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Abstract

We consider a method for the approximation of iterated stochastic Ito in-
tegrals of arbitrary multiplicity with respect to the infinite-dimensional Wiener
process using the mean-square approximation method of iterated stochastic It6
integrals with respect to the finite-dimensional Wiener process based on gener-
alized multiple Fourier series. The case of Fourier-Legendre series is considered
in details. The results of the article can be applied to construction of high-
order strong numerical methods (with respect to the temporal discretization)
for a mild solution of non-commutative semilinear stochastic partial differential
equations.
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1 Introduction

There exists a lot of publications on the subject of numerical integration of
stochastic partial differential equations (SPDEs) (see, for example [1]-[25]). One
of the perspective approaches to the construction of high-order strong numer-
ical methods (with respect to the temporal discretization) for SPDEs is based
on the Taylor formula for operators and exponential formula for the mild so-
lution of SPDEs [12] (2015), [13] (2016). As shown in [12] and [18] (2007) the
exponential Milstein type approximation method has a strong order of conver-
gence 1 — ¢ (where ¢ is an arbitrary small posilive real number) [12] or 1 [18].
In [13] the exponential Wagner-Platen type numerical approximation method
for SPDEs with strong order 3/2 — ¢ (where € is an arbitrary small posilive
real number) has been considered. An important feature of these numerical
methods is the presence in them the so-called iterated stochastic It6 integrals
with respect to the infinite-dimensional Wiener process [19]. Approximation of
these stochastic integrals is a complex problem. This problem can be signifi-
cantly simplified if special commutativity conditions be fulfilled [12], [13]. In
[25] (2019) two methods of the mean-square approximation of simplest double
stochastic It6 integrals with respect to the infinite-dimensional Wiener process
are considered and theorems on the convergence of these methods are given
(the basic idea about Karhunen-Loeve expansion of the Brownian bridge pro-
cess was taken from monograph [26] (1988, In Russian)). It is important to
note that the approximation of iterated stochastic Ito integrals with respect to
the infinite-dimensional Wiener process can be reduced to the approximation of
iterated stochastic It6 integrals with respect to the finite-dimensional Wiener
process. In a lot of author’s publications [27]-[39] an effective method of the
mean-square approximation of iterated stochastic It6 (and Stratonovich) inte-
grals with respect to the finite-dimensional Wiener process was proposed and
developed. This method is based on the generalized multiple Fourier series, in
particular, on the multiple Fourier-Legendre series. The purpose of this article
is an adaptation of the method [27]-[39] for the mean-square approximation of
iterated stochastic It6 integrals of multiplicity k£ (k € N) with respect to the
infinite-dimensional Wiener process.

Let U, H be separable R-Hilbert spaces and Lys(U, H) be a space of Hilbert-
Schmidt operators. Let (€2, F, P) be a probability space with a normal filtration
{F,t €[0,T]} [19], let W; be an U-valued Q-Wiener process with respect to
{F;,t € [0,T]}, which has a covariance trace class operator Q € L(U). Here
L(U) denotes all bounded linear operators on U.
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Consider the semilinear parabolic SPDE
dX; = (AX; + F(Xy)) dt + B(X;)dW,, Xo=¢, te[0,7], (1)

where nonlinear operators F), B (F': H — H, B: H — Lys(Uy, H)), linear
operator A : D(A) C H — H as well as the initial value £ are assumed to

satisfy the conditions of existence and uniqueness of the mild solution of the
SPDE (1) [22] (see also [12], [13]). Here U, is an R-Hilbert space defined as

Up = QY2(U).

As it is known, numerical methods of high orders of accuracy (with respect
to the temporal discretization) for approximating the mild solution of the SPDE
(1), which are based on the Taylor formula for operators and an exponential

formula for the mild solution of SPDESs, contain iterated stochastic integrals
with respect to the Q-Wiener process [8], [10]-[13], [18].

Note that an exponential Milstein type numerical scheme [12], [18], [24] and
exponential Wagner-Platen type numerical scheme [13] contain, for example,
the following iterated stochastic integrals

/TB(Z)thl, /TB’(Z) iB(Z)th1 dW,,, (2)
/TB’(Z) fF(Z)dtl dW,,, /TF'(Z) iB(Z)dVVt1 dts, (3)

ts to

/T B(2) / B(7) / B(2)dW,, | aw,, | aW,.. ()

/ B"(2) / B(Z)dW,. / B(Z)dW,, | dW,,. (5)

t t t
where 0 <t < T < T, Z:Q — H is an F;/B(H)-measurable mapping and
F', B', B” denote Fréchet derivatives. At that, an exponential Milstein type
scheme [12] contains integrals (2) while exponential Wagner-Platen type scheme
[13] contains integrals (2) — (5). It is easy to notice that the numerical schemes
for SPDEs with higher orders of convergence (with respect to the temporal
discretization) in contrast with numerical schemes from [12], [13] will include
iterated stochastic It6 integrals (with respect to the Q-Wiener process) with
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multiplicities & > 3 [21] (2012). So, this work is partially devoted to the
approximation of iterated stochastic integrals of the form

T t3 to

1[@<k>(2)]T,t:/c1>k(Z) /@2(2) /(I)l(Z)thl AWy, | ... | dW,,,

where 0 < t < T < T, Z : Q — H is an F;/B(H)-measurable mapping
and an operator @ (v)( ... (P2(v)(P1(v))... )) is a k-linear Hilbert—Schmidt
operator for all v € H. In Sect. 5 we consider the approximation of more
general iterated stochastic integrals than (6). In Sect. 6, 7 some other types of
iterated stochastic integrals of multiplicities 2—4 with respect to the )-Wiener
process will be considered.

Note that the stochastic integral (5) is not a special case of the stochastic
integral (6) for k& = 3. Nevertheless, the expanded representation of the ap-
proximation of stochastic integral (5) has a close structure to (10) for & = 3.
Moreover, the mentioned representation of stochastic integral (5) contains the
same iterated stochastic It6 integrals of the third multiplicity as in (10) for
k = 3 (see Sect. 6). These conclusions mean that the main result (Theorem 4,
Sect. 5) for k = 3 can be reformulated naturally for the stochastic integral (5)
(see Sect. 6).

It should be noted that by developing an approach from the work [13],
which uses Taylor formula for operators and a formula for the mild solution
of the SPDE (1), we obviously obtain a number of other iterated stochastic
integrals. For example, the following stochastic integrals

T t2 t2 t2
/B'”(Z) /B(Z)thl,/B(Z)athl,/B(Z)ath1 dWy,,
t t t t

t3 to to

/ B"(Z) / B(Z)dW,,, / B(Z)dW,, | dW,, | dW,,,

t t

t t t
t3 to

/T B"(Z) ( t3B(Z)th1, ] B'(2) ] B(Z2)dW,, | dW,, | dW,,,
/

F(2) / B'(Z) / B(Z)dW,, | aw,, | dts,

4 t t
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tQ t2

T

/ F'(2) / B(Z)dW,,, / B(2)dW,, | dt.
t t t

T t

2 to

/ B'(2) / F(Z)dt, / B(Z)dW, | aw,,

t t t

will be considered in Sect. 7. Here Z : Q@ — H is an F;/B(H)-measurable
mapping and B’, B”, B”, F', F" are Fréchet derivatives.

Consider eigenvalues \; and eigenfunctions e;(x) of the covariance opera-
tor @, where i = (i1,...,19) € J, v = (x1,...,2q) € U, and J = {i : i €
Nd, and \; > 0}

The series representation of the Q)-Wiener process has the form [19]

W(ta) = elx)/Aw, t€0,T],
€]
or in the shorter notations
W, = Zei\/ )\ngz), t e [O,T],
icJ
where Wt(i) , 1 € J are independent standard Wiener processes.

Note that eigenfunctions e;, @ € J form an orthonormal basis of U [19].

