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Abstract 

 

Using a new permeability - defined for anisotropic permanent magnets - we will  demonstrate the refraction theorems of the three–
dimensional (3D) magnetic field lines at the separation surface of two anisotropic materials with permanent magnetization (two permanent 

magnets), which have random magnetization main directions. Also, the general forms of demonstrated theorems are particularized for 

diverse concrete cases and an example is given to illustrate the new defined quantities. 

Keywords: nonlinear and anisotropic permanent magnets, another permeability, random magnetization, refraction theorems 

1. INTRODUCTION 

For materials with permanent magnetization, the relation law between flux density B, magnetic field intensity H and 

magnetization M [1,2] it‟s 

 

 B = µ0  H + µ0  Mτ + µ0  Mp , (1) 

 

where µ0  is the vacuum permeability. The separation in temporary ( Mτ ) and permanent (Mp) components of magnetization 

M is unique only if Mp is independent of H and Mτ – depending on H – is null at the same time with H. The value of B for 

H = 0 represents the remanent flux density ( Br ), that is 

 

 Br = B|H=0 = µ0 Mp . (2) 

 

From relation (1) it follows that for materials with Mp ≠ 0 ( permanent magnets ), the “classical” tensor of magnetic 

permeability [µ] (B = [µ]H ) is not univocally determined by material, because Mp could have more values at the same 
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material (for diverse minor cycles of hysteresis which are possible, Br = µ0 Mp can have more values). In this context it is 

useful to define another permeability for permanent magnets, which helps overcome the above-mentioned difficulty. 

2. ANOTHER PERMEABILITY FOR ANISOTROPIC PERMANENT MAGNETS 

The temporary magnetization value of anisotropic materials is depending on the direction of magnetic field, and the 

temporary magnetization low is  

 

 Mτ = [χ]m H , (3) 

 

were, for the nonlinear materials, the components of magnetic susceptivity tensor [χ]m are depending on the magnetic field 

intensity components. Consequently, in case on the nonlinear anisotropic permanent magnets, rel. (1) becomes 

 

 B = µ0 ( [1] + [χ]m ) H + Br , (4) 

 

were, the tensor‟s components are nonlinear functions depending on the components of H. 

If we introduce the calculation quantity 

 

 Bp = B – Br = B - µ0 Mp , (5) 

 

rel.(4) becomes 

 

 Bp = µ0 ( [1] + [χ]m ) H. (6) 

 

From rel. (4, 5, 6), the relative [µrp] and absolute [µp] calculation tensors permeability of permanent magnets are 

defined with these relations : 

 

 [µrp] = ( [1]+[χ]m );  [µp] = µ0 [µrp]. (7) 

 

Introducing Bp vector (rel.5) and the new permeability [µp] (rel.7), for permanent magnets we obtain relation 

 

 Bp = [µp] H , (8) 

 

which, formally, is similarly with the “classical” relation B = [µ] H , written for the materials without permanent 

magnetization. For isotropic materials, even they are with permanent magnetization (isotropic permanent magnets), rel. (8) 

becomes Bp = µp H , which is showing that the lines spectra of Bp and H are the same in this case. We known that for 

permanent magnets (even isotropic one) the spectra lines of B and H are different [1, 4]. 

Since the definition relation of [µp] contain also permanent magnetization Mp, using Bp and [µp], we have 

advantageously taken into account the non-linearity of the demagnetization curves of permanent magnets, for any minor 

hysteresis cycle could be. 

It‟s known that following the magnetization main directions [2], tensor [χ]m has only three components. If we note 

these three directions (generally, non-rectangular) with x , y , z index, from rel. (4) results 

 

 Bν = µ0 ( 1+χmν ) Hν + Brν ; ν = x , y , or  z , (9) 

 

and all three components of tensor [µrp] are 

 

 µrpν=( Bν - Brν )/µ0 Hν = Bpν /µ0 Hν; ν = x, y, z. (10) 

 

If we take into account that for the point of function of a permanent magnet B < Br ( respectively Bν < Brν ) and H < 

0 ( the demagnetization curve is in the second quadrant of the hysterezis cycle ), results that the components of tensor [μrp] 

are positive and scalar quantities. It‟s interesting to specify if we known all the three hysteresis cycles following the 

magnetization main axes, we should determine the nonlinear functions μrpν(Hν). For these three main directions x, y, z, the 

nonlinear function plots will have similar forms, but they will be quantitative different, as like as the demagnetization 

curves following the main three directions of the anisotropic magnet are different between them. 

