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Abstract

Cubic integral equations is the general form of the quadratic integral equa-
tions which have several applications in the theory of radiative transfer, in the
traffic theory, in the theory of particle transport and in the kinetic theory of
gases. In this paper, we present a result on the existence of solutions of the
perturbed Erdélyi-Kober fractional cubic integral equation of Uryshon-Volterra
type in the Banach space of real functions defined, continuous and bounded on
an unbounded interval. We use the Darbo fixed point theorem and a measure
of noncompactness in order to prove our main result.
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1 Introduction

In this paper, we establish the existence and the asymptotic behaviour of so-
lutions to the perturbed cubic Uryshon-Volterra integral equation involving
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Erdélyi-Kober fractional integral, namely

x(t) = f(t, x(t)) +
βx2(t)

Γ(α)

∫ t

0

sβ−1u(t, s, x(s))

(tβ − sβ)
1−α ds, t ∈ R+ = [0,+∞), (1)

where 0 < α < 1, β > 0. Let ‖x‖ = sup{|x(t)| : t ∈ R+} be the norm for
x ∈ BC(R+), where BC(R+) is the Banach space of all real functions defined,
continuous and bounded on R+. There, f : R+×R+ → R and u : R+×R+×R→
R are functions which satisfy special assumptions that will be stated in detail
in Section 3.

Cubic integral equations is the general form of the quadratic integral equa-
tions which have several applications in the theory of radiative transfer, in the
traffic theory, in the theory of particle transport and in the kinetic theory of
gases, specially the quadratic integral equation of Chandrasekhar type is ap-
plicable in many problems in mechanics, physics and other fields [3, 4, 8, 23].
On the other hand, Erdélyi-Kober fractional integrals are very often used to
describe the medium with non-integer mass dimension and also, one can find
more applications of fractional integrals of Erdélyi-Kober type in porous media,
viscoelasticity and electrochemistry ([10]-[18], [21], [22]).

For a continuous function f , the Erdélyi-Kober fractional integral is defined
as [1, 19]

Iγβf(τ) =
β

Γ(γ)

∫ τ

0

sβ−1f(s)

(τβ − sβ)
1−γ ds, β > 0, 0 < γ < 1.

Eq.(1) considered as Erdélyi-Kober fractional quadratic integral equation with
perturbation, see [20].

The aim of this paper is to prove the existence of solutions to Eq.(1) in
the space of real functions which are defined, continuous and bounded on an
unbounded interval. We use a suitable combination of the technique of measures
of noncompactness and the Darbo fixed point principle to obtain our results.

2 Preliminaries

Firstly, we present the concept of a measure of noncompactness [5].
Let the symbol (E, ‖.‖) stands for a real Banach space with a zero element 0
and B(x, r) stands for the closed ball of radius r and center x. Also, we denote
by Br the closed ball B(0, r). Next, let ∅ 6= X ⊂ E and denote by X and
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ConvX the closure and convex closure of the set X, respectively. Let X + Y
and λX, λ ∈ R, denote the usual algebraic operations on the sets X and Y .
Moreover, we denote by ME the family of all nonempty and bounded subsets of
E and by NE the subfamily of ME consisting of all relatively compact subsets
of E.

Definition 1 A function µ : ME → R+ is called a measure of noncompactness
in E if it verifies the following conditions:

1) kerµ 6= ∅ and kerµ ⊂ NE, where kerµ stands for the family {X ∈ ME :
µ(X) = 0}.

2) X ⊂ Y ⇒ µ(X) ≤ µ(Y ).

3) µ(X) = µ(ConvX) = µ(X).

4) µ(λX + (1− λ)Y ) ≤ λ µ(X) + (1− λ) µ(Y ) for 0 ≤ λ ≤ 1.

5) If Xn ∈ME, Xn = Xn, Xn+1 ⊂ Xn for n = 1, 2, 3, ... and lim
n→∞

µ(Xn) =

0, then ∩∞n=1Xn 6= ∅.

The family kerµ described above is called the kernel of the measure of non-
compactness µ. Let us observe that the intersection set X∞ from 5) belongs to
kerµ. In fact, since µ(X∞) ≤ µ(Xn) for every n, then we have that µ(X∞) = 0.
Secondly, we present the construction of the measure of noncompactness in
BC(R+) which will be used in the next section (see [6, 7]).