Consider the finite approximation of W [19]

W) =3 e/Aw) te (0.7 (7)
1€Jpm

where Jyy ={i: 1 <iy,...,ig < M, and \; > 0}.
Using (7) and the relation [19]

i 1 .
w) = W(@,WQU, ieJ (8)
we obtain
WiW - Z €; <ei7wt>U7 te [O7T]7 (9)
1€J s

where (-, )y is a scalar product in U.
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Taking into account (8), (9) we note that the approximation I[®®*)(Z )]% of

iterated stochastic integral I[®*)(Z)]r; (see (6)) can be rewritten with proba-
bility 1 (further w. p. 1) in the following form

x / / / dwaw . dw!, (10)

where 0 <t < T < T.

Remark 1. Obuiously, without the loss of generality we can write down
Ju=A{1,2,...,M}.

When special conditions of commutativity for the SPDE (1) be fulfilled it
is proposed to simulate numerically the stochastic integrals (2) — (5) using the
simple formulas [12], [13]. In this case, the numerical simulation of mentioned
stochastic integrals requires the use of increments of the ()-Wiener process
only. However, if these commutativity conditions are not met (which often
corresponds to SPDEs in numerous applications), the numerical simulation of
stochastic integrals (2) — (5) becomes much more difficult. In [25] two methods
for the mean-square approximation of simplest double stochastic Ito integrals
with respect to the ()-Wiener process are proposed. In this article, we consider
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a substantially more general and effective method for the mean-square approxi-
mation of iterated stochastic It6 integrals of multiplicity & (k € N) with respect
to the @)-Wiener process. The convergence analysis in the transition from Jj,
to J, i.e., from the finite-dimensional Wiener process to the infinite-dimensional
one could be carried out similar to the proof of Theorem 1 [25].

Chapters 5 and 6 (pp. A.249 — A.628) of the monograph [35] (see also
[28]-[34], [36]-[39]) are devoted to constructing of efficient methods of the mean-
square approximation of iterated stochastic Ito integrals with respect to compo-
nents of the finite-dimensional Wiener process. These results are also adapted
to iterated stochastic Stratonovich integrals [28]-[39]. Below (Sect. 2 — 4) we
consider a very short review of results from chapters 5 and 6 of the monograph
[35] and some new results (Sect. 5 — 7).

2 Method of Approximation of Iterated Stochastic Ito
Integrals Based on Generalized Multiple Fourier Se-

ries

Consider more general iterated stochastic It6 integrals than in (10)

TP /zpk t). /zpl t)dwy . dwi", (11)
where 0 < t < T < T, and every ¢;(7) (I = 1,...,k) is a continuous non-
random function on [t, T'; wl (t=1,...,m) are mdependent standard Wiener
processes (see Sect. 1) and w =7, e =0, 1,.

Suppose that {¢;(z) 2o isa complete orthonormal system of functions in
Lo([t, T]) and define the following function on a hypercube [t, T*

K(ty, ...t Hm tlH1{tl<tm}, ty,.. . teet, T, k>2,  (12)

and K (t1) = ¢¥1(t1); t1 € [t,T], where 14 is the indicator of the set A.

The function K (ti, .. .,t;) is sectionally continuous on the hypercube [t, T|".
At this situation it is well known that the generalized multiple Fourier series of
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K(t1,...,tt) € Lo([t, T)*) converges to K(t,...,t) in the hypercube [t, T]*
the mean-square sense, i.e.

lim ||K(ty, .. _
pl,...,lpr;?—mo H (tl’ Z ZCJk J1 H¢jl tl . 0, (13)
1=0  jx=0 Lo ([t T]%)
where
k
Cjk---jl — / K(tla SR 7tk:) H ¢jl (tl)dtl . dtk (14)
k =1

is the Fourier coefficient and

1/2
T /f%l,... it d) |

Consider the discretization {7}, of [t, T] such that

t=m<...<tv=T1, Ay= max Ar;—=0if N =00, Arj=rT1j11—7;.
0<j<N-1
(15)

Theorem 1 [28]-[39]. Suppose that every (1) (I = 1,...,k) is a conti-
nuous on [t, T| non-random function and {¢;(x)}32, is a complete orthonormal

system of continuous functions in Lo([t, T]). Then

T = Lim, Z D (ch

..... — 0

“lim Y <z>j1(nl)Aw§§;>...cbjk(m)Aw%:)), (16)

N—
% (k)G

where
gk:/]‘[k\ﬁk; Hk:{(ll,...,lk)I ll,...,lk:O, 1,...,N—1};

Ek:{(ll,...,lk)i li,..., [, =0, 1,..., N—1; Zg#lr (g;ér); g)r:17.._7]<;};

lim. s a limit in the mean-square sense; i1,...,1, = 0,1,...,m; every

— [ ospimt (17
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is a standard Gaussian random vm‘mble for various i or j (if i # 0); Cj,.. Jl I8
the Fourier coefficient (14); AWT W%)H w%) (1=0,1,...,m); {T]}jzo is
the discretization of [t,T], which satisfies the condition (15).

It is not difficult to see that for the case of pairwise different numbers

1,...,4. = 1,...,m from Theorem 1 we obtain
k (Z ..’Lk _ )
J[@/}( )]T,lt = ,1_“1,p£goo z:o z:ocjk 1S, G
n Jk

In order to evaluate a significance of Theorem 1 for practice we will demon-
strate its transformed particular cases for k = 1,...,5 [28]-[39] (cases k =6, 7
and k > 7 can be found in [29], [32], [35])

Jp)g = Lim. Z%C] (18)
J1=0
i b1 P2
T = Lim, ZZ%( 6 it )09
J1=0 j2=0

b2 P3

J[@b(g)]gé,ltbm = });pﬂnﬁoo Z Z Z Cly o (H CJ

J1=0 j2=0 j3=0

(i3 (i) 2)

p1 P4 4
J[w(‘l)]%t.nu) _ l,ibgn_;oo Z . Z Ciy.iy (H Cj(l”)_

~Lirminr) 1= GG = Lirmipy 11 GG -
~Lpirmi0 1= G G = Liamito) 1 amin GG —
~Limip) L amin GV = Limipo 1smin GG+

10 =ip20y L gi=jo) Lis=ia0y Lijs=ja) + Lin=isz0y Lji=ja) Lio=ia20y L= +

+1{i1=i4750} 1{j1=j4} 1{i2=i3750} 1{j2j3}> ) (21)
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JW@)]%{ ) = lfp?l)m Z 2035 J (H CJ

71=0 Js=
(i5) (i5)
1{Z1 127&0}1{]1 JQ}C];), C4 Cj5 - 1{21 237&0}1{]1 ]3}{] C4 C;]55

5) iz) ~(i4)
T 1{21 7«)7&0}1{]1 ]a}gj C]g Cj4 T

— 14 —i, 20115 34}CJ2 Cyg )Cj(s
—Lgi,—iy201 14, ]S}le CJ4 )C](s o Liip—isz01 1 J4}CJ CJS Cj(f)_
~Liminty =it GG G = Limintoy Lmin G167 G —
~Lpimir i G G0 G = Liminio 1=t G G G +
1 irmi0r Lo L ismino) Lsmin G+ Linmioio) Lgimio Lismioio L gsmint G+
L imi01 L= L iamioo) L= G+ Linmisror Lgimin) inmiaio L gnmint G+
+Lgimi 0y L= L inmioo) Liamin) G+ Linmisior Limind iamivio L iimint G+
+Lgimi0r L= L imisro) Liamin) G+ Linmiiior Lgimin inmivio L imint G+
+Lgimi0r L= L ismioro) Lismin) G+ Linmioor Limio inmisio L imint G+
145t 20 L 1=y Lm0y L= G+ Linmioio =i Lismiiror =i G+
1 iyt 0 L) Lm0y it 6+ Lismiiio L gamia) Lismisror =i G+

(i1)
14, —is 20} L (o=} Lis=iu20} L js=5a} G, ) (22)

where 14 is the indicator of the set A.

Consider the generalization of the formulas (18) — (22) for the case of ar-

] (i) 1y order to do this, let us consider the

bitrary multiplicity of J[i*
disordered set {1,2,...,k} and separate it into two parts: the first part con-
sists of r disordered pairs (sequence order of these pairs is also unimportant)

and the second one consists of the remaining k& — 2r numbers. So, we have

({{91, 92}, {gzr Lot Aan o gea}), (23)

part 1 part 2

where {g1,92, .-+, 920—1, Gors Q15 - - -, Qe—2ry = {1,2, ..., k}, braces mean an disor-
dered set, and parentheses mean an ordered set.

