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Abstract

New version of passification with respect to given input and output is pro-
posed. It can be considered as an extension of passification introduced in (Frad-
kov, IEEE CDC 2008). Necessary and sufficient conditions for the proposed
version of passification are obtained for linear SISO systems. Solution is based
on KYP lemma and Meerov’s results concerning high gain stabilization.
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1 Introduction

Absolute stability theory plays an important role in the history of control. Ac-
cording to the pioneer paper [11] a nonlinear system with a right hand side
consisting of a linear part and a nonlinearity is absolutely stable if it is glob-
ally asymptotically stable for all nonlinearities from certain class. A gallery of

1The work was supported by RFBR Grant 19-08-00865
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seminal works on absolute stability [10], [13], [14], [16], [9], [15], [1], [8] among
others belong to a golden heritage of control. Absolute stability criteria impose
restrictions on the system linear part which may be either valid or not. What
to do if those restrictions are not valid? In such a case it was proposed by [2]
to design a feedback rendering system absolutely stable. The designs proposed
in [2] are based on circle and Popov criteria.

However an approach of [2] requires knowledge of the linear part parameters.
If the uncertainty is strong, i.e. the system parameters may vary in a broad
range then the circle and Popov criteria may be violated for some values of
system parameters. In the case of a strong uncertainty a reasonable solution
may be based on adaptive control. An adaptive control loop may tune the
feedback controller in order to achieve the desired properties of the closed loop
system. The system may be called adaptively absolutely stable if there exists
an adaptive feedback rendering the system globally asymptotically stable for
all uncertainties of its linear part and all nonlinearities from certain class. The
adaptive absolute stabilization problem was first formulated and solved for a
special case of the circle criterion in [3]. It was assumed that the nonlinearities
are bounded by so-called infinite sector, which means that their graphs are
located in the first and third quadrants in the plane.

Recall that the circle criterion for infinite sector is equivalent to SPR or
passivity of the linear part. It is shown in [3] that condition of passifiability
(hyperminimum-phaseness) is sufficient for existence of adaptive algorithm ren-
dering the system absolutely stable. Moreover it is shown that hyperminimum-
phaseness is equivalent to existence of quadratic Lyapunov function depending
on the system state and adaptation parameters.

The main limitation of [3] was consideration of the systems with matched
nonlinearities: control input and nonlinearities were located in the same equa-
tions. This limitation arises from the corresponding passification conditions.
In order to deal with nonmatched nonlinearities a new version of passification
problem extending the result of [7] is introduced in this paper. Necessary and
sufficient conditions for a new passification problem are given for SISO sys-
tems. They are obtained using version of KYP lemma [17] and Meerov’s results
concerning high gain stabilization [12]. In the further research these passifi-
cation results will be applied for adaptive absolute stabilization problem with
nonmatched nonlinearities.
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2 Problem statement

In this section a new version of passification problem will be introduced. Let
us start with conventional passification definition. Consider linear system2:

ẋ = Ax+Bu, y = C∗x, (1)

where x ∈ Rn, u ∈ Rm, y ∈ Rl, A,B,C are matrices of appropriate size.

Let system (1) be closed with a feedback

u = −Ky + v, (2)

where v is a new input.

System (1) is called G-passifiable from input u to output y if there exists a
feedback (2) such that closed system (1), (2) is passive from input v to output
y. This is equivalent to the validity of the following matrix relations for certain
matrix K with matrix H = H∗ > 0:

HA(K) + A∗(K)H < 0, HB = CG, (3)

A(K) = A+BK∗C∗. (4)

Let δ(s) = det(sI − A). Let the rank of the matrix B be equal to m. It
can be shown [5, 6] that system (1) is G-passifiable if and only if it is hyper-
minimum-phase (HMP) i.e. polynomial ϕ(s) = δ(s) detG∗W (s) is Hurwitz and
G∗C∗B = (G∗C∗B)∗ > 0.

Consider now linear system with two vector inputs and two vector outputs:

ẋ = Ax+Bu+B1v,

y = C∗x, y1 = C∗1x,
(5)

To check conventionalG-passifiability one needs to find a feedback u = −Ky
for system (5) with B = B1 and C = C1 such that (3) holds. Now introduce
a new passifiability problem for the case of different B,B1 and C,C1. We will
seek feedback u = −Ky for system (5) such that besides (3) an additional
condition HB1 = C1G1 holds for certain matrix G1. It can be considered as the
passifiability for (5) from input [u, u1] to output [y, y1] using feedback u = −Ky.
We will call it as passification with respect to given input and output.