Let ∅ 6= X ⊂ BC(R+) be bounded set and fix numbers ε > 0 and T > 0. For
arbitrary function x ∈ X, we define the modulus of continuity of the function
x on the interval [0, T ] by

ωT (x, ε) = sup{|x(t)− x(s)| : t, s ∈ [0, T ], |t− s| ≤ ε}.

Further, we put
ωT (X, ε) = sup{ωT (x, ε) : x ∈ X},

ωT0 (X) = lim
ε→0

ωT (X, ε),

and
ω∞0 (X) = lim

T→∞
ωT0 (X, ε).

For a fixed number t ∈ R+, let us define

X(t) = {x(t) : x ∈ X}
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and
diamX(t) = sup{|x(t)− y(t)| : x, y ∈ X}.

Next, we define the function µ on the family MBC(R+) by

µ(X) = ω∞0 (X) + c(X), (2)

where c(X) = lim sup
t→∞

diamX(t). The function µ is a measure of noncompact-

ness in the space BC(R+), see [6].

Finally, we present a fixed point theorem due to Darbo [9]. Before giving
this theorem, we need the following definition.

Definition 2 Let M be a nonempty subset of a Banach space E and let P :
M → E be a continuous operator which transforms bounded sets onto bounded
ones. We say that P satisfies the Darbo condition (with a constant k ≥ 0) with
respect to a measure of noncompactness µ, if for any bounded subset X of M ,
we have

µ(PX) ≤ k µ(X).

If P verifies the Darbo condition with k < 1, then P is said to be a contraction
operator with respect to µ.

Theorem 1 Let Q 6= ∅ be a bounded, closed and convex subset of the space E
and let

P : Q→ Q

be a contraction with respect to the measure of noncompactness µ. Then P has
at least one fixed point in the set Q.

3 Main result

In this section, we will study Eq.(1) under the following assumptions:

(a1) The functions f : R+ × R→ R is continuous and the function t→ f(t, 0)
is bounded on R+. Put f ∗ = sup{|f(t, 0)| : t ∈ R+}.

(a2) There exist continuous functions m : R+ → R+ such that

|f(t, x)− f(t, y)| ≤ m(τ)|x− y|,

for any t ∈ R+ and x, y ∈ R. Moreover, m is bounded. Put m∗ =
sup{|m(t)| : t ∈ R+}.
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(a3) The function u : R+ × R+ × R → R is continuous and there exist func-
tions Ψ : R+ → R+ and q(t) = q : R+ → R+, being Ψ continuous and
nondecreasing, with Ψ(0) = 0 and q continuous satisfying

|u(t, s, x1)− u(t, s, x2)| ≤ q(t)Ψ(|x1 − x2|)

for any t, s ∈ R+ with s ≤ t and for all xi ∈ R (i = 1, 2).

(a4) The functions φ, ψ : R+ → R+ defined by φ(t) = q(t)tαβ and ψ(t) =
u∗(t)tαβ are bounded on R+, where u∗ : R+ → R+ is defined by u∗(t) =
max{|u(t, s, 0)| : 0 ≤ s ≤ t}, whose existence is guaranteed by virtue of
the continuity of u (assumption (a3)). Moreover, the function φ vanishes
at infinity, i.e., lim

t→∞
φ(t) = 0.

(a5) There exists a positive solution r0 of the inequality

(m∗r + f ∗)Γ(α + 1) + r2[φ∗Ψ(r) + ψ∗] ≤ rΓ(α + 1) (3)

satisfying
m∗Γ(α + 1) + 2r0[φ

∗Ψ(r0) + ψ∗] < Γ(α + 1), (4)

where φ∗ = sup{φ(t) : t ∈ R+} and ψ∗ = sup{ψ(t) : t ∈ R+}.

Before we state and prove our main result, let us denote by T the operator
associated with the right-hand side of Equation (1), i.e., Eq.(1) becomes

x = T x,

where
(T x)(t) = (Fx)(t) + x2(t) · (Ux)(t), (5)

(Ux)(t) =
β

Γ(α)

∫ t

0

sβ−1u(t, s, x(s))

(tβ − sβ)
1−α ds (6)

and F is the superposition operator generated by the function f = f(t, x) and
defined by

(Fx)(t) = f(t, x(t)),

where x = x(t) is an arbitrary function defined on R+, see [2].

Theorem 2 Under assumptions (a1) − (a5), Eq.(1) has at least one solution
x = x(t) in the space BC(R+).
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Proof: For better readability, we will divide the proof into several steps.