We will say that (23) is a partition and consider the sum using all possible
partitions
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§ : a9192a~~-a92r—192r7Q1---Qk—Qr' (24)

({Hg1.92}:-- {927 —1.927 1 1 a1 a5 —2p})
{91,925+-920r—1,92r:91>--:q) — 27 }={1,2,....k}

Below there are several examples of sums in the form (24)

§ : Qg gy — Q12

({91,92})
{gl a92}:{172}

E Qgigogzgs = 1234 T Q1324 + A2314,

({{91.92}:{93,94}})
{91:92:93,94}={1,2,3,4}

E Qgig2,q1q0 — @12,34 T A1324 + Q1423 + Q2314 + Q24,13 + A34,12,

({91,92}{a1,92})
{91,92,91,92}={1,2,3,4}

E (g1g2,q192q5 — 12,345 + Q13,245 + Q14,235 + Q15234 + Q23,145+

({91.92}.{a1.92.93})
{91,92,91,92,93}=1{1,2,3,4,5}

+@24,135 + A25,134 + A34,125 + A35,124 + 45123,

E (g1g2,9390,q1 — A12,34,5 T Q13245 + 14235 + Q12,354 + Q13254+

({{91.92}:{93,94}}.{a1})
{91792793!947‘11}:{1’273)475}

+a1523.4 + A1254,3 + Q15243 + A14253 + Q15 34,2 + Q13542 + G1453 2+

+a52,34,1 + 453241 + A54,23,1-

Now we can formulate Theorem 1 (formula (16)) using alternative form.

Theorem 2 [29]-[39]. In conditions of Theorem 1 the following converging

in the mean-square sense expansion s valid

.. k/2
J[w(k)]gi,ltm%) = llpigm Z ZC]k Jt HCJ Z
J1=0 Jk=0
k—2r

x Z H 1{2925 1 Z5’257"é()} {gge_y= Joy, } H C]ZQZ ) (25)

({192}, A92r—1.927} 1 -{a1 0052} 5=1
{91,92:+-92r—1:92r:91>--:qf — 27 }={1,2,....k}
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In particular, from (25) for kK = 5 we obtain

Ds 5
TPl = Lim, Z D Ci (HCJS“)—
..... =1

= Jx=0

- Z 1{191: ig, #0311 {Jg,= Jg, } H Cqul

({91.92}.{91,92.93})
{91,92,91,92,93}={1,2,3,4,5}

(iq; )
+ Z 1{i91: ng 7&0}1{]@1: jg2}1{i93: 7:94 #O}l{jygz jg4}qu1 ) )
({{91,92}:193,94}}:-{a1})
{91,92,93,94,91}={1,2,3,4,5}

The last equality obviously agrees with (22). Note that the rightness of
formulas (18) — (22) can be verified by the fact that if i; = ... = i5 =i =
L,...,m and ¥1(s),...,¥5(s) = ¥(s), then we can derive from (18) — (22) the
well known equalities, which be fulfilled w. p. 1 [29]-[32], [35]:

where

which can be independently obtained using the It6 formula and Hermite poly-
nomials [16].
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3 Calculation of the Mean-Square Error of Approxima-
tion of Iterated Stochastic It6 Integrals in Theo-

rem 1

Assume that J [7/)(k)]§fft"'i’“)p 'P¥ is an approximation of (11), which is the prelimit
expression in (16). Let us denote

E(il...ik)p — E]E:il...ik)pl ..... Dk

L = | K17, .24y (26)

where K (t1,...,1t) YK

In [32]-[35], [38], [39] it was shown that

E(l1 AePLePl k'<[k - Z Z T ]1> (27)

71=0  jr=0
for iy, ...,y =1,... . m (T —t<oo)oriy,...,iy=0,1,....m (T —t<1).
The exact calcutation of E(1-#)? is presented in the following theorem.
Theorem 3 [33], [35], [38], [39]. Suppose that the conditions of Theorem 1
be fulfilled for iy,...,ix =1,...,m. Then

Elin- ka_]k_ Z i X

..... Jk =0
XM{ (i) Z / ;. (1) . / o5, () dwi . dw i } (28)
7]k
where J[ih* ] U1-Ie)P s the prelimit expression in (16) (see also (46)) for py =
. =DE=D; zl,...,ik =1,...,m; expression
(jl 7777 jk)
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means the sum according to all possible permutations (ji,. .., ji), at the same
time if j, swapped with j, in the permutation (ji1, ..., jr), then i, swapped with

iq in the permutation (ii,...,1i); another notations see in Theorem 1.
Note that
{J[w Zl . /¢]k tk /¢J1 tl dwt1 . dW,E )} - Cjk~-~j1
forig...u.=1,....,m.
Then from Theorem 3 for iy,...,i; = 1,...,m we obtain [33], [35]

Bl — Z © . (pairwise different 4y,... i), (29)

.71> 7Jk 0
p
i1%2 p — .. .. ). — 1
E =1y — E : ]2]1 § : CJ2J1CJ132 (Zl - 22)7
J1,J2=0 J1,J2=0
(i1i213 _ . .
L .73]2]1 CJ3J1]2 Jajed1 (21 = 12 7£ 23)7
J3.J2,J1= J3,J2,J1=0
p
(i14283ia)p _ . _ . L
E =1y CJUSJle Cj4]3]2]1 (21 — 12 7’é i3 = 14)7
J1,J2,93,J4a=0 (43,Ja) \(J1.32)
p
(i142i31415)p __ _ N ... 1 NI N . ... .
E =I5 CJ5J4J3J2J1 CJ574J31231
J1,32:73,J4,35=0 (43:94) \(J1.32,J5)

(iy = iy = i5 # i3 = iy).

4 Some Examples of the Mean-Square Approximations

of Iterated Stochastic Ito Integrals Using Legendre

Polynomials
Denote
T T to T ty
(i)  _ (i1) (i10) (ir) 012 i»)
I(l)T,t_/dwt1 , [(10)T’t—//dwt1 dts, V)Tt //dt dwt :
t t ot

Electronic Journal. http://diffjournal.spbu.ru/ 31



Differential Equations and Control Processes, N. 3, 2019

T ta

T t3 to
) / / awiawl®, [ / / / dw ) g dw .
t

t t
T tg t3 to

I = ////mpmgmpmp,

T t5 ta t3 t2

I - /////mtmtmwmwmy,

where 71,129,173, 14,15 = 1,.

..7

The complete orthonormal system of Legendre polynomials in the space
Lo([t, T]) looks as follows

25 + 1 T+t\ 2 ,
; = P; — 1 =0,1,2,... 30
¢j(x) T—t J((x 2 )T_t)a ] 07 ) < ) ( )

where Pj(x) is a Legendre polynomial.

