

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ПРОЦЕССЫ УПРАВЛЕНИЯ № 1, 2010 Электронный журнал, рег. № П2375 от 07.03.97 ISSN 1817-2172

<u>http://www.newa.ru/journal</u> <u>http://www.math.spbu.ru/user/diffjournal</u> e-mail: <u>jodiff@mail.ru</u>

<u>Компьютерное моделирование динамических и</u> <u>управляемых систем</u>

# ГИДРОДИНАМИКА ЛЬДА В ЗАДАЧАХ С КОНЕЧНОЭЛЕМЕНТНОЙ ПОСТАНОВКОЙ

В.А.Лобанов

# Россия, 603155, Нижний Новгород, Большая Печёрская, 32-46, e-mail: lobbas@kis.ru

## Введение

Настоящей работой автор развивает серию публикаций о конечноэлементном моделировании контактного взаимодействия ледяного покрова с различными конструкциями и средами [8,9].

Научно-техническая деятельность автора связана с оценкой ледовых качеств судов внутреннего плавания. Опыт участия в работе различных экспертных комиссий показал, что аналитические методики расчётов не во всех случаях дают адекватный отклик. Приходится прибегать к численному анализу рассматриваемых процессов (или их частей). При этом автор имеет ввиду использование современных САЕ-систем. Хотя трудоёмкость подготовки модели и последующие затраты на вычисления не сопоставимы с аналитическими методами, это окупается более высокой точностью, наглядностью, многосторонностью результатов. Однако адекватность конечноэлементной модели зависит от ряда факторов: выбора моделей материалов и их физико-механических характеристик; задания алгоритмов контактного взаимодействия тел; степени дискретизации конструкций и сред конечноэлементной сеткой; типов конечных элементов; определения начальных и граничных условий.

Оценка гидродинамических нагрузок является составной частью многих задач. Поэтому подходы к их численному решению активно совершенствуются на протяжении многих лет. К настоящему времени они успешно реализованы и апробированы в ряде CAE-систем [1,10]. К сожалению, эти пакеты в основном ориентированы на гидро и газодинамику, как правило, не имеют интерфейса с другими системами и ограничены в возможностях параллельных вычислений (SMP, MPP). По этим причинам автор в своей работе предпочитает использование CAE-пакетов, претендующих на универсальность [2,6].

При движении судна во льдах доминирующая нагрузка на его корпусе определяется непосредственным контактом с ледяным покровом, а также взаимодействием льдин между собой. Скорость взаимодействия ледяных образований в подавляющем большинстве случаев достаточно низкая (~ 1,5 м/с). Аналитический учёт гидродинамических усилий, испытываемых льдом при этом, показывает, что они колеблются в пределах нескольких процентов от суммарных нагрузок. Вопросы ставятся следующим образом: насколько значимо при таких скоростях вода демпфирует ледовые нагрузки? Допустим ли приближённый учёт гидродинамической составляющей (а, возможно, и пренебрежение ею)? Ответы на них имеют весьма важное значение для САЕ-симуляции, так как ввод дополнительной среды в погоне за повышением достоверности моделирования в несколько раз повышает ресурсоёмкость задач и, как минимум, на порядок увеличивает время расчёта.

Для ответов на поставленные вопросы в настоящей работе обоснован выбор CAE-алгоритма контактного взаимодействия льда с водой. Проведён сравнительный анализ результатов моделирования контакта ледяных образований с учётом гидродинамики на базе выбранного алгоритма и по упрощённым схемам расчёта.

## Моделирование воды и контакта лёд – вода

В зависимости от класса решаемых задач в САЕ-системах используются различные материалы для моделирования жидкостей: упругий, упругопластический. В ряде пакетов разработаны особые материалы. Автор для описания воды со свободной поверхностью использовал специальный NULL-материал. Характер его поведения под нагрузкой аналогичен реакции вязкопластического материала с нулевыми компонентами девиатора напряжений [2]. Универсальность этого материала требует обязательного задания уравнения его состояния. САЕ-программы допускают применение уравнений состояния в различных видах. Литературные [4] и авторские источники позволили сформулировать его в форме Грюнайзена (Gruneisen):

$$p = \frac{\rho_0 c^2 \mu \left[ 1 + \left( 1 - \frac{\gamma_0}{2} \right) \mu - \frac{\alpha}{2} \mu^2 \right]}{\left[ 1 - (S_1 - 1) \mu - S_2 \frac{\mu^2}{\mu + 1} - S_3 \frac{\mu^3}{(\mu + 1)^2} \right]} + (\gamma_0 + \alpha \mu) E$$
(1),