2The following notations will be used:
Cn and Rn are complex and real n-dimensional Euclidean spaces correspondingly;
col{a1, . . . , an} is a column vector with components a1, . . . , an;
diag{a1, . . . , an} is a diagonal matrix with elements a1, . . . , an;
Asterisk is a transposition for real matrices and Hermitian conjugate for complex matrices;
T > 0 for Hermitian matrix T means its positive definiteness;
ReT = (T + T ∗)/2
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3 Main result

Further we will be dealing with passifiability with respect to given input and
output of SISO linear systems

ẋ = Ax+ bu+ b1u1, y = c∗x, y1 = c∗1x, (6)

where x ∈ Rn is a state vector, u, u1 ∈ R1 are two scalar inputs and y, y1 ∈ R1

- are two scalar outputs.

Let (6) be closed with the following feedback

u = −ky. (7)

We need to find conditions for existence of feedback (7) such that system (6),
(7) is passive from vector input [u, u1] to vector output [y, y1]. Passifiability
is equivalent to the validity of the following matrix relations for certain k and
H = H∗ > 0:

HA(k) + A(k)∗H < 0, A(k) = A− kbc∗,
HB = C,

(8)

where B = [b, b1], C = [c, c1].

Introduce notation: δ(s) = det(sI − A), δ(s, k) = det(sI − A(k)) are char-
acteristic polynomials of open and closed loop system (6), transfer functions
W bc(s) = c∗(sI − A)−1b, W b1c1(s) = c∗1(sI − A)−1b1, W

b1c(s) = c∗(sI − A)−1b1,
W bc1(s) = c∗1(sI−A)−1b. Analogously one can define transfer functions of closed
system W bc(s, k) = c∗(sI − A(k))−1b, W b1c1(s, k), W b1c(s, k), W bc1(s, k). The
numerator of transfer function W bc(s) is ϕbc(s) = δ(s)W bc(s). Analogously one
can define numerators of other transfer functions.

Using matrix determinant lemma one can show that the following identity
holds:

δ(s, k) = δ(s) + kϕbc(s). (9)

Using identities

(sI−A(k))−1 = (sI − A+ kbc∗)−1 = (sI − A)−1

[
I − kbc∗(sI − A)−1

1 + kc∗(sI − A)−1b

]
= [(sI − A)−1 + k(sI − A)−1W bc(s)

− k(sI − A)−1bc∗(sI − A)−1][1 + kW bc(s)]−1
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one can express partial transfer functions:

W bc(s, k) = W bc(s)[1 + kW bc(s)]−1 = ϕbc(s)[δ(s) + kϕbc(s)]−1

W b1c(s, k) = W b1c(s)[1 + kW bc(s)]−1 = ϕb1c(s)[δ(s) + kϕbc(s)]−1

W bc1(s, k) = W bc1(s)[1 + kW bc(s)]−1 = ϕbc1(s)[δ(s) + kϕbc(s)]−1

W b1c1(s, k) = [W b1c1(s) + kW bcW b1c1 − kW b1cW bc1][1 + kW bc(s)]−1

= ϕb1c1(s)[δ(s)]−1 − kϕb1cϕbc1[δ(s)(δ(s) + kϕbc(s))]−1

(10)

Let W (s, k) = C∗(sI − A(k))−1B. Then according to KYP lemma [17] in
its semisingular form the existence of matrix H = H∗ > 0, satisfying (8) is
equivalent to the following conditions:

i) det(sI − A(k)) is a Hurwitz polynomial;

ii) ReW (iω, k) > 0 for all ω ∈ R1;

iii)limω→∞ ω
2ReW (iω, k) > 0.

The results of this paper are based on the following passifiability conditions.