Using the system of functions (30) and Theorem 1 we obtain the following
approximations of iterated stochastic Ito integrals [27]-[39]

(1)  _ (i1)
Iy = VT =1,
0/ T—0*2( 4y 1
I(((n))T,t =5 ¢ + —341( ap (31)
110 (T - t)3/2 11 1 1
I((m))T,t - 9 C(g ) - _3<1( : g (32)
(2112 (i) iz 1 (i) o) _ o) (i)
1=1

111213 o 2 : (i3)
111 Tt CJ3J2]1< J1 Cjz st

J1,J2,53=0

(i3) (i1) (i2)
_1{i1:i2}1{j1=j2}Cj3 _1{1'2:@'3}1{3'223'3}6]'1 _1{i1=i3}1{j1=j3}cj2 )’ (33)
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3
i) (T —1)3? (ir) (ir)
Tyre = 4 Co —3G |

q2
(i1i2i3ia)q2 (i1) ~(i2) ~(i3) ~(ia)
[(1111§’T7tq o Z Cj4j3j2j1 (le Cjé Cj33 Cj4 1{11 12}]—{]1 J2}CJ CJ4
jlanaj37j4:O
1{11 13}1{31 JS}CJ Cj4 - 1{11 14}1{J1 J4}gy ng - 1{12 23}1{32 Js}gy <]4
1{12 24}1{]2 ]4}C] ng 1{13 24}1{]3 ]4}6] C]g +
+1{i1=i2}1{j1=j2}1{i3=i4}1{j3=j4} + 1{i1=i3}1{j1=j3}1{i2=i4}1{.72:j4}+

+1{i1i4}1{j1j4}1{i2is}l{j2j3}> ) (34)
4 2
(41819141) (T - t)2 (1) (1)
I(llll)T,t - 24 CO —6 CO +3],
q3
1 ((ﬁlfﬁ;ﬁ)qg = D Cijisini (Cg(fl)CJ(QQ)C]('QB)C}?)C;?)_
J1,J2,J3,J4,55=0

iy L= GG G = Ly L 607 G G -

L L= G GG = Ly =i G G G —

—1gi,—igy 1, JB}le CJ4 C](E, R Liip—igy 1y, J4}gj Cs C](E’fS)_

Lot Lmint G 66 = Lmi Liinmin G G G —

—Lip=isy Ly, 15}Cg Cg <(4 ) Lii=isy Ly, JS}C] Cz €;§3)+
1 girminy L=y Lismin L=t G + Linminy L=t Lismind Linmin G+
+Limit L= Linmind L=t G+ Linmi) Limin Limin Lmin G+
L=t L= L imid Lamind G+ Linmin) Limin Liemio Lgumint G+
L=t L= Limin Lmin G+ Loz Limin Limit Lmint G+

(in) (ia)
+ 14, =iy 1= is=is} L s=ia} Gjy 7+ Linmis} Lgi=ia} Lio=is)} L{o=is}Gjy T
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(i3) (i2)
+1{2'1=i5}1{j1=js}1{i2=i4}1{j2=j4}<j33 + 1{11=i5}1{jl=j5}1{i3=i4}1{j3=j4}<j22 +

i1 (Zl)
+1{i2=i3}1{j2=j3}1{i4=i5}1{J4=J'5}<7('1 : + 1{i2=i4}1{j2=j4}1{i3=i5}1{]3215}Cj1 +

(i1)
1=} L omja} Lis=ia} Ls=ia} G, ) : (35)

5 3
(i191019101) (T — t)5/2 (i1) (i1) (i1)
Innyre = 190 Co — 101 ¢ + 15¢, :

where
o V@I + D+ DT -1
Jajen — g Jsj2g1o
o Vi DR+ 1)+ D+ DT -1 4
Jajajejr — 16 Jajgsjzjuo
VD@ D T D T DG (T -0,
Cj5j4j3j2j1 - 39 JsJaj3jajis
1 z Yy
Cj3j2j1 - /P] (Z)/sz(y)/Ph(x)dxdde:
s} | "
1 U z Yy
Oj4j3j2j1 /PJ (u)/PJ?,(Z)/PJQ(?J)/le(x)dxddeduy
s} X1 "1 21
1 v U z Y
Cladugsinis = / P (v) / P, (u) / P (2) / P, (y) / P, (v)drdydzdudv,
-1 -1 -1 —1 -1

the random variable ¢ j@ is defined by (17), and

(irig) 1.
'aniu _'bﬁﬁm

(i1i2)
Ay
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(i19283) 7 - (t19213)q1
Ly = lqll_fgo Tnyrs

I(i1i2i3’i4) o 1 1 m I((i1i2i3i4)Q2

(LT — oyes T (ITE

(i1i2i3i4i5) 1 (1112131420) qs3
](11111)T,t = Lim ](11111)Tt

q3— 0

Note that T—t < 1 (T'—t is an integration step with respect to the temporal
V_ariable)_. Thus ¢ < ¢ (see Table 1 [28]-[32], [35]) Moreover the values

DERIVE (computer algebra system) can be found in Tables 2—4 (another tables
are presented in [28]-[32], [35]).

Denote )
poem —wf (1, - 133 |
2
212223 M{ (1 illzfl;t ?1@12)2%)31> }7
2
M{ (s = st )

2
E(i1i2i3i4i5 I (i1d2d3iais) i1i2i3i4i5)Q3
11111 Tt 11111)T,t :

Then for pairwise different 11, 19,143,%4,75 = 1,...,m from Theorem 3 we

obtain [27]-[39]
y T—1)2(1 < 1
gz _ . ) (5 Z - 1) (36)

E(lezw)‘h — Z jgjwl’ (37)
J1,J2,J3=0
nisisig _ (L —1)" - )
E( = 24 N Z Cjumw (38)
j17j27j3aj420
ininisiais (T —t)° - )
E( o 120 B Z Cj5j4j3j2j1 (39)

j17j27j37j47j5:o
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Table 1. Minimal numbers ¢, ¢ such that E(172)e, plhizi)a < (T — )4 ¢ <« q.

T —1(0.08222(0.05020]0.02310|0.01956

q 19 o1 235 328

Table 2. Coefficients égjk.

S0 1 2 3 4 5 6

0ol 0 = 0 —s 0 o 0

Ll | 0 =35 0 |-z | O 500

2| 2 | & 0 s 0 — s 0

3l 55| 0 |-sw| O |ws | 0 |-wm
41 - | 5 0 — 0 S5 0

5 _% 0 % 0 _ﬁ 0 761527265
6 0 _% 0 % 0 - 762527665 0

Table 3. Coefficients Cyyx.

dl0 1 2
2 2 2
0 21 45 315
1 2 I R
315 315 225
2| -2 | 2 2
105 | 225 1155

slo |1

4
0| 0

4 8
I v
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On the basis of the presented approximations of iterated stochastic Ito
integrals we can see that increasing of multiplicities of these integrals leads to
increasing of orders of smallness according to T'— ¢ (T"— t < 1) in the mean-
square sense for iterated stochastic Ito integrals. This leads to sharp decrease
of member quantities in the approximations of iterated stochastic Ito integrals,
which are required for achieving the acceptable accuracy of the approximation

(1 < q).
From (37) — (39) we obtain [28]-[32], [35]

Elinizis)a 7 0.01956000(T — t)3, (40)
q1=
F(iizisia)ez |~ 0.02360840(7 — t)4, (41)
Q2=
B (iiziaiais)es A 0.00759105(T — t)°. (42)
q3=

It is not difficult to see that the accuracy in (41) and (42) is significantly
better than in (40) (T'—t < 1) even for go = 2 and g3 = 1. This means that
in such situation in formulas (34), (35) the number of terms can be chosen
significantly less than 3 (¢ = 2) and 2° (g3 = 1). So, in practice, we can leave
only few terms in these formulas.

5 Approximation of Iterated Stochastic Integrals of
Multiplicity k£ with Respect to the ()-Wiener Process

Consider the iterated stochastic integral with respect to the ()-Wiener process
in the form

1[@%(Z), W7, = /cbk(Z) ( (/ Dy(2) (/ <I>1(Z)¢1(t1)thl) X

x¢2(t2)th2> e ) Uy (tr)dWy,, (43)

where Z : Q@ — H is an F;/B(H )-measurable mapping, for all v € H operator
Op(v)( ... (P2(v)(P1(v)))... ) is a k-linear Hilbert—Schmidt operator, and every
Yy(1) (I=1,...,k) is a continuous on [t,T] non-random function.
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Let I[®0)(2), "]}, be an approximation of the stochastic integral (43)

1[@W(7), ™3, = /(I)k(Z) ( . (/ ®,(Z) (/ (DI(Z)wl(tl)dWi\l/[) X

t

i 1/2
= Z (I)k(Z) ( .. ((I)Q(Z) ((I)l(Z)erl) €T2) .. ) Er, (H >‘7“z> J[w(k) gz’?ltrg...rk)’

T1,72, T EJ NS

(44)
where 0 <t < T < T, and

J[ip®))Sara-re) / i(te) . / o (ts) / D (t)dwiVdw!? . dwi)

is the iterated stochastic Ito integral (11).