где *p* – давление в воде, Па;

c – скорость звука в воде, м/с (c = 1484,0);

$$\mu = \frac{\rho}{\rho_0} - 1 = \frac{V_0}{V} - 1 \qquad (2),$$

 $\rho$  – текущая плотность воды, кг/м<sup>3</sup>;

 $\rho_0$  – начальная плотность воды, кг/м<sup>3</sup> ( $\rho_0 = 1000, 0$ ;табл. 1);

V – текущий объём воды, м<sup>3</sup>;

 $V_0$  – начальный объём воды, м<sup>3</sup>;

 $\gamma_0$  – постоянная Грюнайзена ( $\gamma_0 = 0,11$ );

 $\alpha, S_1, S_2, S_3$  – эмпирические коэффициенты (  $\alpha = 3,0; S_1 = 1,979; S_2 = S_3 = 0$ );

$$E = E_0 \rho \qquad (3$$

 $E_0$  – начальная удельная внутренняя энергия воды, Дж/кг (  $E_0 = 3,072 \cdot 10^5$  ).

Расчётные физико-механические константы воды и льда приведены в табл. 1.

Таблица 1

| Расчётные характеристики материалов        |                               |                              |
|--------------------------------------------|-------------------------------|------------------------------|
| Параметр                                   | Материал                      |                              |
|                                            | Лёд                           | Вода                         |
|                                            | Упругопластический материал с | Вязкопластический материал с |
|                                            | изотропным упрочнением,       | нулевыми компонентами        |
| Модель                                     | критерием текучести Мизеса и  | девиатора напряжений         |
|                                            | критериями разрушения         |                              |
| Плотность, кг/м <sup>3</sup>               | 910,0                         | 1000,0                       |
| Модуль Юнга, Па                            | $5,00 \cdot 10^9$             | $2,5 \cdot 10^9$             |
| Модуль сдвига, Па                          | $1,87 \cdot 10^9$             |                              |
| Модуль объёмного сжатия, Па                | $5,20 \cdot 10^9$             |                              |
| Коэффициент Пуассона                       | 0,34                          | 0,50                         |
| Предел текучести, Па                       | $2,50 \cdot 10^{6}$           |                              |
| Модуль упрочнения, Па                      | $0,65 \cdot 10^9$             |                              |
| Предел прочности на растяжение, Па         | $1,20 \cdot 10^{6}$           |                              |
| Деформация разрушения                      | 0,012                         |                              |
| Динамическая вязкость, Па • с              |                               | 0,001                        |
| Кинематическая вязкость, м <sup>2</sup> /с |                               | $1,0 \bullet 10^{-6}$        |

В современных САЕ-системах моделирование гидродинамики допустимо в различных формулировках жидкости. Можно использовать Эйлерову, Лагранжеву сетку конечных элементов или бессеточный способ, известный в литературе как метод сглаженных частиц (гидродинамика сглаженных частиц – smoothed particles hydrodynamic, SPH-метод) [3].

В случае Эйлеровой формулировки жидкость моделируется неподвижной конечноэлементной сеткой. При этом для описания взаимодействия Лагранжева тела (льдины) и Эйлеровой воды применяется специальный

алгоритм контактного взаимодействия – ЛАГРАНЖЕВО-ЭЙЛЕРОВО СВЯЗЫВАНИЕ (Lagrangian-Eulerian coupling). Автор использовал одну из его разновидностей, реализованную в виде метода штрафа. Данный метод основан на определении относительного перемещения между жидкостью и телом внутри её. По его величине в систему жидкость-тело добавляются силы, пропорциональные этому перемещению и воздействующие на структурные единицы модели. В результате движение тела и жидкости становится согласованным.

Лагранжева вода характеризуется деформируемой сеткой конечных элементов. Сильное искажение сетки замедляет скорость вычислений вплоть до неприемлемых пределов. Кроме того это может привести к появлению нефизических эффектов в процессе расчёта. Поэтому применение такого подхода ограничено кругом задач с относительно небольшим формоизменением среды (например, начальные стадии удара тела о воду). В этом случае могут быть использованы различные алгоритмы контактного взаимодействия [8]. Автор в настоящем анализе применил несимметричный алгоритм типа УЗЛЫ-ПОВЕРХНОСТЬ (узлы конечноэлементной сетки воды – подчинённые, внешние сегменты сетки льдины – главные).

