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Abstract

Relative motion of liquid spheres of different viscosities has been considered

when the surface of the outer sphere is a free surface. The exact solution has
been found using Stokes’ approximation. Drag force experienced by the inner

sphere has been determined and several cases of interest have been derived.
The correction to the drag expression up to first order in Reynolds number has

also been obtained. The effect of viscosity ratio and the Reynolds number on
the drag has been shown graphically.
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1 Introduction

Relative motion of solid and liquid spheres is of great importance to industrial

and engineering applications, such as in the flow of fluids in fluidized beds or
fixed beds, the sedimentation of fine particulate suspensions and the flow of oil

in oil fields/reservoirs during oil recovery.

A great deal of work has been carried out on the flow of Newtonian fluids

while considering the relative motion of solid/liquid spheres. One can refer
to the problems given in the book of Happel and Brenner[1]. Some related

problems for porous spheres have been done by Bhatt [2], Bhatt and Owen [3]
and Neale et.al.[4].

In the present problem we have considered the relative motion of two liquid
spheres of viscosity µi and µo (inner and outer fluid regions). The inner region

is 0 < r < a whereas the outer region is a < r < b. The surface r = b is a free
surface. The drag force experienced by the inner sphere has been obtained and

the result has been extended to the first order in Reynolds number following
Verma and Bhatt [5].

2 Equations of motion

We consider the free surface cell (bounded) model of Happel [6] when a fluid

sphere (of viscosity µi) is surrounded by a fluid (of viscosity µo) which is moving
with velocity V . The two fluids are taken to be immiscible. Therefore there
are two flow regions, namely, 0 < r < a and a < r < b. Using the Stokes’

approximation for slow motion the flows are given as follows:

The region I: 0 < r < a is governed by the Navier-Stokes equations,
given by

E4ψi = 0, (2.1)

the region II: a < r < b is governed by the Navier-Stokes equations,
given by

E4ψ(o) = 0, (2.2)

where ψi, ψo are the stream functions in the regions I and II respectively,
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given by

(ur1, ur2) =
1

r2 sin θ

(

∂ψ(i)

∂θ
,
∂ψ(o)

∂θ

)

,

(uθ1, uθ2) = −

1

r sin θ

(

∂ψ(i)

∂r
,
∂ψ(o)

∂r

)

,

(2.3)

(uri, uθi), i = 1, 2 are the velocity components. The boundary conditions
used are:

as r → 0, ur1, uθ1 remain finite, (2.4)

ur1 = ur2 = 0,

uθ1 = uθ2,

µi

∂

∂r

(

1

r2

∂ψ(i)

∂r

)

= µo

∂

∂r

(

1

r2

∂ψ(o)

∂r

)























at r = a, (2.5)

ur2 = V cos θ,

r
∂

∂r

(uθ2

r

)

+
1

r

∂ur2

∂θ
= 0







at r = b, (2.6)

3 Solutions

The solution of equations (2.1) and (2.2) can be obtained, using (see Happel

and Brenner [1])
(ψ(i), ψ(o)) = (f (i)(r), f (o)(r)) sin2 θ, (3.1)

which lead to

ψ(i) =

[

1

10
A1r

4
−

1

2
B1r + C1r

2 +
D1

r

]

V sin2 θ (3.2)

ψ(o) =

[

1

10
A2r

4
−

1

2
B2r + C2r

2 +
D2

r

]

V sin2 θ (3.3)

Using (2.3), (3.1) and (3.2), we obtain

uri = V cos θ

[

1

5
Air

2
−

Bi

r
+ 2Ci +

2Di

r3

]

, (3.4)

uθi = −V sin θ

[

2

5
Air

2
−

Bi

2r
+ 2Ci −

Di

r3

]

, (3.5)
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where i = 1, 2.

Using the boundary conditions (2.4)-(2.6) we get:

B1 = D1 = 0, (3.6)

A1 = −

10C1

a2
, (3.7)

A2 = −

10D2

b5
, (3.8)

C1 =
D2

2a3

(

1 + 4
a5

b5

)

+
B2

4a

(

1 − 2
a

b

)

−

1

2
, (3.9)

C2 =
1

2

(

1 +
B2

b

)

, (3.10)

B2a
2

2

(a

b
− 1

)

+D2

(

1 −

a5

b5

)

+
a3

2
= 0, (3.11)

B2 =
a

[

3
2 + η5 + σ(1 − η5)

]

1 + σ −

(

3
2 + σ

)

η +
(

3
2 − σ

)

η5
− (1 − σ)η6

, (3.12)

with σ = µo

µi

and η = a
b
.

4 Drag force

The drag force experienced by the inner fluid sphere is given by (see Happel

and Brenner [1]):
Dr = −4µoπV B2. (4.1)

We define

Ω1 =
Dr

−6πµoV a
=

1 + 2
3
η5 + 2

3
σ(1 − η5)

1 + σ −

(

3
2 + σ

)

η +
(

3
2 − σ

)

η5
− (1 − σ)η6

. (4.2)

Some special cases:

For rigid sphere (σ = 0), (4.2) gives

Ω1 =
1 + 2

3η
5

1 −
3
2η + 3

2η
5
− η6

, (4.3)

which is the well known Happel’s [6] formula.
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For sphere with viscosity equal to that of external medium (σ = 1), (4.2)

gives

Ω1 =
5
3

2 −
5
2η + 1

2η
5
− η6

. (4.4)

For fluid sphere of vanishing viscosity (σ = ∞), (4.2)

Ω1 =
2
3
(1 − η5)

1 − η − η5 + η6
. (4.5)

(4.5) is the drag force on a gaseous bubble rising through a liquid where

µo >> µi.

Following the method of matched asymptotic technique of Proudman and

Pearson [7] as used by Verma and Bhatt [5], we can extend the result in (4.2)
to first order in the Reynolds number when the viscous terms are included in

the equations of motion.

We use the formula as obtained by Verma and Bhatt [5] to get the drag

force experienced by the inner fluid sphere as:

Dr1 = −4µoπV B2

[

1 +
B2

4
R

]

= −6µoπV aΩ1

(

1 +
3

8
RΩ1

)

, (4.6)

where R = V a
νo

, ν0 is kinematic viscosity of the outer liquid.

(4.6) leads to:

Ω = Ω1

(

1 +
3

8
RΩ1

)

, (4.7)

where Ω = Dr1

−6πµoV a
. (4.6) gives the drag force on the inner fluid sphere up to

first order in the Reynolds number.

For η → 0, (4.6) reduces to

Dr1 = −6µoπV a
1 + 2

3σ

1 + σ

[

1 +
3R(1 + 2

3σ)

8(1 + σ)

]

. (4.8)

(4.8) is the drag force on a fluid sphere up to first order in the Reynolds number

which is surrounded by an infinite extent of different liquid. For R = 0, (4.8)
agrees with the result obtained in [1].

Using (4.2) and (4.7) the behaviour of Ω verses η with σ and R has been
given in figure 1. Ω remains constant up to η = 0.4 and then increases with

R but decreases with σ (similar behaviour has been obtained in [1]). As σ

increases µo > µi, therefore the inner sphere experiences less force, whereas
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when R increases the velocity of free surface increases and therefore the inner

sphere experiences more force. In figure 2 and 3 we can see the effect of R on
Ω when σ = 0 and σ = ∞ respectively [using the equations (4.3) and (4.5)].
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