Theorem 1 Consider system (6). Conditions (8) of passifiability with respect
to given input and output hold for all sufficiently large k if and only if the
following conditions hold:

a) polynomial ϕbc(s) is Hurwitz with positive coefficients and has degree n− 1

b) polynomials ϕb1c and ϕbc1 have degrees not exceeding n− 2

c) polynomial ϕb1c1 has either degree n− 1 or n− 2

d) ϕbc(iω)ϕb1c1(iω)− ϕb1c(iω)ϕbc1(iω) 6= 0 ∀ω

e) Re δ(iω)ϕ̄b1c1(iω) > 0 for all ω.

Proof of this theorem is given below.

3.1 Sufficiency

Assume that (a)-(e) hold and check fulfillment of conditions i), ii), iii) for all
big enough k:

i) From representation (9) and from results from [12] it follows that δ(s, k)
is Hurwitz for all big enough k if and only if ϕbc(s) is a Hurwitz polynomial
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with positive coefficients and either it has degree n − 1 or it has degree n − 2
and δn−1 > 0, where δn−1 is the coefficient of δ(s) of degree n − 1. Therefore
from condition (a) it follows that δ(s, k) is Hurwitz for all big enough k.

ii) First, let us show that det ReW (iω, k) 6= 0. Indeed,

det ReW (iω, k) = WbcWb1c1(1 + kWbc)
−1 − kWbcWb1cWbc1(1 + kWbc)

−2−
Wb1cWbc1(1 + kWbc)

−2

= WbcWb1c1(1 + kWbc)
−1 − (1 + kWbc)Wb1cWbc1(1 + kWbc)

−2

= (WbcWb1c1 −Wb1cWbc1)(1 + kWbc)
−1

=
ϕbc(iω)ϕb1c1(iω)− ϕb1c(iω)ϕbc1(iω)

δ(iω)(δ(iω) + kϕbc(iω))
6= 0

(11)
by assumptions (d). It has no poles by assumptions (a) and (d) which impliy
that δ(iω) 6= 0 and δ(iω) + kϕbc(iω)) is Hurwitz for big enough k.

Relation (11) implies invertibility of ReW (iω, k) and one can get:

ReW (iω, k) = W (iω, k) +W ∗(iω, k) = W (I +W−1W ∗)

= W (W−∗ +W−1)W ∗ = WReW−1W ∗.

Thus condition ReW (iω, k) > 0 is equivalent to ReW−1(iω, k) > 0. Denote
∆(iω) = ϕbc(iω)ϕb1c1(iω)−ϕb1c(iω)ϕbc1(iω). Calculate W−1(iω, k). Dependency
on iω is omitted:

W−1(iω, k) =
1 + kWbc

WbcWb1c1 −Wb1cWbc1

 W b1c1 − kW b1cW bc1

1+kW bc , −W b1c(1 + kW bc)−1

−W bc1(1 + kW bc)−1, W bc(1 + kW bc)−1


=

1

WbcWb1c1 −Wb1cWbc1

W b1c1(1 + kW bc)− kW b1cW bc1, −W b1c

−W bc1, W bc


=
δ2

∆

ϕb1c1(δ+kϕbc)−kϕb1cϕbc1

δ2 , −ϕb1c

δ

−ϕbc1

δ ,
ϕbc

δ


=

1

∆

ϕb1c1(δ + kϕbc)− kϕb1cϕbc1, −ϕb1cδ

−ϕbc1δ, ϕbcδ


=

k + ϕb1c1δ∆−1, −ϕb1cδ∆−1

−ϕbc1δ∆−1, ϕbcδ∆−1


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Apparently

ReW−1(iω, k) =

 k + Re {ϕb1c1δ∆−1}, −(ϕb1cδ∆−1 + ϕ̄bc1 δ̄∆̄−1)

−(ϕbc1δ∆−1 + ϕ̄b1cδ̄∆̄−1), Re {ϕbcδ∆−1}


=

1

|∆|2

k|∆|2 + Re {ϕb1c1δ∆̄}, −(ϕb1cδ∆̄ + ϕ̄bc1 δ̄∆)

−(ϕbc1δ∆̄ + ϕ̄b1cδ̄∆), Re {ϕbcδ∆̄}

 (12)

Let us show that ReW−1(iω, k) is positive definite using Sylvester criterion.
We should check that its top left corner element and its determinant are positive.
The top left corner element is following:

k|∆|2 + Re {ϕb1c1δ∆̄}. (13)

Term |∆| is positive and separated from zero on imaginary axis since it tends
to infinity for large ω and reaches maximal and minimal value for bounded ω
as a continuous function on compact. Degree of |∆|2 is either 4n− 4 or 4n− 6
dependent on degree of ϕb1c1. Degree of Re {ϕb1c1δ∆̄} is the same. Therefore
(13) is positive for all big enough k.