При использовании SPH-метода среда представляется совокупностью узлов (частиц), не связанных конечноэлементной сеткой. Частицы имеют различные свойства (координаты, массу, плотность, скорость, температуру и пр.) и взаимодействуют между собой. Закон взаимодействия (сглаживающее ядро) назначается пользователем априорно. Для воды в качестве такого закона используется распределение Гаусса или кубический сплайн [5]. Вид контакта жидкости и тела аналогичен Лагранжевой формулировке.

Адекватность результатов моделирования по всем видам формулировок очень чувствительна к величине используемой вязкости среды. При этом необходимо учитывать, что расчётная вязкость не является строгим аналогом вязкости воды (динамической или кинематической). Величина и способ задания расчётной вязкости определяется видом формулировки. Так для Эйлеровой воды этот параметр стремится к табличной величине кинематической вязкости воды. Применение аналогичного значения для Лагранжевой воды может привести к нереальным явлениям в процессе расчётов. В этом случае вязкость приходится увеличивать на порядок и более. Кроме этого в Эйлеровой и Лагранжевой формулировках эта характеристика вводится с помощью специального параметра, явно не связанного с заданными физико-механическими константами воды (табл. 1). Этот параметр предназначен для контроля безэнергетических форм деформации элементов – HOURGLASS ENERGY [2].

При моделировании эксперимента автором были использованы все упомянутые выше формулировки воды. Суть эксперимента заключалась в фиксировании траектории вертикального движения льдины при её падении с определённой начальной скоростью в аквариум с водой. Аквариум представлял прямоугольный параллелепипед с размерами столба воды 0,2 x 0,2 x 0,1 м. В качестве аналога льдины в этом эксперименте был использован брусок полиэтилена высокого давления (0,10 x 0,05 x 0,02 м). Данный материал традиционно используется для имитации льда [12]. Учитывая, что контакт полиэтилена и стенок сосуда отсутствовал, можно пренебречь прочими ошибками, сопутствовавшими такой замене.

В Лагранжевой и Эйлеровой формулировках вода и льдина моделировались восьмиузловыми элементами объёмного типа с одноточечной схемой интегрирования по объёму. Размер ребра элемента воды – 0,005 м, льдины – 0,01 м. Общее количество элементов модели составило 32100 ед. (рис. 1). При использовании SPH-метода начальное расстояние между соседними узлами-элементами модели составило 0,005 м. Льдина была представлена аналогично предыдущим формулировкам. Общее количество элементов немногим превысило 35400 ед. (рис. 2).



Рис. 1. Модель в Лагранжевой и Эйлеровой формулировках воды

Рис. 2. Модель в SPH-формулировке воды

Сравнение результатов эксперимента и расчётов показано на рис. 3.



Рис. 3. Сравнение эмпирических и расчётных данных для вертикального движения льдины

Анализ результатов моделирования с очевидностью отдаёт предпочтение Эйлеровой формулировке воды. Замеры вертикальной координаты движения льдины до момента первого максимального всплытия с высокой корреляцией описываются модельной зависимостью (кривая А на рис. 3).

В Лагранжевой постановке движение льдины до желаемой точки не было просчитано (кривая В на рис. 3). Уменьшение временного шага интегрирования ниже разумного предела для вычислительной техники автора сделало дальнейшие расчёты невозможными. Тем не менее, полученные данные позволяют судить о приемлемости этой модели только в начальной стадии падения льдины (примерно до момента времени 0,2 с). С момента времени 0,25 с при смещении льдины на 0,115 м от исходного положения начинается её всплытие, что далеко от реальности.

Ещё более худший результат демонстрирует SPH-модель воды (кривая С на рис. 3). При этом глубина наибольшего погружения льдины примерно вдвое меньше эмпирической, а время до момента первого максимального всплытия – втрое. Применимость модельной кривой распространяется до момента времени около 0,1 с. Анализ расчётных гидродинамических нагрузок на льдину в SPH-формулировке воды показал наличие в среде дополнительной выталкивающей силы. Попытки автора скомпенсировать эту силу уменьшением массы частиц (кривая D на рис. 3) или неучётом гравитации воды (кривая E на рис. 3) несколько улучшили модель, но достоверность результатов не была достигнута. Однако более детальное рассмотрение данной модели показало её адекватность в описании поведения свободной поверхности жидкости и в значениях сил на стенках сосуда. Для сравнения автор провёл дополнительное моделирование обрушения столба воды. Результаты решения данной задачи по аналогичному методу опубликованы в [7]. Сходимость их с авторским моделированием удовлетворительна (рис. 4). Сказанное подтверждает наличие какого-то противоречия в CAE-системе в отношении SPH-формулировки жидкости, что требует её дальнейшего изучения.