The defining relative permeability of permanent magnets it‟s an useful operation. For example, since the system is 

generally nonlinear, the numerical solution for magnetic field problem in permanent magnets it‟s obtained with an iterative 

process ( see [5] for isotropic materials ). The parameter after which the convergence of the problem is followed could be 

the relative permeability, defined with rel. (7), respectively rel. (10). It‟s evident that for anisotropic materials the 

convergence of the calculation is made with components of tensors [μp], respectively [μrp]. Through this defined 
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calculation quantity we take univocally and advantageously into account the nonlinearity of the demagnetization curves, 

indifferently if we talk about the major or minor demagnetization curves (for any permanent magnetization Mp).  

3. THE REFRACTION THEOREMS 

We consider two different permanent magnets 1 and 2, at rest, separate by smooth surface S12 (Fig. 1). The general 

demonstration is referring to the refraction of the magnetic field lines of H and of calculation flux density Bp (defined by 

rel. 5), for 3D field in anisotropic permanent magnets, having random magnetization main directions. For magnet 1 these 

directions are noted with (x1, y1, z1) and unit vectors i1, j1, k1, and for magnet 2 are noted with (x2, y2, z2,) and unit vectors i2, 

j2, k2. These axes system (after magnetization main directions of the two permanent magnets) are, generally, non-

rectangular. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to utterance of normal and tangent components of the magnetic field state quantities at the separation surface 

S12, for both media we attach a rectangular axes system (n, t, h) with unit vectors n, t, and h. Unit vector n is perpendicular 

on S12 in point O, unit vector t is tangent on S12 in point O and situated in the plane of H vectors, and unit vector k is 

orthogonal on the plane determined by n and t. 

It‟s known that in permanent magnets the spectra lines of flux density B, of magnetic field intensity H and of 

magnetization Mp are different, both for anisotropic media and for isotropic media.  

In order to write the projections on axes of quantities Bp, H and Mp, we introduce the angles: 

- the angles between Bp1, respectively Bp2 and the axes of system (n, t, h) : 

 

 αλn = )  (Bpλ , n) ; αλt = )  (Bpλ , t) ; αλh = )  (Bpλ , h) ; λ = 1 or 2 ; (11) 

 

- the angles between Bp1, respectively Bp2 and the main directions of magnetization: 

 

 αλx = )  (Bpλ , iλ) ; αλy = )  (Bpλ , jλ) ; αλz = )  (Bpλ , kλ) ; λ = 1, 2 ; (12) 

 

- the angles between H1 respectively H2 and the axes of system (n, t, h) : 

 

 βλn = )  (Hλ , n) ; βλt = )  (Hλ , t) ; βλh = )  (Hλ , h) ; λ = 1, 2 ; (13) 

 

- the angles between H1, respectively H2 and the main directions of magnetizations: 

 

 βλx = )  (Hλ , iλ) ; βλy = )  (Hλ , jλ) ; βλz = )  (Hλ , kλ) ; λ = 1, 2 ; (14) 

 

- the angles between Mp1, respectively Mp2 and the axes of system (n, t, h) : 
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 γλn = )  (Mpλ , n) ; γλt = )  (Mpλ , t) ; γλh = )  (Mpλ , h) ; λ = 1, 2 ; (15) 

 

- the angles between Mp1 , respectively Mp2 and the main directions of magnetization : 

 

 γλx = )  (Mpλ , iλ) ; γλy = )  (Mpλ , jλ) ; γλz = )  (Mpλ , kλ) ; λ = 1, 2 ; (16) 

 

- the angles between the axes of rectangular system (n, t, h) and the main directions of magnetization (x1, y1, z1) – in 

medium 1, respectively (x2, y2, z2) – in medium 2 :  

 

 φλnx = )  (n , iλ) ; φλny = )  (n , jλ) ; φλnz = )  (n , kλ) ; λ = 1, 2 ; (17) 

 

 φλtx = )  (t , iλ) ; φλty = )  (t , jλ) ; φλtz = )  (t , kλ) ; λ = 1, 2 . (18) 

 

Because the 3D systems (n, t, h) and (xλ, yλ, zλ), with λ = 1 or 2, generally have a random position, the angles “φ” 

must be defined. For example: α1n= ) (Bp1, n), α1x = )  (Bp1 , i1); because Bp1, n and i1 are not in the same plane, the angle 

φ1nx = )  (n , i1) can‟t obtain from a combination between the angles α1n and α1x. Also, it is remark that between the angles 

of Bp, H and Mp vectors with the normal, respectively with the tangent directions, the sum is not 90
0
, because it‟s 3D 

system. Namely, αλn + αλt ≠ 90
0
, because Bp1, n and t generally are not in the same plane. Similarly, βλn + βλt ≠ 90

0
 and γλn + 

γλt ≠ 90
0
 (λ = 1, 2). 