Step 1: For x ∈ BC(R+) then T x is continuous on R+.

To do this, it is sufficient to prove that, if x ∈ BC(R+) then Ux is continuous
on R+. In fact, we take x ∈ BC(R+) and fix ε > 0 and T > 0. Suppose that
τ1, τ2 ∈ R+ with |τ2 − τ1| ≤ ε and, without loss of generality, we can assume
that τ1 < τ2, then we have

|(Ux)(t2)− (Ux)(t1)|

=
β

Γ(α)

∣∣∣∣∣∣∣
∫ t2

0

sβ−1u(t2, s, x(s))(
tβ2 − sβ

)1−α ds−
∫ t1

0

sβ−1u(t1, s, x(s))(
tβ1 − sβ

)1−α ds

∣∣∣∣∣∣∣
≤ β

Γ(α)

∣∣∣∣∣∣∣
∫ t2

0

sβ−1u(t2, s, x(s))(
tβ2 − sβ

)1−α ds−
∫ t1

0

sβ−1u(t2, s, x(s))(
tβ2 − sβ

)1−α ds

∣∣∣∣∣∣∣
+

β

Γ(α)

∣∣∣∣∣∣∣
∫ t1

0

sβ−1u(t2, s, x(s))(
tβ2 − sβ

)1−α ds−
∫ t1

0

sβ−1u(t1, s, x(s))(
tβ2 − sβ

)1−α ds

∣∣∣∣∣∣∣
+

β

Γ(α)

∣∣∣∣∣∣∣
∫ t1

0

sβ−1u(t1, s, x(s))(
tβ2 − sβ

)1−α ds−
∫ t1

0

sβ−1u(t1, s, x(s))(
tβ1 − sβ

)1−α ds

∣∣∣∣∣∣∣
≤ β

Γ(α)

∫ t2

t1

sβ−1|u(t2, s, x(s))|(
tβ2 − sβ

)1−α ds

+
β

Γ(α)

∫ t1

0

sβ−1|u(t2, s, x(s))− u(t1, s, x(s))|(
tβ2 − sβ

)1−α ds

+
β

Γ(α)

∫ t1

0

sβ−1|u(t1, s, x(s))|
[(
tβ1 − sβ

)α−1

−
(
tβ2 − sβ

)α−1
]
ds

≤ β

Γ(α)

∫ t2

t1

sβ−1[|u(t2, s, x(s))− u(t2, s, 0)|+ |u(t2, s, 0)|](
tβ2 − sβ

)1−α ds

+
β

Γ(α)

∫ t1

0

sβ−1ωT‖x‖(u, ε)(
tβ2 − sβ

)1−α ds
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+
β

Γ(α)

∫ t1

0

sβ−1[|u(t1, s, x(s))− u(t1, s, 0)|+ |u(t1, s, 0)|]

×
[(
tβ1 − sβ

)α−1

−
(
tβ2 − sβ

)α−1
]
ds

≤ β

Γ(α)

∫ t2

t1

sβ−1[q(t2)Ψ(|x(s)|) + u∗(t2)](
tβ2 − sβ

)1−α ds+
ωT‖x‖(u, ε)

Γ(α + 1)

[
tαβ2 −

(
tβ2 − t

β
1

)α]

+
β

Γ(α)

∫ t1

0

sβ−1[q(t1)Ψ(|x(s)|) + u∗(t1)]

[(
tβ1 − sβ

)α−1

−
(
tβ2 − sβ

)α−1
]
ds

≤ q(t2)Ψ(‖x‖) + u∗(t2)

Γ(α + 1)

(
tβ2 − t

β
1

)α
+
ωT‖x‖(u, ε)

Γ(α + 1)
tαβ2

+
q(t1)Ψ(‖x‖) + u∗(t1)

Γ(α + 1)

[
tαβ1 − t

αβ
2 +

(
tβ2 − t

β
1

)α]
,

where

ωTd (u, ε) = sup{|u(t2, s, x)− u(t1, s, x)| : s, t1, t2 ∈ [0, T ], t1 ≥ s, t2 ≥ s,

|t2 − t1| ≤ ε, x ∈ [−d, d]]}.

From the above estimates, we infer

ωT (Ux, ε) ≤
2εαβ[q̂(T )Ψ(‖x‖) + û(T )] + T αβωT‖x‖(u, ε)

Γ(α + 1)
, (7)

where
q̂(T ) = max{q(t) : t ∈ [0, T ]}

and
û(T ) = max{u∗(t) : t ∈ [0, T ]}.