Качественная картина характера падения льдины более наглядна для Лагранжевой и SPH-моделей воды, так как они явно демонстрируют характер поведения свободной поверхности воды (рис. 5).





#### Влияние гидродинамики льда на контактные ледовые нагрузки

Для оценки степени влияния гидродинамического воздействия на контакт ледяных образований автором была смоделировано соударение двух льдин протяжённостью около 5,0 м и толщиной 0,5 м. Одна льдина первоначально была в состоянии покоя. Другая двигалась либо с заданной начальной скоростью в горизонтальной плоскости, либо произвольно под воздействием силы, приложенной к одной из её кромок. При этом начальная скорость соударения изменялась в пределах 1,5 – 2,0 м/с. Первый случай автор условно назвал «двумерный контакт», второй – «трёхмерный контакт». Для каждого контакта было просчитано три модельных варианта.



(а – Эйлерова вода; б – Лагранжева вода; в – SPH-вода)

В первом варианте со стороны воды учитывались только гидростатические (выталкивающие) силы. Причём они задавались программно как нагрузки, приложенные к узлам льдин.

Второй вариант помимо гидростатики учитывал и гидродинамику ледяных образований. Гидродинамические нагрузки, предварительно рассчитанные по методике [11], также присваивались программно как силы, зависящие от скоростей узлов. При этом в данном варианте для повышения достоверности необходимо назначение локальной координатной системы для каждой льдины. В этой подвижной системе координат для соответствующей льдины задавались узловые нагрузки. К сожалению, для произвольного перечня узлов процесс назначения сил, зависящих от какого-либо параметра (координаты, перемещения, скорости), практически не автоматизирован в САЕ-системах, то есть он отличается очень высокой трудоёмкостью при построении модели. Следовательно, реальные возможности его использования ограничены небольшим количеством ледяных образований в модели.

В третьем варианте вода моделировалась Эйлеровой жидкостью.





Рис. 6. Модель контакта ледяных образований в Эйлеровой формулировке воды

Обработка результатов расчёта показала сильное влияние демпфирующих свойств воды на характер движения льдин. Показательным при этом является поведение кривых суммарной кинетической энергии системы ледяных образований в процессе контакта (рис. 7 и 8).

Так для «двумерного контакта» игнорирование гидродинамической составляющей сохраняет кинетическую энергию льдин после удара на уровне, превышающем фактический более чем в 1,5 раза (кривые В и С на рис. 7). Для «трёхмерного контакта» это соотношение нестабильно из-за существенных вертикальных колебаний льдин. При этом в течение всего расчётного периода оно превышает двукратную величину (кривые А и С на рис. 8). Значимо вода влияет и на разгон льдины. Неучёт её в данном случае завышает начальную энергию соударения в 2,25 раза (кривые А и С на рис. 8).

Приближённый учёт гидродинамических сил по методике СНИПа [11] на кратковременном разгоне льдины практически не сказывается (кривые В и С на рис. 8). Для «двумерного контакта» в этом варианте прогнозируется примерно 30%-й избыток кинетической энергии по отношению к фактической (кривые А и С на рис. 7). В «трёхмерном контакте» эта разница в процессе удара колеблется на уровне 20%, после чего с замедлением движения льдин следует ожидать примерно одинаковых уровней энергии (кривые А и В на рис. 8).



Рис. 7. Поведение кривых суммарной кинетической энергии системы льдин при «двумерном контакте»



Рис. 8. Поведение кривых суммарной кинетической энергии системы льдин при «трёхмерном контакте»

Оценка влияния гидродинамики льдин на величину и характер контактных усилий показана на рис. 9 - 12. Для «двумерного контакта» учёт только гидростатики почти втрое завышает амплитуду контактной силы и вдвое – длительность удара, что приводит к троекратной разнице в импульсах сил (кривые A и C на рис. 9 и 10). Приближённый учёт гидродинамических сил в этом случае уменьшает предыдущие соотношения по амплитуде и длительности удара, но почти не ощущается на изменении разницы в величинах импульсов сил (кривые A и B на рис. 9 и 10).