Let I[®W)(Z )’1/)(16)]%@ 1Pk he an approximation of the stochastic integral
(44)

12W(2), p i =

N 1/2
= Z (I)k(Z) ((@2(2) ((I)l(Z)erl)@rQ)-'-) Ery (H AT[) X

71,72, TREJI M =1

XJ[’w ] (r179...7E)D1 5 -, pk’ (45)

where J [w(k)]glt”"”)pl """ P¥ is defined as a prelimit expression in (16)

J[¢(k) g;rz TE)DL e — Z Z Cjk g1 (H C]

J1=0 Jk=0

N—o0

—Lim. Z @, () Awls) ..quk(nk)Ang:)) (46)

or as a prelimit expression in (25)
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[k/2]

J[¢(k)](T1T2 T )PPk _ Z Z Cjk i <H Cj Z

= Jr=0

k—2m
(rq
X Z Hl{ To5s 1= 7”9257&0} gy 1= Joge } H Cj | )

({{o1.92},{92m—1.92m I} {a1,ap—2m})  $=1
{91,92,92m—1:92m 91> 9k —2m t =11,2,...,k }

(47)

Let U, H be separable R-Hilbert spaces, Uy = Q'/%(U), and L(U, H) be the
space of linear and bounded operators mapping from U to H. Let L(U, H)y =
{T|v,: T € L(U,H)}. It is known [19] that L(U, H), is a dense subset of the

space of Hilbert—Schmidt operators Lyg(Uy, H).
Theorem 4. Let the conditions of Theorem 1 be fulfilled, as well as the

following conditions:

1. Q € L(U) is a nonnegative and symmetric trace class operator (\; and e;
(i € J) are its eigenvalues and eigenfunctions (which form an orthonormal basis

of U) correspondingly), and W ., 7 € [0,T] is an U-valued Q- Wiener process.
2. Z:Q — H is an Fy/B(H)-measurable mapping.
3. &, € L(U,H)y, P € L(H,L(U, H)y), moreover for all v € H operator
Op(v)( ... (P2(v)(P1(v))) ... ) is a k-linear Hilbert-Schmidt operator such that

2

O(Z) (.. (Bo(2) (B1(Z)er) €r) - Ven| < Ly < o0

H
w. p. 1 for all ri,ro,... .1 € Jyy, M € N.
Then

2

M I[q>(k)(z),¢<k)% _ ][@<k)(z)7¢(k)%m...pk

IA

H

< Li(kN? (tr Q) <1k—2 Z 2 jl> (48)

Jj1=0 Jx=0
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where I} is defined by (26), and

Remark 2. [t should be noted that the right-hand side of the inequality (48)
15 tndependent of M and tends to zero if p1,...,pr — oo due to the Parseval’s

equality.
2
H }

Proof. Using (27) we obtain
3 1/2
> B2) (. (DAZ) (21(ZD)er,) €ry) - ) HA”) X

71,79, , Tk EJ s

M Q ([1100(2), 6Oz, = 100(Z), Bl

I
N

WS

Ne)
N—

% (J[w(k)]%ltrgrk) — J[¢(k) %fzum)pl ,,,,, pk>

ISR SR

T2y Tk €I (1,rhr)): {1y b ={rre, e re b

X <<I>k(Z) (... (P2(2) (P1(Z2)ery) €1y) -+ 2) €1y
D(Z) (... (®2(2) (P1(2)er;) €ry) - - ) erk> X

X M{ <J[¢(k)](z%7"27"k) - J[w(k)]g:ltrg...m)pl ..... pk> %

X (t][w(k)]gf}ré...r;c) B J[iﬁ(k)]%ré"'r}“)pl ..... pk>
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TN St

71,72k E€EIM (17,7000 )t {717 b ={r1, 72,0 )

M |[@(2) (.. (B2(2) (B1(Z)er,) er)) .. ) €,

H

X||®i(Z) (... (P2(2) (P1(2)er) €ry) - - .) €r

e ()

T2y Tk €I (1,7, r)s ATy Ty ) b =11, }

XM{ (J[lb(k)]g%rzm) — J[w(k)]%ltrz.-.m)pl 77777 Pk) y

X (J[@/}(k)]%r’g...m) . J[w(k)]%y’z...r,’f)pl,‘..7pk,> ‘} <

<Le ) > (f[ Anj/z (ﬁ Arl,)w x

P12 TREIM (1],7h5e ) AT TS Ty =AT 1,258 )

23\ 1/2
% (M{ (J[’@D(k)]g%mm) o J[@b(k:)]gltrg...m)pl ,,,,, pk> }) «
2 \ 1/2
X (M{ (J[@D(k)]g,%?brk) — J[zp(k)]%f?”k)m ~~~~~ pk> }) <
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. 1/2 , 4 1/2
ST .
») \i=1 =1

P12y TREIM (1],7h5e T )0 AT Ty =171,

(k'(]kz Z 2 ﬁ))l/ (k'([kz Z 2 )

Jj1=0 Jx=0 Jj1=0 Jxr=0

71,79, T EJ N 7k=0

Ar,
=Le(K)? ) MmNy

Pp1
S
J1=0 Jk=0

Jr=0

71,72,y T EJ M

b1
<Ly Y kA, ...)\rk<k!<]kz... c?. ;1
J1=0
I,
=0

(
< Ly (K1) ( <1k - Z

Jk ]1)

where (-, )y is a scalar product in H, and

2.

(11t ): ATy b ={rs,rese i

means the sum according to all possible permutations (73,73, ...,7;) such that
{riry, ..oy ={r,re, oo )

The transition from (49) to (50) is based on the following theorem.

Theorem 5. The following equality is true

M{ (J[w(k)]g’ltrk) . J[¢<k) é?{i...r;@)pl...pk> «

% <J[¢(k)](Tn;1...mk) . J[w(k)](Tn;l...mk)pl...pk> ‘Ft} 0 (51)

w. p. 1 for all r,...;re,my, ... ,my, € Jyy (M € N) such that {ry,..., 1} #
{ma,...,my}.
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Proof. Using the standard moment properties of stochastic It6 integral we
obtain

M{J[W]&i}”’”Jw““ml'"w F} =0 (52)

w. p. 1 forall rq,...,rg,my,....mg € Jy (M € N) such that (rq,...,r) #
(ml, ce ,mk).
Let us rewrite formulas (46), (47) (see also (18)—(22)) in the form

Pk k
RGOSR S oo h(nc ..... >) 53

j1 =0 .]k =0 =1

From the proof of Theorem 5.1 in [35], p. A.261 or [36], p. 9 (see also
28]-[32]) it follows that

k N-1

(my) (my..mp) 1 my) mg) __
lqcﬁ Posi =i YT g dilm) Al Awln) =
= 1 5eesl,=0

T 12
(J1sdh) ¢ t
where
(J15e5k)

means the sum according to all possible permutations (ji, ..., jx), at the same
time if j,. swapped with j, in the permutation (ji,...,jx), then m, swapped
with m, in the permutation (my,...,m;); another notations see in Theorem 1.

Then w. p. 1

{Jw i) g ) e } >
J1=0 Jx=0
M { T Z /% ). /cbh H)dwi™) . dwl™|F,

7]k

From the standard moment properties of the stochastic Ito integral it follows
that
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Ft :0

M [ Z / b () . / 5, (t)dw!™)  dw™

w. p. Lfor all ri,....,rp,my,....,mp € Jy (M € N) such that {ry,...,r:} #
{m17 o 7mk}-
Then

E}:o (55)

w. p. 1 for all ri,...,r5,mq,...,mp € Jyy (M € N) such that {r,..., 7.} #
{mq,...,my}.
From (53), (54) it follows that

M{J[w(k)]gflt Tk )P1ys kaW( ) gﬁl”'mk)pl ..... D

_Z Zcﬁc le Zqu @ X

Jj1=0 Jx=0 q,=0

T 2
xM{( 2:‘/¢ng”¥/¢hndwﬁfudwﬁvx
G

J1, 1.716) t

( /%m /@mem mgj
(I17 an

w. p. L for all ri,....,rp,my,....,mp € Jy (M € N) such that {ry,..., 7.} #
{mq,...,my}.
From (52), (55), and (56) we obtain (51). Theorem 5 is proved.