Since the function u(t, s, x) is uniformly continuous on the compact set [0, T ]×
[0, T ]× [−‖x‖, ‖x‖], we deduce that ωT‖x‖(u, ε)→ 0 as ε→ 0.

Therefore, lim
ε→0

ωT‖x‖(U, ε) = 0 and this proves that U is continuous on the interval

[0, T ] for any T > 0. This gives us the continuity of Ux on R+.

Step 2: For x ∈ R+, T x is a bounded function on R+.

In fact, taking into account our assumptions, for x ∈ BC(R+) and t ∈ R+,
we have

|(T x)(t)| =

∣∣∣∣∣f(t, x(t)) +
βx2(t)

Γ(α)

∫ t

0

sβ−1u(t, s, x(s))

(tβ − sβ)
1−α ds

∣∣∣∣∣
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≤ |f(t, x(t))− f(t, 0)|+ |f(t, 0)|

+
β|x2(t)|

Γ(α)

∫ τ

0

sβ−1|u(t, s, x(s))− u(τ, s, 0)|+ |u(t, s, 0)|
(tβ − sβ)

1−α ds

≤ m(t)‖x‖+ |f(t, 0)|

+
β‖x‖2

Γ(α)

∫ t

0

sβ−1[q(t)Ψ(|x(s)|) + u∗(t)]

(tβ − sβ)
1−α ds

≤ m(t)‖x‖+ |f(t, 0)|+ ‖x‖2

Γ(α + 1)
[q(t)Ψ(‖x‖) + u∗(t)]tαβ

≤ m∗‖x‖+ f ∗ +
‖x‖2

Γ(α + 1)
[φ(t)Ψ(‖x‖) + ψ(t)].

Taking into account (a2) and (a4), the last chain of inequalities gives us that
T x is bounded on R+.

Step 3: T applies the ball Br0 into itself.

Taking into account that Ψ is a nondecreasing function, from the estimate
obtained in Step 2, it follows that

‖T x‖ ≤ m∗‖x‖+ f ∗ +
‖x‖2

Γ(γ + 1)
[φ∗Ψ(‖x‖) + ψ∗].

Taking into account (a5), we infer that T applies the ball Br0 into itself.

Step 4: T is continuous on the ball Br0.

Since (T x)(t) = (Fx)(t) + x2(t) · (Ux)(t) for t ∈ R+, it is sufficient to prove
that F is continuous on Br0 and

(Ux)(t) =
β

Γ(α)

∫ τ

0

sβ−1u(t, s, x(s))

(tβ − sβ)
1−α ds

is continuous on Br0.
Let (xn) ⊂ Br0 be a sequence such that xn → x with x ∈ Br0.

Firstly, we will prove that Fxn → Fx. In fact, for t ∈ R+ and, taking into
account (a2), we have

|(Fxn)(t)− (Fx)(t)| = |f(t, xn(t))− f(t, x(t))|
≤ m(t)|xn(t)− x(t)|
≤ m(t)‖xn − x‖.

Since m is a bounded function, we infer

‖Fxn − Fx‖ ≤ L‖xn − x‖,
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where L = sup{m(t) : t ∈ R+}, and this proves that F is continuous on Br0.

Next, we will prove that Uxn → Ux. In fact, for t ∈ R+, and, taking into
account our assumptions, it follows

|(Uxn)(t)− (Ux)(t)| =

∣∣∣∣∣ β

Γ(α)

∫ t

0

sβ−1u(t, s, xn(s))

(tβ − sβ)
1−α ds

− β

Γ(α)

∫ t

0

sβ−1u(t, s, x(s))

(tβ − sβ)
1−α ds

∣∣∣∣∣
≤ β

Γ(α)

∫ t

0

sβ−1|u(t, s, xn(s))− u(t, s, x(s))|
(tβ − sβ)

1−α ds

≤ β

Γ(α)

∫ t

0

sβ−1q(t)Ψ(|xn(s)− x(s)|)
(tβ − sβ)

1−α ds

≤ q(t)Ψ(‖xn − x‖)tαβ

Γ(α + 1)

≤ φ(t)Ψ(‖xn − x‖)
Γ(α + 1)

≤ φ∗Ψ(‖xn − x‖)
Γ(α + 1)

.