The normal components of magnetic flux density B of the separation surface S12 it‟s preserved (the local form of 

magnetic flux law), i.e.  

 

 B1n = B2n = Bn . (19) 

 

Considering that the separation surface (at rest) is not containing a current skin-deep repartition, result the 

conservation of the tangent components of H (the local form of magnetic circuit law):  

 

 H1t = H2t = Ht . (20) 

 

For 3D field in anisotropic media with permanent magnetization, from rel. (6, 7) considering for both media, results  

 Bpλ = [μpλ] Hλ ;    λ = 1, 2 , (21) 

 

where [ μpλ ] = [ μpλx   μpλy   μpλz ] are the tensors for calculation absolute permeability. 

If we emphasize the components following the magnetization main directions (see also rel. (10), where μ0 μrpν = μpν ), 

rel. (21) becomes 

 

 Bpλν = μpλνHλν  ; λ = 1, 2  ; ν = x, y, z . (22) 

 

We can see that between Bp and H components could be written relations like (22) only following the magnetization 

main directions (xλ, yλ, zλ), but not following rectangular directions (n, t, h) [1, 2, 5].  

With the projections following the magnetization main directions, in both media, we can write these relations:  

 

     Bpλ = Bpλx iλ + Bpλy jλ + Bpλz kλ ,  Hλ = Hλx iλ + Hλy jλ + Hλz kλ ,  Mpλ = Mpλx iλ + Mpλy jλ + Mpλz kλ ,                    (23) 

 

where λ = 1, 2. Because it is the general case (anisotropic permanent magnets having random magnetization main 

directions), we remark that [3] : Bpλ ≠ (B
2

pλx+B
2
pλy+B

2
pλz)

1/2
; Hλ ≠ (H

2
λx+H

2
λy+H

2
λz)

1/2
 ; Mpλ ≠ (M

2
pλx+M

2
pλy+M

2
pλz)

1/2
 . 

If we write the vectors Bpλ, Hλ and Mpλ depending on the components following the rectangular system (n, t, h), we 

could write the relations : 

 

 Bpλ = Bpλn n + Bpλt t + Bpλh h = Bpλ (cos αλn n + cos αλt t + cos αλh h);  

 Hλ = Hλn n + Hλt t + Hλh h = Hλ (cos βλn n + cos βλt t + cos βλh h);  

 Mpλ = Mpλn n + Mpλt t + Mpλh h = Mpλ (cos γλn n + cos γλt t + cos γλh h) , (24) 

 

where λ = 1, 2, for the two media. 

3.1. The refraction theorem of magnetic field intensity lines H 

The normal component of flux density B in medium 1 we can write as sum of the projections on normal direction of 

three components (B1x , B1y , B1z) following the magnetization main directions : 

 

 B1n = B1xn + B1yn + B1zn . (25) 
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Writing rel. (5) for medium 1 (B1 = Bp1 +μ0 Mp1), the three components are : 

 

 B1 n = Bp1 n + μ0 Mp1 n ;   = x, y, z,. (26) 

 

where Bp1 n are the projections on normal axe (n) of the components Bp1 of the calculation flux density Bp1 following the 

magnetization main directions (x1, y1, z1) of the medium 1; Mp1n - similarly, but regarding permanent magnetization Mp1 of 

medium 1. These components are illustrated in rel. (27) - for Bp1 - and in rel. (28) for Mp1. 