F}:O(%)

Corollary 1. The following equality is true

X (J[¢(l)]§“t J[w m1 M) m) 'Ft} -0

w. p. 1 foralll =1,2,....k—1, and ri,...,76, m1,...,my € Jy, P1y-. ., Prs
qi,---,q =0,1,2, ...
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6 Approximation of Some Iterated Stochastic Integrals
of Second and Third Miltiplicity with Respect to the

()-Wiener Process

This section is devoted to the approximation of iterated stochastic integrals of
the following form (see Sect. 1)

Ih[B(Z) = / B'(Z / (Z)dt, | dW,), (57)
L[B(Z),F(Z))}, = / F'(Z) / B(Z)dW}" | dts, (58)
LIB(Z)y, = / B"(Z) / B(Z)dW}, / B(Z)dW," | dW}.  (59)

Let conditions 1 and 2 of Theorem 4 be fulfilled. Let B”(v)(B(v), B(v)) be
a trilinear Hilbert—Schmidt operator for all v € H.

Then w. p. 1 we have (see (44))

07‘1
I[B(2), F(Z) = > B(Z)F(Z)er /AT (60)
r1€Jm
7"10
L[B(Z), F(2)}, = > F(Z)(B(Z)ern )/ A Ihr (61)
ri€Jp

IQ[B(Z)]ZA!J: Z BH<Z> (B(Z)GTUB(Z)eTz)eTg\/ >‘7’1)\T2>‘T3X

r1,r2,r3€J

T S s

x/ /dwgﬁ)/dwﬁm) dw(). (62)

t t t

Using the It6 formula we obtain

/ dw'" / dwl™) = 1002 + I 41,y (s —1) wop. 1 (63)
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From (63) we have

(rirars) (rorirs) (Ors)
/ /dw /dw dw( = = Layry T Loyre T Y=} oy W- P L
(64)
Note that in (60), (61), (63) and (64) we use the notations from Sect. 4.
After substituting (64) into (62) we have

IQ[B(Z)]ZA!J: Z BH(Z) (B(Z)€T17B(Z)€T2)€7’3\/ )‘T1)\7‘2>‘T3X

ri,re,r3€J

(rirars) (roryrs) (Or3)
X (I(m):i?,t + 1(111):/?,t + 1{T1=7“2}[(01§T,t> w. p. L. (65)
Taking into account (31), (32) we put for ¢ =1
g _ o) _ (L= ( gy 1
I(OliT({t - 1(01;T,t - 9 G+ ﬁgl ’ w. p. 1, (66)
0 _ n0) _ (T =02/ oy 1
I(lO)T(ft - I(lO)T,t - 2 G — EQ w. p. 1, (67)
where 70207 1194 qanote the approximations of corresponding iterated

oOVT,t> *(10)T,t
stochastic Ito integrals.

Denote by [O[B(Z),F(Z)]Tt , L[B(Z), F(Z)]Tt : IQ[B(Z)]%;Q the approxi-
mations of iterated stochastic integrals (60), (61), (65)

L[B(Z), F(Z)y = > B(Z)F(Z)er /A 151 (68)
7“1€J]\4

LIB(Z), F(Z)y = > F(Z)(B(Z)er )V A (69)
7“1€JM

IZ[B(Z)]%Eq = Z BN(Z) (B(Z)er,, B(Z)er,) €ryn/ Ay Ay Ary X

7“1,7‘2,7“3€JM
(rirars) (rorirs)q (0r3)q
X (I(111)T3,tq + [(111)1?15 + 1= 7”2}[(01;Tt) (70)

where ¢ > 1, and the approximations / ((ﬁﬁ;?’iq, I gi%;ﬂ”iq are defined by (33).

From (60), (61), (65), (68) — (70) it follows that
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1[B(2), F(Z)}Y, - LIB(Z), F(Z) =0 w.p. 1.
LIB(Z), F(Z)}Y, - LIB(Z), F(Z) =0 w.p. 1.

IQ[B(Z)]]Z\!JS _IQ[B(Z)]%i‘q = Z BH(Z) (B(Z)€T17B(Z)€T2) Cry v >‘T1/\7’2)‘T3X

r1,r2,r3€J )
(rirars) (rirars) (rory73) (rory73)
X <(](111)7§,t - ](111)73:;1) + <I(111)T3,t - 1(111)1%75(])) w. p. L.

Repeating with an insignificant modification the proof of Theorem 4 for the

case k = 3 we obtain
LIB(Z)Y, — LIB(Z))7;"
T —t)3 d
<4C(3N? (tr Q) <( 5 S _ > Cyzgjzjl)v

. {
J1,J2,J3=0

where here and further constant C' has the same meaning as constant Lj in
Theorem 4 (k is the multiplicity of the iterated stochastic integral), and

V@i + D)2 + D) (25 + D(T — 1)*2

Cj3j2j1 - 8 Jaj2jio
1 z Y
Cj3j2j1 - /P] (Z)/sz(y) /le(m)da:dydz,
-1 -1 -1

where Pj(x) is a Legendre polynomial.

7 Approximation of Some Iterated Stochastic Integrals
of Third and Fourth Miltiplicity with Respect to the

(-Wiener Process

In this section we consider an approximation of iterated stochastic integrals of
the following form (see Sect. 1)
T to to to

I3]B(2)]1 :/B”’(Z) /B(Z)de‘f,/B(Z)de‘f,/B(Z)de‘f AW,

t t t t
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LIB(Z)ly =
:/B’(Z) /B”(Z) /B(Z)dW?f,/B(Z)dWM AW | aw,!,
]5[3(2)]% -
= / B"(Z) / B(Z)dW,”, / B'(2) / B(Z)dW} | aW, | dW Y,
t t . t . t .
wB2).F@W, = [P | B [ B@aw! ) aw |,
I;|B(2), F(2))}, = /F”(Z) /B(Z)def,/B(Z)dwff dto,
I[B(Z), F(2))}, = / B"(Z) / F(Z)dt,, / B(Z)dW," | aw}.

Consider the stochastic integral I3[B(Z)]y),. Let conditions 1 and 2 of The-

orem 4 be fulfilled. Let B"(v)(B(v), B(v), B(v)) be a 4-linear Hilbert-Schmidt
operator for all v € H.

We have (see (44))
[3[B(Z)]%t = Z B"(Z) (B(Z)er,, B(Z)er,, B(Z)er,) er,n/ A Ay Arg Ay X

™ ,TQ,Tg,T’4€JM
T s s s

></ /dwg’”l)/dw@)/dw(f?’) dw  w. p. 1. (71)

t\t t t
From [35] (pp. A.438 — A.439) or using the It6 formula we obtain

(r1) g(ra) glrs) _
[(1)s,t](1)s,t](1§5,t o

_ g(rirars) (rirsra) (roryrs) (rorsry) (rarira) (rarary)
= Liysr T sy T ass T Lase T Lamss T Lannse +

(7‘30) (07‘3) (7'20) (07"2)
TL=rs) (I( 10)s¢ T [(01)s,t> + L=y} (I(lo)s,t + I(Ol)s,t) +
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(r10) (Or1) ) _
F1ir=ry) <[(10)s,t + 1(01)3,75) -
= Y ) a(s—t) (1 1" 41 1" +1 1 1
(111)s {ro=rs}(1)st {ri=rs}(1)st {ri=roa}*(1)st ) W-P- L
(r1,r2,73)
(72)
where

2.

(Tl ;T2 ,7‘3)

means the sum according to all possible permutations (7, r2,73) and we use the
notations from Sect. 4.