From the above estimation we deduce that ‖Uxn − Ux‖ → 0 when n → ∞.
This proves that T is continuous on the ball Br0.

Step 5: An estimate of T with respect to the quantity c.

We take ∅ 6= X ⊂ Br0 and x, y ∈ X. Then, for t ∈ R+ and, taking into
account our assumptions, we get

|(T x)(t)− (T y)(t)|
≤ |f(t, x(t))− f(t, y(t))|

+
β

Γ(α)

∣∣∣∣∣x2(t)

∫ t

0

sβ−1u(t, s, x(s))

(tβ − sβ)
1−α ds− y2(t)

∫ t

0

sβ−1u(t, s, y(s))

(tβ − sβ)
1−α ds

∣∣∣∣∣
≤ m(t)|x(t)− y(t)|+ β|x2(t)− y2(t)|

Γ(α)

∫ t

0

sβ−1|u(t, s, x(s))|
(tβ − sβ)

1−α ds

+
β|y2(t)|

Γ(α)

∫ t

0

sβ−1|u(t, s, x(s))− u(t, s, y(s))|
(tβ − sβ)

1−α ds

≤ m(t)diamX(t) +
β|x(t)− y(t)| |x(t) + y(t)|

Γ(α)
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×
∫ t

0

sβ−1[|u(t, s, x(s))− u(t, s, 0)|+ |u(t, s, 0)|]
(tβ − sβ)

1−α ds

+
β‖y‖2

Γ(α)

∫ t

0

sβ−1q(t)Ψ(|x(s)− y(s)|)
(tβ − sβ)

1−α ds

≤ m(t)diamX(t) +
2β‖x‖diamX(t)

Γ(α)

∫ t

0

sβ−1[q(t)Ψ(|x(s)|) + u∗(t)]

(tβ − sβ)
1−α ds

+
β‖y‖2

Γ(α)

∫ t

0

sβ−1q(t)Ψ(‖x− y‖)
(tβ − sβ)

1−α ds

≤ m(t)diamX(t) +
2β‖x‖q(t)Ψ(‖x‖)diamX(t)

Γ(α)

∫ t

0

sβ−1

(tβ − sβ)
1−αds

+
2β‖x‖u∗(t)diamX(t)

Γ(α)

∫ t

0

sβ−1

(tβ − sβ)
1−αds

+
β‖y‖2q(t)Ψ(‖x− y‖)

Γ(γ)

∫ t

0

sβ−1

(τβ − sβ)
1−γ ds

≤ m(t)diamX(t) +
2r0φ(t)Ψ(r0)diamX(t)

Γ(α + 1)
+

2r0ψ(t)diamX(t)

Γ(α + 1)

+
r2

0φ(t)Ψ(2r0)

Γ(α + 1)

Therefore, we get

diam(T X)(τ) ≤ m(t)diamX(t) +
2r0φ(t)Ψ(r0)diamX(t)

Γ(α + 1)
+

2r0ψ(t)diamX(t)

Γ(α + 1)

+
r2

0φ(t)Ψ(2r0)

Γ(α + 1)
.

Finally, by assumption (a5), it follows

c(T X) ≤
(
m∗ +

2r0ψ
∗

Γ(α + 1)

)
c(X). (8)

Step 6: An estimate of T with respect to the quantity ω∞0 .

We take ∅ 6= X ⊂ Br0, ε > 0 and T > 0. For x ∈ X, we take t1, t2 ∈ [0, T ]
with |t2 − t1| ≤ ε and we can assume that t1 < t2. Then, we have

|(T x)(t2)− (T x)(t1)|
≤ |f(t2, x(t2))− f(t1, x(t1))|+

∣∣x2(t2)(Ux)(t2)− x2(t1)(Ux)(t1)
∣∣
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≤ |f(t2, x(t2))− f(t2, x(t1))|+ |f(t2, x(t1))− f(t1, x(t1))|
+
∣∣x2(t2)(Ux)(t2)− x2(t1)(Ux)(t2)

∣∣+
∣∣x2(t1)(Ux)(t2)− x2(t1)(Ux)(t1)

∣∣
≤ m(t2)|x(t2)− x(t1)|+ ωTf (ε) +

∣∣x2(t2)− x2(t1)
∣∣ |(Ux)(t2)|

+
∣∣x2(t1)

∣∣ |(Ux)(t2)− (Ux)(t1)|
≤ m(t2)ω

T (x, ε) + ωTf (ε) + ‖x‖2ωT (Ux, ε)

+
β|x(t2)− x(t1)| |x(t2) + x(t1)|

Γ(α)

∫ t2

0

sβ−1|u(t2, s, x(s))|(
tβ2 − sβ

)1−α ds

≤ m(t)ωT (x, ε) + ωTf (ε) + ‖x‖2ωT (Ux, ε)

+
2β‖x‖ωT (x, ε)

Γ(α)

∫ t2

0

sβ−1 [|u(t2, s, x(s))− u(t2, s, 0)|+ |u(t2, s, 0)|](
tβ2 − sβ

)1−α ds.