 

 Bp1 = Bp1x + Bp1y + Bp1z ,  Bp1 = Bp1 n n + Bp1 t t + Bp1 h h ,  =x, y, z; (27) 

 

 Mp1 = Mp1x + Mp1y + Mp1z ,  Mp1 = Mp1 n n + Mp1 t t + Mp1 h h ;  = x, y, z. (28) 

 

From rel.(25) and (26) we obtain  

 

 B1n=Bp1xn+Bp1yn+Bp1zn+μ0(Mp1xn+Mp1yn+Mp1zn), (29) 

 

where the components are : 

 

 Bp1 n=Bp1 cos φ1n ;  Mp1 n=Mp1  cos φ1n ;  = x, y, z. (30) 

 

Taking into account these and rel. (22), expression (29) becomes  

 

 B1n=Bp1x cos φ1nx+Bp1y cos φ1ny+Bp1z cos φ1nz +μ0 ( Mp1xn+Mp1yn+Mp1zn )=  

 =μp1x H1x cos φ1nx+μp1y H1y cos φ1ny + μp1z H1z cos φ1nz+μ0 ( Mp1xn+Mp1yn+Mp1zn ). (31) 

 

Similarly, for normal components of flux density in medium 2 we can write 

 

 B2n = B2xn + B2yn + B2zn . (32) 

 

Writing rel. (5) for medium 2 (B2 = Bp2 +μ0 Mp2), the three components are : 

 

 B2 n = Bp2 n + μ0 Mp2 n ;  = x, y, z, (33) 

 

where Bp2n are the projections on normal axe (n) of the components Bp2 of the calculation flux density Bp2, following the 

magnetization main directions (x2, y2, z2) of the medium 2; Mp2n - similarly, but regarding permanent magnetization Mp2 of 

medium 2. These components are illustrated in rel. (34) - for Bp2 - and in rel. (35) for Mp2. 

 

 Bp2 = Bp2x + Bp2y + Bp2z ,  Bp2 = Bp2 n n + Bp2 t t + Bp2 h h ,  = x, y, z; (34) 

 

 Mp2 = Mp2x + Mp2y + Mp2z ,  Mp2 = Mp2 n n + Mp2 t t + Mp2 h h ;  = x, y, z. (35) 

 

From rel.(32) and (33) we obtain  

 

 B2n = Bp2xn+Bp2yn+Bp2zn+μ0(Mp2xn+Mp2yn+Mp2zn) , (36) 

 

where the components are : 

 

 Bp2 n=Bp2 cos φ2n ;  Mp2 n=Mp2  cos φ2n ;  = x, y, z. (37) 

 

Taking into account these and rel. (22), expression (36) becomes  

 

 B2n=Bp2x cos φ2nx+Bp2y cos φ2ny+Bp2z cos φ2nz + μ0(Mp2xn+Mp2yn+Mp2zn)=  

  =μp2x H2x cos φ2nx+μp2 yH2y cos φ2ny+μp2z H2z cos φ2nz+μ0(Mp2xn+Mp2yn+Mp2zn).  (38) 

 

By replacing (31) and (38) in (19) we obtain 

 

 (μp1x H1x cos φ1nx - μp2x H2xcos φ2nx)+ (μp1y H1y cos φ1ny - μp2y H2y cos φ2ny)+ (μp1z H1z cos φ1nz - μp2z H2z cos φ2nz) +  

 + μ0 [(Mp1xn – Mp2xn) + (Mp1yn – Mp2yn) + (Mp1zn – Mp2zn)] = 0 . (39) 

 

If we emphasize the projections on normal direction of the components following the main magnetization axes for Hλ 

(λ = 1, 2), from (39) results 
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 (μp1x H1xn - μp2x H2xn) + (μp1y H1yn - μp2y H2yn) + (μp1z H1zn - μp2z H2zn ) + 

 + μ0 [(Mp1xn – Mp2xn) + (Mp1yn – Mp2yn) +(Mp1zn – Mp2zn)] = 0 , (40) 

 

where Hλνn = Hλν cos φλnν , with λ = 1, 2 and ν = x, y, z . Components Bpλνn, Hλνn, and Mpλνn are positive or negative 

depending on the concrete laying of vectors Bpλ, Hλ and Mpλ in comparison with the axes system.  

Consequently, the normal components of magnetic field intensity H (components which are not conserved) are 

respecting rel.(40); this relation will be named the theorem of the 3D magnetic field intensity lines refraction, in anisotropic 

permanent magnets with random magnetization main directions. 