After substituting (72) into (71) we obtain

]3[B(Z)]7]\“/‘,[t - Z B///(Z) (B(Z)eﬁvB(Z)eTwB(Z)6T3) 67“4\/ )‘7“1)‘7“2)‘7“3>‘7“4X

r1,r2,r3,74€J 0

r1ToTsTy (rara) ) (r174)
( Z [1111 ?Ert 1{r1:r2}J(oi)T,t_ 1{r1r3}J(o1)T,t1{r2r3}J(01)T7t> w. p. 1,
(7"1 T2 7"3

(73)

where
S

T
Kot = [t=9) [ awiawle (74)
t

t

Denote by I3{B(Z )]¥ ! the approximation of the iterated stochastic integral
(73), which has the following form

[3[B(Z> IM,éq - Z BH/(Z) (B(Z)GTNB(Z)GMJB(Z>e7“3) €ryV )‘7”1>‘7“2)‘T3)\7”4X

r1,72,73,74€J M

(ryrorsr (r3ra)q (rara)q (rira)q
X Z 11111 T?f — 1= T2}J(01)Tt L= 7"3}‘](01)Tt L= 7‘3}‘](01)%15 ’
7“1 T2, 7“3
(75)

(rirarara)a - (ir2)0 o6 hased on Theorem 1 and Le-

11Tt 0 Ty
(r172)q (r172)
‘](Ol)Tt Jonrs

(ri,m9 = 1,..., M), which is based on Theorem 1 and Legendre polynomials,
has the following form (see [35], formula (6.91) on the page A.544, and [32],
formula (5.7) on the page A.249)

where the approximations [

gendre polynomials. The approximation of the stochastic integral
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T T—t T T_tQ 1 T T
i _ e _ )< )y

onrTt — 9 anTt 4 \/§ 0 51
o3 (02676 - g g (76)
— V(204 1)(2i +5) (2 + 3) (20 —1)(20+3) ) )’

]((ﬁ;;)g (gﬂﬁ 7“2 +Z \/T(C( )Cz( ? CZ(TI)C( )> 1{7”1 7“2}> (77)

where notations can be found in Theorem 1.
Moreover (see [35], formula (6.106) on the page A.551)

q
(rire) (rr)q2 _(T_t)4 5 1
Gt i) | = (2l

: (i 4224 (i + 1)
_2 2 — 1)2 22+3 ;2z+ 2z+5)(2i+3)2) (re#r2). (78)

From (27), (29) we obtain

q
i) ra\?| o (=8 (5 !
M {(J(on’},t - J(oi):zf,t) } < g 9 2; 42 — 1

zq: zq: (i4+2)2+ (i + 1)
(2@—1) (20 +3)% 4= (2i+1)(2i +5)(20 +3)? |

=1

where r{,ro =1,..., M.
From (73), (75) it follows that

LB, — BB2) =

= Z B"(Z) (B(Z)er,, B(Z)er,, B(Z)er,) €ry\/ Ary Ary Ay Ary X

r1,72,73,74€J 1

(rirorsry) (riraorsry) (rary) (rarq)
X ( Z (I(1111)3T; - [(1111)3T,;li q) — 1=y (J(oi)%,t - J(oi)éf,g) -
(

T1 77“2,7"3)

(rara) (rora)q (ri74) (r174)
—L=ry (J(Ol)T,t - J(Ol)Tt) Liry=ry) (J((n)T,t - J(o1)T7§)> w. p. 1. (79)
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Repeating with an insignificant modification the proof of Theorem 4 for the
cases k = 2,4 we obtain
2
<
H

M{
4 20412 (T _ t)4 - 2 2(91\2
J1:J2:J3:J4=0
where E, is the right-hand side of (78), and

V21 1)(252 + 1) (23 + 1) (2ja + 1)(T — t)? -

LIB(Z2)Y, — BIB(2))y}

Clagsiain = 16 Cladsjaiy (80)
1 u z Yy
Clivjsjair = / Pj,(u) / Pj,(2) / Pj,(y) / P}, (x)dzdydzdu,
-1 -1 —1 -1

where Pj(x) is a Legendre polynomial.

Consider the stochastic integral I;[B(Z)]7',. Let conditions 1 and 2 of Theo-
rem 4 be fulfilled. Let B'(v)(B"(v)(B(v), B(v))) be a 4-linear Hilbert—Schmidt
operator for all v € H.

We have (see (44))

LBZ),= Y, B(2)(B"(2)(B(Z)en, B(Z)er,) er,) er,

r1,r2,r3,74€J

T

T s T
X V )\T1)‘T2)‘7’3)\7”4// /dwl(fl) /dwgz) dwgr?’)dwgm) Ww. p. 1. (81)
t t t

t
From (64) and (81) we obtain

LB, = ) B(2)(B"(2)(B(Z)en, B(Z)er,) er,) e,

r1,m2,73,74€J 1

(rirorsry) (roryr3ry) (rsry)
XA/ Ary Ay Arg Arg (I(lifl):}; + ](1i11)?fr,i - 1{r1r2}J(1(3))%,t> w.p.- 1, (82)

where
T s

T, = / / (t — 7)dwl dw!™) (83)

t 1
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Denote by I4[B(Z )]¥ 7 the approximation of the iterated stochastic integral
(82), which has the following form

LIB(Z)r'= Y, B(2)(B"(2)(B(Z)er, B(Z)er,) er,) e, x

r1,r2,r3,74€J s

XA/ Ary Ay Arg A (]((ﬁﬁ;%)q n ]((ﬁ;ll;%fi) — 14— rz}J( r3r4)q ) w. p. 1, (84)

(10)Tt

where the approximations [/ ((ﬁﬁ;‘éf‘z)q, J((I(l);?p) f are based on Theorem 1 and Leg-
endre polynomials.

The approximation J((lr(l);%) . of the stochastic integral Jgé;;)t (ri,rg =
1,..., M), which is based on Theorem 1 and Legendre polynomials, has the

following form (see [35], formula (6.92) on the page A.544)

(rire)g T—t (rira) (T_t>2 (ro) ~(r1)
J(lO)T,:SJ - 9 I(11)T,§ o A \/ggo Cl +

10 R S (i BN i i (55)
—~\  /(2i+1)(2i+5)(2i +3) 2i—1)(2i+3)) )

where the approximation 1 ((117)“;) . is defined by (77).

Moreover )
(s = IGe) b = By 1 2 ra) 50

where E, is the right-hand side of (78) (see [35], formula (6.106) on the page
A.551, [32], formula (5.19) on the pages A.252 — A.253).

From (82), (84) it follows that

L[B(Z))7, — L[B(2)]z;" =

= Y B(2)(B"(Z)(B(Z)er,, B(Z)er,) r,) €r,\/ Ar, Ary Ay Ar, X

7"1,7"2,7“3,7‘4€JM
(rirarsry) (rirarsry)q (roryrsry) (ror1msTa)q
x ((f<1iﬁ>;,i S I+ (1) — 1) -

(rarq) (r3rq)
—Liri=ry) (J(IS);“,t - J(18)T,§>> w.p. L.
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Repeating with an insignificant modification the proof of Theorem 4 for the
cases k = 2,4 we obtain
2
<
H

"
4 q
<C(tr Q) (2%4!)%% - > C}Mmjl) + (2!)2Eq>,
J1:J2:J3:J4=0

where E, is the right-hand side of (78), and C},,j,j, is defined by (80).

Consider the stochastic integral I5[B(Z )]% Let conditions 1 and 2 of Theo-
rem 4 be fulfilled. Let B”(v)(B(v), B'(v)(B(v))) be a 4-linear Hilbert—-Schmidt
operator for all v € H.

We have (see (44))

LIB(Z)}, — LIB(Z))7

]5[B(Z)]§\@ - Z B”(Z)(B(Z)€T37B/(Z)(B(Z)€T2)€T1>€T4\/ >‘7”1/\T‘2)‘7”3/\7"4X

71,72,7'3,74€ JM

T s s T
></ /dwg‘*)//dwg?)dwg“) dw'™ w. p. 1. (87)
t \t t ot

Using the theorem on the integration order replacement in iterated stochas-

tic It6 integrals (see [35], pp. A.146 — A.162 and example 3.1, p. A.163) or the
It6 formula we obtain

T

/ / dWS_TS) / / dwqg”)dwgl) dwgm) =
t t ot

t

(ror173Ty) (rorsriry) (rararimy)
Linnre T ayrs + Lanr: +

(rara) (rara) (r174)
1 =ry) ('](18)£4m N J(Oi)%,t) N 1{7‘2173}“7(18)%¢ w.p L (88)

where we use the notations from Sect. 4, and Jégi;;) o J gé;%) . are defined by (74),
(83).