Taking into account step 1, we had obtained that

ωT (UX, ε) ≤
2εαβ [q̂(T )Ψ(‖x‖) + û(T )] + T αβωT‖x‖(u, ε)

Γ(α + 1)
,

and, therefore, from the chain of inequalities obtained above, we deduce

ωT (T X, ε) ≤ m(t2)ω
T (x, ε) + ωTf (ε)

+
2‖x‖2εαβ [q̂(T )Ψ(‖x‖) + û(T )] + T αβωT‖x‖(u, ε)

Γ(α + 1)

+
2β‖x‖ωT (x, ε)

Γ(α)

∫ t2

0

sβ−1[q(t2)Ψ(|x(s)|) + u∗(t2)](
tβ2 − sβ

)1−α ds

≤ m∗ωT (x, ε) + ωTf (ε) +
2r2

0ε
αβ [q̂(T )Ψ(r0) + û(T )] + T αβωTr0(u, ε)

Γ(α + 1)

+
2r0ω

T (x, ε)[q(t2)Ψ(r0) + u∗(t2)]

Γ(α + 1)
tαβ2

≤ m∗ωT (x, ε) + ωTf (ε) +
2r2

0ε
αβ [q̂(T )Ψ(r0) + û(T )] + T αβωTr0(u, ε)

Γ(α + 1)

+
2r0ω

T (x, ε)[φ(t2)Ψ(r0) + ψ(t2)]

Γ(α + 1)
,

where

ωTf (ε) = sup{|f(t2, x)− f(t1, x)| : t1, t2 ∈ [0, T ], |t2 − t1| ≤ ε, x ∈ [−r0, r0]}.
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Therefore,

ωT (T X, ε) ≤ m∗ωT (x, ε) + ωTf (ε) +
2r2

0ε
αβ [q̂(T )Ψ(r0) + û(T )] + T αβωTr0(u, ε)

Γ(α + 1)

+
2r0[φ

∗Ψ(r0) + ψ∗]

Γ(α + 1)
ωT (x, ε).

Since the functions f = f(τ, x) and u = u(τ, s, x) are uniformly continuous on
the sets [0, T ]× [−r0, r0] and [0, T ]× [0, T ]× [−r0, r0], respectively, ωTf (ε)→ 0

and ωTr0(u, ε)→ 0 as ε→ 0, and, therefore, from the last estimate, it follows

ωT0 (T X) ≤
(
m∗ +

2r0[φ
∗Ψ(r0) + ψ∗]

Γ(α + 1)

)
ωT0 (X)

and, consequently,

ω∞0 (T X) ≤
(
m∗ +

2r0[φ
∗Ψ(r0) + ψ∗]

Γ(α + 1)

)
ω∞0 (X).

Step 7: T is contraction with respect to the measure of noncompactness
µ.

In fact, linking the results obtained in steps 5 and 6, we deduce

µ(T X) = ω∞0 (T X) + c(T X)

≤
(
m∗ +

2r0φ
∗Ψ(r0) + 2r0ψ

∗

Γ(α + 1)

)
ω∞0 (X) +

(
m∗ +

2r0ψ
∗

Γ(α + 1)

)
c(X)

≤
(
m∗ +

2r0φ
∗Ψ(r0) + 2r0ψ

∗

Γ(α + 1)

)
(ω∞0 (X) + c(X))

≤
(
m∗ +

2r0φ
∗Ψ(r0) + 2r0ψ

∗

Γ(α + 1)

)
µ(X).

Taking into account (a5), since m∗ + 2r0φ
∗Ψ(r0)+2r0ψ

∗

Γ(α+1) < 1 this proves that T X is
a contraction with respect to the measure of noncompactness µ.

Finally, by Darbo’s fixed point theorem, Eq.(1) has at least one solution
x ∈ BC(R+) with ‖x‖ ≤ r0.
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