangent components of calculation flux density B, are respecting relation (45); this relation will be
named the theorem of 3D refraction of calculation magnetic flux density B, lines, in anisotropic permanent magnets with

random magnetization main directions. We should remark that the theorem (45) has a simple form than the refraction
theorem of magnetic flux density lines, which we had been considered the “classical” quantities B and /u/ (see [4], rel. 27).

4. PARTICULAR CASES OF THE REFRACTION THEOREMS

4.1. 3D fields in isotropic permanent magnets

For isotropic media, the calculation permeability in two materials is:
Mpix = Hply = Upiz= Up1 ;' Hp2x = Up2y = HUp2z = Hp2 - (46)
If we take into account rel.(46), theorem (40) for refraction of magnetic field intensity lines becomes

Hp1(Hn + Haiyn + Hazn) - gp2( Hoxn + Hayn + Hoz ) +
+ﬂ0 [( Ilelxn + Mplyn + Mplzn ) - ( Mprn + MpZyn + MpZZn )] =0. (47)

Considering the significations from theorem (40), expression (47) may be written shortly in this way :

Hp1 Hin = Hp2 Han — 110 ( Mpln - IvlpZn ) (48)
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In case of isotropic permanent magnets, rel. (5) and (7), become B,, = B, —uo M,, = 1,, H;, (A =1, 2) . In this case,
we can write the relations B, = g, H;, = B — o My, 0 By, = ) Hy + 100 My, (4 = 1, 2). Consequently, after a
regrouping of the terms in rel. (48), we track down rel. (19), as we expect.

Alike, taking into account rel. (46), theorem (45) for refraction of calculation flux density lines becomes

( Bplxt + Bplyt + Bplzt)/ﬂpl - ( Bp2xt + Bp2yt + BpZZt )/,upz =0. (49)

Considering the significations from theorem (45), expression (49) may be written shortly:

Bplt/,upl = BpZt /,Upz . (50)

Rel. (48) and (50) are the theorem of refraction for H, respectively By, in 3D field for isotropic permanent magnets.
We can remark that, for the tangent components of By, theorem (50) for permanent magnets has a similarly form (but
another content) with “classical” theorem of refiaction in materials without permanent magnetization.

For isotropic permanent magnets, we can write rel. B,, = w,, H, (2 = 1, 2). That means, for this case, vectorial
quantity B,, defined in rel.(5), is refracting in the same way as magnetic field intensity H, or B, and H have the same
direction. In permanent magnets, field lines of “classical” B and field line of H, generally are different [1, 2, 3]. Also,
theorem (50) has more simple form than “classical” treatment, with B and H ( s. [4], rel. 32). So, the introduction of new
quantities B, and /u,] are helping us to express the refraction theorem in a more simple form.

4.2. 3D fields in isotropic permanent media without permanent magnetization

In this case, from rel.(5) we obtain B, = B (for M, = 0 ). Also, from rel.(7), for isotropic media we can write x, = B,
/H=B/H. So u, =u, which means that the calculation permeability is identical with the “classical” permeability, if the
media is without permanent magnetization.

Particularizing rel.(48) and (59) for this case and taking into account of the previous observations, results

tp1/ tp2 = Byt / Bpot = Han / Hin = pa/itp = Byy / By, (51)

that is the “classical” form of the refraction theorem for the magnetic field lines. B, and H have the same field lines
because is an isotropic material. But B, and B are identical (because M, = 0), that means B and H have the same field lines.

4.3. 2D fields in isotropic media with permanent magnetization

For 2D field, vectors B, , H and M, have not the components after z axe. Rel.(48) and (50) are valid in this case, but
z components absent from rel.(47) and (49). In this case a;, + a; = 90° and Bin + By = 90° . If we represent B,, and H;,
vectors, we obtain “classical” representation, but B replace with B, (Fig. 2). Because are isotropic media, B, and H have
the same lines spectra, therefore a;, = B,, and a;,= B, (A = 1, 2). We remark that vectors B and H have not the same lines
spectra, because My#0.

a) b)

Fig.2. Continuity conditions for B, and H (2D)
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Because are isotropic media, B, and H have the same lines spectra, therefore a,, = f,, and a,= f;; (A = 1, 2). We
remark that vectors B and H have not the same lines spectra, because M#0.

4.4. 2D fields in isotropic media without permanent magnetization

In this case B,, = B, @ = s, @ = P, s = B and ay, + oy = 90° (A = 1, 2). With this, taking into account the
“classical” representation for 2D fields refraction in isotropic media without permanent magnetization [1, 2], we can
complete rel.(51), finding again the “classical” relations:

Up1/Mp2=Bp1t [Bpa=Han IH1n=11/1,=B1: [Bo = tg 01 / tg 02n=1g P10/ 1g o (52)

That is the “classical” form of the refraction theorem for the magnetic field lines in isotropic media, without permanent
magnetization, when B and H have the same lines spectra.

It’s easy to remark that, from general expression of refraction theorems of B, and H or from the particular forms
already mentioned, we can obtain also other particular forms. Such cases are possible when one of the media has permanent
magnetization and the other one does not (for example: permanent magnet — air gap, permanent magnet — common
ferromagnetic material), when the permanent magnetization vectors have particular orientation, when the main directions of
magnetization have particular orientation and so on.

5. EXAMPLES FOR THE FUNCTIONS B,(H) AND u/,(H)

If the hysteresis cycle for the material of permanent magnets is known, we can determine the diagram of nonlinear
function B,(H). After that, we have deduced nonlinear function u,(H) (or x,(H)) . For an anisotropic permanent magnet,
it’s necessary to known the hysteresis cycles after main directions of magnetization. In this case we can determine the
diagrams of nonlinear function B, (H) and x,,, (H), withv =x, , z.

For example, in Fig.3 nonlinear functions B,(H) and u.,(H) are presented, for ALNICO 13/5, considering the major
curve of demagnetization and isotropic material.

B,B,
[T] Hro
lo.8 |
B
116
~120 —80 /-40 H
— R/ [kvm ] 112
8
1,
L, ~120 80 40 |0 H
[ KA/ ]
B, T1-16
a) b)

Fig.3. Examples for By, (H) and u, (H)

6. CONCLUSIONS
The introduction of permeability /u,] for permanent magnets and calculation flux density B, - as we specify at par.2

— it’s useful operation because the theorems of refraction have more simple form. Also, the solution of field problem in
nonlinear and anisotropic systems with permanent magnets it could be done in an advantageous way.
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For anisotropic media with random magnetization main directions and also with permanent magnetization, the
refraction theorems for 3D field are given by rel.(40) (for magnetic field intensity H ), respectively rel. (45) (for calculation
flux density By). Starting from these general forms of the theorems, some particular forms have been deduced, which could
be necessary for solve magnetic field problem in system with permanent magnets.

We can also remark that the similar theorems could be demonstrated for the electrical field lines refraction in media
having permanent polarization.
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