After substituting (88) into (87) we obtain

LBZ),= Y,  B'(Z)(B(2)ew, B(Z)(B(Z)er,)er )er *

71,72,73,74€ JM
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(ror173Ty) (rorsriry) (rarariTy)
XA/ Ary Ay Arg A,y <1(1111)3T,t + 1y T Ly +

(rory) (rory) (r174)
+1{7’1:r3} <J(1(2))§“,t — ‘](Oi);“,t) — 1{7"27”3}J(1(1))§“,t> w. p. L. (89)

Denote by I5[B(Z )]é‘ﬁ ;7 the approximation of the iterated stochastic integral
(89), which has the following form

LB = Y,  B'2)(B(Z)er. B(Z)(B(Z)er,)er,)er, ¥

71,72,73,74€J 0
(rorirsra)q (rorsrira)q (rarariTa)q
XA/ Ay Ary A Ar,y <I(1111)T,t Tl THanyre T

(rory) (rory) (rirq)
(=) (J(lo)%,g - J(o1)%,§) - 1{7”27“3}*](10);,3) w. p. L. (90)

where the approximations [ ((ﬁﬁ?)n;fi) 1 J((gi;;)g, and Jgé;;)g are based on Theorem

1 and Legendre polynomials.
From (89), (90) it follows that

LIB(2)), — I[B(Z))y," =

= > BUDBDen. B(Z)B(Z)er)er)er D, %

1,723,714 E€ 0
x ((I{Iiﬁ?%’fz) g )+ (e = 1)+ (i - 1) +
iy (s, = I5a2) = (T = Toit) ) -
~Lpnymryy (S = 4{5;‘;{3)) w. p. 1.

Repeating with an insignificant modification the proof of Theorem 4 for the
cases k = 2,4 and taking into account (86) we obtain

" )

L[B(2))7y — LIB(2)lz!
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4 2 2 (T _ t)4 - 2 2 2
J1:J2:J3,J4=0

where E is a right-hand side of (78), and C},j,j,;, is defined by (80).

Consider the stochastic integral I4[B(%), F(Z )]% Let conditions 1 and 2
of Theorem 4 be fulfilled.

We have (see (44))

L[B(Z).F(2)gy= Y F(Z)/(B(Z)(B(Z)er)er,) v/ A x

r1,m2€Jm

T s 71
X ///dwffl)dwgm)ds w. p. 1. (91)
it

Using the theorem on the integration order replacement in iterated stochas-
tic Ito integrals (see [35], pp. A.146 — A.162 and example 3.1, p. A.163) or the
[t6 formula we obtain

T s T
[ ][ dwiawtas = @ - o1, 4 a0, w1 (92
t t t

After substituting (92) into (91) we have

L[B(Z).F( 2= Y F(Z)(B(2)(B(Z)er)er)V/ A x

r1,72€J 0
X ((T — t)]((ﬁ;;)t + J(((;H%)t) w. p. 1. (93)

Denote by Is|B(Z), F(Z )]¥ ;7 the approximation of the iterated stochastic
integral (93), which has the following form

L[B(Z), F(2)y = Y F(Z)B(Z2)(B(Z)er,)er,) /Ar A, X
r1,ro€J s
(rir2)q (rir2)q
X <(T — )7y T J(01)Tt> (94)
where the approximations J((gi;%) o 1 ((ﬁ;;) . are defined by (76), (77).

From (93), (94) it follows that
I[B(Z), F(Z)1}, — Is[B(Z), F(Z)]3 =
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Z F/(Z)(B/(Z)(B(Z)6T1)€T2) V )‘7‘1>\7‘2X

Tl,TQEJM
(rir2) (rir2) (rirz) (rir2)
X ((T o t) (I(ll)T,t - I(ll)T,Z) + (J((n)T,t - J((n)T,g)) w. p. 1.

Repeating with an insignificant modification the proof of Theorem 4 for the
case k = 2 we obtain
2
H }

g
< 20(2)? (tr Q)* ((T — )G, + Eq> ,

where G, and E, are the right-hand sides of (36) and (78) correspondingly.

Consider the stochastic integral I;[B(%), F(Z )]% Let conditions 1 and 2
of Theorem 4 be fulfilled.

Then w. p. 1 we have (see (44))
LB(Z),F(2D)y = Y F'(2)(B(Z)ern, B(Z)er,) vV ArAnx

I5[B(Z), F(2)|3}y — Is{B(2), F(Z)]1}"

IA

r1,m2€J
T /s s
x/ /dwgﬁ)/dw@) ds. (95)
t \t ¢
From (63) and (92) we have
T /s T T
/ /dw /dw ds = /]((T1§2) als+/I((”;l)alerl{r1 MH —
t t

r172) 7‘27“1 (rira) 7"27‘1) (T - t)

t
= (T -1 ( e T 11 Tt) + J01 T T Ol)Tt + 1=, -

B (n) 7(rs) (rira) | (ram) (T—t)z_
=(T-?) <I(1)1T,t[(1)2T,t = Lppy=ry (T = t)) + J(Oi);t + Joi %t + 1=y 9 -
B () 7(r2) (i) | p(ram) (T —t)?
= (T =) hyr e + oz + oz — 1{n=rz}T w.p. 1. (96)

After substituting (96) into (95) we obtain

LB(Z),F( 2= ) F'(2)(B(Z)er, B(Z)er,) v/ ArA, %

r1,m2€J
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(T —t)?
2

(r1)  g(re) (r172) (rar1)
X ((T — t)l(l)T, [< vre T Jonre T Jonrs = Hri=r) ) w. p. 1. (97)

Denote by I7[B(Z), F(Z )]ZZ\# 7 the approximation of the iterated stochastic
integral (97), which has the following form

L[B(Z).F(Z2)p = ) F'(Z)(B(Z)en, B(Z)er,) VA

7“17’["2€JM

() (rs (g g(rari)a (T — lt)2
X <(T — )y, I( ore T Jonrs T Jonyrs — Li=r) o (98)

where the approximation J(01 T) . is defined by (76).

From (97), (98) it follows that

L[B(2),F(Z)lfy — LIB(Z), F(2)lp' = ) F'(2)(B(Z)er,, B(Z)er,) X

Tl,TQGJM
7"17"2) (T1T2) (7"2?"1) (T27’1)
XA/ Ary Ar,y ((J(m)m J(o1)T,g> + <J(01)T,t - J(o1)T,g>> w. p. L.

Repeating with an insignificant modification the proof of Theorem 4 for the
case k = 2 we obtain

d

where E, is the right-hand side of (78).

Consider the stochastic integral Is[B(Z), F(Z)]y!,. Let conditions 1 and 2
of Theorem 4 be fulfilled.

Then w. p. 1 we have (see (44))

KB(Z), F(Z2), =— Y B'(2)(F(Z),B(Z)er,) er/ M g113, (99)

r1,r2€J M

I?[B(Z%F(Z)]%t - I7[B(Z)7F<Z)]1A“/{£q

} <4C(2M% (tr Q) E,,

H

Denote by I3[B(Z), F(Z )]%4 i the approximation of the iterated stochastic
integral (99), which has the following form

K[B(2), F(2)y =~ Y B"2)(F(Z), B(Z)er,) er/ A A0,
Tl,TQEJM

(100)
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where the approximation J((gi;%)f is defined by (76).

From (99), (100) it follows that

L[B(2), F(2)}, - |B(Z), F(Z))y} =
== > BUDFED), BZ)en) er/Nih, (S = Toiid) wp 1.
7"1,T2€JM

Repeating with an insignificant modification the proof of Theorem 4 for the
case k = 2 we obtain

d

where E, is the right-hand side of (78).

K[B(Z), F(2))yy — K[B(2). F(Z)]z;’

} < C2)% (tr Q)° B,

H
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