3.2. The refraction theorem of calculation flux density lines Bp 

The tangent component of H in medium 1 could be written as a sum of projections on tangent direction of the three 

components (H1x, H1y, H1z ) following the magnetization main directions: 

 

 H1t = H1xt + H1yt + H1zt . (41) 

 

Regarding the meaning of H1xt , H1yt and H1zt , as well as rel.(22), expression (41) becomes 

 

 H1t = H1x cos φ1tx  + H1y cos φ1ty  + H1z cos φ1tz =   

  = (Bp1x /μp1x) cos φ1tx + (Bp1y /μp1y) cos φ1ty + (Bp1z /μp1z) cos φ1tz . (42) 

 

Alike, for the tangent component of H from medium 2 we can write 

 

 H2t = H2xt + H2yt + H2zt = H2x cos φ2tx  + H2y cos φ2ty  + H2z cos φ2tz =   

  = (Bp2x /μp2x) cos φ2tx + (Bp2y /μp2y) cos φ2ty + (Bp2z /μp2z) cos φ2tz . (43) 

 

By replacing (42) and (43) in (20) we can write 

 

 [(Bp1x /μp1x ) cos φ1tx - (Bp2x /μp2x ) cos φ2tx ]+ [(Bp1y /μp1y ) cos φ1ty - (Bp2y /μp2y ) cos φ2ty ] +  

 +[(Bp1z /μp1z ) cos φ1tz - (Bp2z /μp2z ) cos φ2tz ]=0. (44) 

 

If we put into evidence the projections on the tangent of the components following magnetization main axes for Bpλ  

(λ = 1, 2), from rel.(44) results 

 

 (Bp1xt /μp1x - Bp2xt /μp2x) + (Bp1yt /μp1y - Bp2yt /μp2y) + (Bp1zt /μp1z - Bp2zt /μp2z)=0,  (45) 

 

where Bpλνt = Bpλν cos φλtν , with λ = 1, 2 and ν = x, y, z. Components Bpλνt and Hλνt are positive or negative depending on the 

concrete laying of vectors Bpλ and Hλ in comparison with the axes systems. 

Consequently, the tangent components of calculation flux density Bp are respecting relation (45); this relation will be 

named the theorem of 3D refraction of calculation magnetic flux density Bp lines, in anisotropic permanent magnets with 

random magnetization main directions. We should remark that the theorem (45) has a simple form than the refraction 

theorem of magnetic flux density lines, which we had been considered the “classical” quantities B and [μ] (see [4], rel. 27).  

4. PARTICULAR CASES OF THE REFRACTION THEOREMS 

4.1.  3D fields in isotropic permanent magnets 

For isotropic media, the calculation permeability in two materials is: 

 

 μp1x = μp1y = μp1z= μp1 ;  μp2x = μp2y = μp2z = μp2 . (46) 

 

If we take into account rel.(46), theorem (40) for refraction of magnetic field intensity lines becomes 

 

 μp1(H1xn + H1yn + H1zn) - μp2( H2xn + H2yn + H2zn ) +   

 +μ0 [( Mp1xn + Mp1yn + Mp1zn ) – ( Mp2xn + Mp2yn + Mp2zn )] = 0 . (47) 

 

Considering the significations from theorem (40), expression (47) may be written shortly in this way : 

 

 μp1 H1n = μp2 H2n – μ0 ( Mp1n – Mp2n ) . (48) 
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In case of isotropic permanent magnets, rel. (5) and (7), become Bpλ = Bλ – μ0 Mpλ = μpλ Hλ  (λ = 1, 2) . In this case, 

we can write the relations Bpλn = μpλ Hλn = Bλn – μ0 Mpλn or Bλn = μpλ Hλn + μ0 Mpλn  (λ = 1, 2). Consequently, after a 

regrouping of the terms in rel. (48), we track down rel. (19), as we expect.  

Alike, taking into account rel. (46), theorem (45) for refraction of calculation flux density lines becomes 

 

 ( Bp1xt + Bp1yt + Bp1zt )/μp1 – ( Bp2xt + Bp2yt + Bp2zt )/μp2 = 0 . (49) 

 

Considering the significations from theorem (45), expression (49) may be written shortly: 

 

 Bp1t / μp1 = Bp2t / μp2 . (50) 

 

Rel. (48) and (50) are the theorem of refraction for H, respectively Bp, in 3D field for isotropic permanent magnets. 

We can remark that, for the tangent components of Bp, theorem (50) for permanent magnets has a similarly form (but 

another content) with “classical” theorem of refraction in materials without permanent magnetization. 

For isotropic permanent magnets, we can write rel. Bpλ = μpλ Hλ  (λ = 1, 2). That means, for this case, vectorial 

quantity Bp, defined in rel.(5), is refracting in the same way as magnetic field intensity H, or Bp and H have the same 

direction. In permanent magnets, field lines of “classical” B and field line of H, generally are different [1, 2, 3]. Also, 

theorem (50) has more simple form than “classical” treatment, with B and H ( s. [4], rel. 32). So, the introduction of new 

quantities Bp and [μp] are helping us to express the refraction theorem in a more simple form. 