Determinant of ReW−1(iω, k) is as follows:

Re {ϕbcδ∆̄}(k|∆|2 + Re {ϕb1c1δ∆̄})− |ϕbc1δ∆̄ + ϕ̄b1cδ̄∆|2

= k|∆|2|ϕbc|2Re {δϕ̄b1c1} − k|∆|2Re {ϕbcδϕ̄b1cϕ̄bc1}
+ Re {ϕbcδ∆̄}Re {ϕb1c1δ∆̄} − |ϕbc1δ∆̄ + ϕ̄b1cδ̄∆|2 (14)

The first term is positive and separated from zero on imaginary axis.
Straightforward calculation can show that under assumptions (b) and (c) the
first term has the largest degree. Therefore determinant will be positive for all
ω and large enough k.

iii) Calculate the limit of each element of matrix ω2ReW (iω, k). Let us
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start with the top left corner element. For large ω we have:

ω2ReW bc(iω, k) = ω2Re
ϕbc(iω)

δ(iω) + kϕbc(iω)

= ω2Re
(iω)n−1ϕbcn−1 + (iω)n−2ϕbcn−2 +O(ωn−3)

(iω)n + (iω)n−1δn−1 + k(iω)n−1ϕbcn−1 +O(ωn−2)

= Re
ω2ϕbcn−1 − iωϕbcn−2 +O(1)

iω + δn−1 + kϕbcn−1 +O(ω−1)

= Re
(ω2ϕbcn−1 − iωϕbcn−2)(δn−1 + kϕbcn−1 − iω) +O(ω)

ω2 + (δn−1 + kϕbcn−1 +O(ω−1))2

=
ω2ϕbcn−1δn−1 + kω2(ϕbcn−1)

2 − ω2ϕbcn−2 +O(ω)

ω2 + (δn−1 + kϕbcn−1 +O(ω−1))2
.

(15)

Therefore

lim
ω→∞

ω2ReW bc(iω, k) = ϕbcn−1(δn−1 + kϕbcn−1)− ϕbcn−2 (16)

Analogously one can show that

lim
ω→∞

ω2ReW b1c(iω, k) = ϕb1cn−1(δn−1 + kϕbcn−1)− ϕ
b1c
n−2 (17)

lim
ω→∞

ω2ReW bc1(iω, k) = ϕbc1n−1(δn−1 + kϕbcn−1)− ϕ
bc1
n−2 (18)

Finally calculate limit of the bottom right-corner element ReW b1c1(iω, k). It is
can be expressed in the following form

ReW b1c1(iω, k) = ReW b1c1(iω)− kW b1c(iω)W bc1(iω)[1 + kW (iω)]−1 (19)

Consider the first term for large ω:

ω2ReW b1c1(iω) = ω2Re
(iω)n−1ϕb1c1n−1 + (iω)n−2ϕb1c1n−2 +O(ωn−3)

(iω)n + (iω)n−1δn−1 +O(ωn−2)

= Re
ω2ϕb1c1n−1 − iωϕ

b1c1
n−2 +O(1)

iω + δn−1 +O(ω−1)

= Re
(ω2ϕb1c1n−1 − iωϕ

b1c1
n−2)(δn−1 − iω) +O(ω)

ω2 + δ2
n−1

=
(ω2ϕb1c1n−1 − iωϕ

b1c1
n−2)(δn−1 − iω) +O(ω)

ω2 + δ2
n−1

=
ω2ϕb1c1n−1δn−1 − ω2ϕb1c1n−2 +O(ω)

ω2 + δ2
n−1
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Thus limit of ω2ReW b1c1(iω) is ϕb1c1n−1δn−1−ϕb1c1n−2. Now consider the second term
for large ω. Straightforward calculation yields

lim
ω→∞

ω2ReW b1c(iω)W bc1(iω)[1 + kW bc(iω)]−1 = −ϕb1cn−1ϕ
bc1
n−1 (20)