При «трёхмерном контакте» вследствие произвольных вертикальных колебаний льдин картина соударения изменяется. При этом по всем вариантам многократно увеличивается время контакта. Неучёт гидродинамики на 25% повышает амплитуду контактной силы, соотношение по длительности контакта остаётся примерно на уровне «двумерного контакта». Уровень импульса силы для этого варианта показывает 2,5 кратный излишек по отношению к фактическому (кривые A и C на рис. 11 и 12). Приближённый учёт гидродинамики сказывается в основном на длительности контакта, но слабо влияет на изменение соотношения импульсов сил (кривые A и B на рис. 11 и 12).



Рис. 9. Величины контактных нагрузок льдин при «двумерном контакте»



Рис. 10. Величины импульсов контактных сил при «двумерном контакте»



Рис. 11. Величины контактных нагрузок льдин при «трёхмерном контакте»





## Выводы

- 1. Воду допустимо моделировать вязкопластическим материалом с нулевыми компонентами девиатора напряжений (NULL-материал).
- 2. Гидродинамика ледяных образований адекватно описывается в Эйлеровой формулировке воды с применением алгоритма ЛАГРАНЖЕВО-ЭЙЛЕРОВО СВЯЗЫВАНИЕ.
- 3. В реальном диапазоне скоростей взаимодействия ледяных образований игнорирование или приближённый учёт гидродинамической составляющей сил порождает неадекватность модели.
- 4. При малых скоростях взаимодействия льдин (~ 0,5 м/с) для оценки гидродинамических нагрузок допустим их приближённый учёт, например по методике СНИПа [11].

#### Литература

- 1. CD-adapco Group, User Guide. STAR-CD version 3.26 \_ CD adapco: 2005.
- Hallquist J.O. LS-DYNA 950. Theoretical Manual. Livermore Software Technology Corporation. LSTC Report 1018. Rev. 2. USA, 2001. – p 498.
- 3. Karen E. Jackson, Yvonne T. Fuchs. Comparison of ALE and SPH Simulation of Vertical Drop Test of a Composite Fuselage Section into Water. 10th International LS-DYNA Users Conference, http://www.dynalook.com/international-conf-2008/FluidStructure-1.pdf
- 4. Masahika Otsuka, Yamato Matsui, Kenji Murata, Yukio Kato, Shigeru Itoh. A Study on Shock Wave Propagation Process in the Smooth Blasting Technique. 8<sup>th</sup> International LS-DYNA Users Conference, http://www.dynalook.com/international-conf-2004/07-3.pdf
- 5. А.П. Воробьев, В.И. Кривенцев, Qian Lin, Xuewu Cao. Моделирование фрагментации в жидких средах методом сглаженных частиц (Smoothed Particle Hydrodynamics). Научно-технический журнал «Ядерная энергетика», №1, 2008. с. 85-95.
- 6. Басов К.А. ANSYS в примерах и задачах / Под общ. ред. Д.Г. Красковского. М.: Компьютерпресс, 2002. 224 с.: ил.
- К.Е. Афанасьев К.Е., Попов А.Ю. Метод SPH для моделирования динамики жидкости со свободной поверхностью. Гидродинамика больших скоростей и численное моделирование - 2006. Конференция Кемеровского государственного университета, 22.06 – 28.06.2006, Кемерово, http://conference.kemsu.ru/conf/hshns2006/sect/index.htm?sec\_id=726
- Лобанов В.А. Алгоритм контактного взаимодействия тел со льдом в задачах с конечноэлементной постановкой. Дифференциальные уравнения и процессы управления, №3, 2009. Электронный журнал, рег. №П2375 от 07.03.97 ISSN 1817-2172, http://www.neva.ru/journal/j/pdf/lobanov2.pdf
- 9. Лобанов В.А. Моделирование льда в задачах с конечноэлементной постановкой. Дифференциальные уравнения и процессы управления, №4, 2008. Электронный журнал, рег. №П2375 от 07.03.97 ISSN 1817-2172, http://www.neva.ru/journal/j/RU/numbers/2008.4/issue.html
- 10. Система моделирования движения жидкости и газа Flow Vision. Версия 2.2. / Руководство пользователя. М.: Тесис, 2005. 304 с.
- 11. СНиП 2.06.04-82 Нагрузки от воздействия на гидротехнические сооружения (волновые, ледовые, от судов). М.: Стройиздат, 1983. 38 с.
- 12. Тронин В.А. Повышение безопасности и эффективности ледового плавания судов на внутренних водных путях. Диссертация на соискание учёной степени доктора технических наук. Горький, 1990. 414 с.