4.2.  3D fields in isotropic permanent media without permanent magnetization 

In this case, from rel.(5) we obtain Bp = B (for Mp = 0 ). Also, from rel.(7), for isotropic media we can write μp = Bp 

/ H = B / H . So μp = μ, which means that the calculation permeability is identical with the “classical” permeability, if the 

media is without permanent magnetization.  

Particularizing rel.(48) and (59) for this case and taking into account of the previous observations, results 

 

 μp1 / μp2 = Bp1t / Bp2t = H2n / H1n = μ1/μ2 = B1t / B2t ,  (51) 

 

that is the “classical” form of the refraction theorem for the magnetic field lines. Bp and H have the same field lines 

because is an isotropic material. But Bp and B are identical (because Mp = 0), that means B and H have the same field lines. 

4.3.  2D fields in isotropic media with permanent magnetization 

For 2D field, vectors Bp , H and Mp have not the components after z axe. Rel.(48) and (50) are valid in this case, but 

z components absent from rel.(47) and (49). In this case αλn + αλt = 90
0
 and βλn + βλt = 90

0
 . If we represent Bpλ and Hλ 

vectors, we obtain “classical” representation, but B replace with Bp (Fig. 2). Because are isotropic media, Bp and H have 

the same lines spectra, therefore αλn = βλn and αλt= βλt (λ = 1, 2). We remark that vectors B and H have not the same lines 

spectra, because Mp≠0. 
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Because are isotropic media, Bp and H have the same lines spectra, therefore αλn = βλn and αλt= βλt (λ = 1, 2). We 

remark that vectors B and H have not the same lines spectra, because Mp≠0. 

4.4.  2D fields in isotropic media without permanent magnetization 

      In this case Bpλ = Bλ , μpλ = μλ , αλn = βλn , αλt = βλt  and αλn + αλt = 90
0
 (λ = 1, 2). With this, taking into account the 

“classical” representation for 2D fields refraction in isotropic media without permanent magnetization [1, 2], we can 

complete rel.(51), finding again the “classical” relations: 

 

 μp1/μp2=Bp1t /Bp2t=H2n /H1n=μ1/μ2=B1t /B2t = tg α1n / tg α2n=tg β1n / tg β2n.  (52) 

 

That is the “classical” form of the refraction theorem for the magnetic field lines in isotropic media, without permanent 

magnetization, when B and H have the same lines spectra.  

It‟s easy to remark that, from general expression of refraction theorems of Bp and H  or from the particular forms 

already mentioned, we can obtain also other particular forms. Such cases are possible when one of the media has permanent 

magnetization and the other one does not (for example: permanent magnet – air gap, permanent magnet – common 

ferromagnetic material), when the permanent magnetization vectors have particular orientation, when the main directions of 

magnetization have particular orientation and so on.  

5. EXAMPLES FOR THE FUNCTIONS Bp(H) AND µrp(H) 

If the hysteresis cycle for the material of permanent magnets is known, we can determine the diagram of nonlinear 

function Bp(H). After that, we have deduced nonlinear function µrp(H) (or µp(H)) . For an anisotropic permanent magnet, 

it„s necessary to known the hysteresis cycles after main directions of magnetization. In this case we can determine the 

diagrams of nonlinear function Bpν (H) and µrpν (H), with ν = x, y, z. 

For example, in Fig.3 nonlinear functions Bp(H) and µrp(H) are presented, for ALNICO 13/5, considering the major 

curve of demagnetization and isotropic material. 

 

 

 

 

6. CONCLUSIONS 

The introduction of permeability [µp] for permanent magnets and calculation flux density Bp  - as we specify at par.2 

– it‟s useful operation because the theorems of refraction have more simple form. Also, the solution of field problem in 

nonlinear and anisotropic systems with permanent magnets it could be done in an advantageous way. 
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For anisotropic media with random magnetization main directions and also with permanent magnetization, the 

refraction theorems for 3D field are given by rel.(40) (for magnetic field intensity H ), respectively rel. (45) (for calculation 

flux density Bp). Starting from these general forms of the theorems, some particular forms have been deduced, which could 

be necessary for solve magnetic field problem in system with permanent magnets. 

We can also remark that the similar theorems could be demonstrated for the electrical field lines refraction in media 

having permanent polarization. 
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