Since both limits in (19) exist, the limit of their difference also exists. It
equals to:

lim
ω→∞

ω2ReW b1c1(iω, k) = ϕb1c1n−1δn−1 + kϕb1cn−1ϕ
bc1
n−1 − ϕ

b1c1
n−2 (21)

We will apply Sylvester criterion for checking positive definiteness of
limω→∞ ω

2ReW (iω, k). Top left corner element is positive for ϕbcn−1 6= 0 and
large enough k:

ϕbcn−1(δn−1 + kϕbcn−1)− ϕbcn−2 > 0. (22)

Let us calculate its determinant:

det lim
ω→∞

ω2ReW (iω, k)

= (ϕbcn−1(δn−1 + kϕbcn−1)− ϕbcn−2)(ϕ
b1c1
n−1δn−1 + kϕb1cn−1ϕ

bc1
n−1 − ϕ

b1c1
n−2)

− (ϕbc1n−1(δn−1 + kϕbcn−1)− ϕ
bc1
n−2)(ϕ

b1c
n−1(δn−1 + kϕbcn−1)− ϕ

b1c
n−2)

= k2((ϕbcn−1)
2ϕb1cn−1ϕ

bc1
n−1 − (ϕbcn−1)

2ϕb1cn−1ϕ
bc1
n−1)

+ k((ϕbcn−1)
2(ϕb1c1n−1δn−1 − ϕb1c1n−2)ϕ

bc1
n−1ϕ

bc
n−1(ϕ

b1c
n−1δn−1 − ϕb1cn−2))

+ (ϕbcn−1δn−1 − ϕbcn−2)(ϕ
b1c1
n−1δn−1 − ϕb1c1n−2)

− (ϕbc1n−1δn−1 − ϕbc1n−2)(ϕ
b1c
n−1δn−1 − ϕb1cn−2) (23)

Since ϕb1cn−1 = ϕbc1n−1 = 0 the previous chain of inequalities can be continued:

det lim
ω→∞

ω2ReW (iω, k) = k(ϕbcn−1)
2(ϕb1c1n−1δn−1 − ϕb1c1n−2)

+ (ϕbcn−1δn−1 − ϕbcn−2)(ϕ
b1c1
n−1δn−1 − ϕb1c1n−2). (24)

Assumptions (c) and (d) implies that either ϕb1c1n−1δn−1 − ϕb1c1n−2 or ϕb1c1n−1 = 0

and ϕb1c1n−2 < 0. Therefore (24) is positive.

3.2 Necessity

Assume that i), ii), iii) hold for all large enough k and prove conditions (a)-(e).
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From point i) of the sufficiency part polynomial ϕ(s) is Hurwitz polynomial
with positive coefficients and either it has degree n − 1 or it has degree n − 2
and δn−1 > 0.

From point iii) of the sufficiency part limit of top left corner element
ReW (iω, k) should be positive that is (22) should be hold. Since ϕbcn−2 is positive
inequality (22) is hold only if ϕbcn−1 6= 0 which implies (a).

Since ReW (iω, k) satisfies i), ii), iii) it is SPR and its numerator is Hurwitz.
Therefore det ReW (iω, k) 6= 0 for all ω. Using expression (11) we see that
(WbcWb1c1 −Wb1cWbc1) 6= 0 which implies (d).

Similarly to sufficiency part invertibility of ReW (iω, k) implies positive
definiteness of ReW−1(iω, k). Evaluating its determinant (14) we get that it
should be positive by Sylvester criterion. If ϕbc1 or ϕb1c has degree n − 1 then
positiveness of (14) will be violated since in this case negative term −|ϕbc1δ∆̄ +
ϕ̄b1cδ̄∆|2 has degree 8n− 6, while other terms have degrees 8n− 8. Also it will
be violated if degree of ϕb1c1 is less than n − 2. Moreover positiveness of (14)
implies (e).

4 Conclusion

In the paper a new version of passification with respect to given input and out-
put is proposed. The necessary and sufficient conditions for a new passification
problem for SISO systems are given.

In the future these results will be applied for adaptive absolute stabilization
based on circle and Popov criteria for the case when inputs and nonlinearities
belong to different equations. Besides that these results might be extended to
a general MIMO case and to more general quadratic constraints, different from
infinite sectors.
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