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Abstract

In this paper we presented the partial differential equations [4] for the wave-pockets in
the Minkowski 4-dimensional spaces. In particular we considered the stationary cases for
the matter wave-pockets, by considering that in all cases, the geometric form (the matter
distribution Φ) of a particle in a given time-instance t depends on the particular boundary
conditions for these differential equations as well.

In physics and mathematics, Minkowski space (or Minkowski time-space) is the
mathematical setting in which Einstein’s theory of special relativity is most
conveniently formulated. In this setting the three ordinary dimensions of space
are combined with a single dimension of time to form a four-dimensional man-
ifold for representing a time-space.
In theoretical physics, Minkowski space is often contrasted with Euclidean
space. While a Euclidean space has only spacelike dimensions, a Minkowski
space also has one timelike dimension. We define the basic time-space four
mutually orthogonal vectors ej, 0 ≤ j ≤ 3, by the following matrix:
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e0

e1

e2

e3

 =


1 0 0 0

0 i 0 0

0 0 i 0

0 0 0 i

, with imaginary number i =
√
−1.

Note that the matrix above is a particular case of the Minkowski tensor using
a four-dimensional time-space, which combines the real dimension of time with
the three imaginary dimensions of space.
Consequently, a vector of position in this space-time 4-dimensional system is
given by
−→r4 = cte0 + xe1 + ye2 + ze3 = cte0 + −→r , where t is the time (i.e., ct is the
timelike component of −→r4 , where c is the velocity of light in the vacuum) and
−→r = xe1 + ye2 + ze3 is an ordinary Euclidean vector with x, y, z three spatial
coordinates.
Its infinitesimal amount is defined by d−→s = cdte0 + dxe1 + dye2 + dze3, where
dt, dx, dy and dz are infinitesimal amounts of time-space dimensions.
Thus, in this 4-dimensional system the time is real while the three orthogonal
space coordinates are imaginary. This choice is adopted in order to have that
the distance
ds2 = d−→s d−→s = (cdt)2 − dx2 − dy2 − dz2,
for all local time-space reference systems of observations of quantum events be
the positive real value (where space dimensions are limited).
An angular wavenumber vector in this four-dimensional time-space is given by−→
k4 = kte0 + kxe1 + kye2 + kze3.

In what follows we will denote by
−→
k = kxe1 +kye2 +kze3 the spatial component

of the angular wavenumber vector, with k2 = |
−→
k
−→
k | = k2

x + k2
y + k2

z , so that

k2
4 =
−→
k4
−→
k4 = k2

t − k2.
The mutually independent space-components are defined as usual by kx =
2π
λx
, ky = 2π

λy
, kz = 2π

λz
, where λx, λy, λz are spatial wavelengths w.r.t the axes x, y

and z respectively, and λ = 2π
k is the (total) spatial wavelength. Let ω = 2πν be

an angular frequency that depends on the space-components, ν = 1
T with a time

period T . Thus, λt = cT is the time-like wavelength and kt = 2π
λt

= ω(k)
c depends

on the space-components in
−→
k4, so that it holds that dk4 = dk = dkxdkydkz,

and −
−→
k4
−→r4 = kxx+ kyy + kzz − ω(k)t.

Remark: from the relativistic theory we have that for each massive elemen-
tary particle (with rest mass m0 greater than zero) it holds that ω(k) =
±c

√
k2 + (m0c \ ~)2, where ~ = h

2π is the Dirac’s constant, for the Planck’s
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constant h = 6.6210−34Js.
Note that we assume that ω can be positive or negative (clockwise or counter-
clockwise angular frequency), so that the energy of the particle is E = ~|ω|,
where | | denotes the absolute value. In the rest of this paper we will consider
the cases when ω is positive.
Notice that if we represent an elementary particle, with energy E = ~ω and

momentum −→p = ~
−→
k , by a single harmonic Ae−i

−→
k4
−→r4 in this four-dimensional

space, where
−→
k4 = ω

c e0 +
−→
k = E

~ce0 +
−→p
~ , then we obtain that k2

4 = (ωc )2− k2 = 0
for particles with rest mass equal to zero (photons, gravitons, etc..), and k2

4 > 0
for the massive particles (with rest mass m0 greater than zero). In fact, we
obtain that |k4| = ω0

c where ω0 = m0c
2

~ is the invariant angular frequency for
particles (analog to the invariant rest mass m0 of particles). Thus, similarly

to the 3-dimensional angular wavenumber vector
−→
k that in physics means the

particle’s momentum, the 4-dimensional angular wavenumber
−→
k4 has a physical

meaning as the particle’s relativistically invariant angular frequency.
�
The plan of this paper is the following: In Section 1 we present an introduction
to matter-events in the Minkowski’s space, and we specified their stationary
conditions for the massive and massless elementary particles. In Section 2
we specified the formal definition for matter-events as propagation of wave-
pockets, and we presented an example for the propagation of photons (light).
The main result is developed and presented in Section 3, in two propositions
with proofs, for the first and for the second-order partial differential equations of
these wave-pockets. Finally, in Section 4 are given applications of these results
to the quantum mechanics, with two significant examples.

1 Introduction to matter-events

In any given instance of time t, any matter-event in this time-space is a partic-
ular time-space perturbation Ψ(−→r4), that can be mathematically given by the
following Fourier transformation:

Ψ(−→r4) = Ψ(x, y, z, t) =
∫
C(k4)e

i(−
−→
k4
−→r4)dk4 =

=
∫
A(k)ei(−

−→
k−→r −ω(k)t)dk = (where A(k) = C(k4) = C(

√
(ω(k)

c )2 − k2 ))

=
∫ ∫ ∫ +∞

−∞ A(k)ei(kxx+kyy+kzz−ω(k)t)dkxdkydkz.
It is a space-distribution of a particle in a given instance of time t, and it
changes in time, that is, the amplitudes A(k) are generally dependent on time
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as well.
Mathematically, these matter-events are complex functions, composed by one
real and one imaginary component. The amplitudes A(k) of the harmonics, in
a given instance of time t, are given by inverse Fourier transformation,
A(k) =

∫ ∫ ∫ +∞
−∞ Ψ(x, y, z, t)e−i(kxx+kyy+kzz−ω(k)t)dxdxdz.

The elementary particles are pocket waves that propagate in this four-
dimensional space.

Thus, for such particular stationary cases we have that dω(k)/d
−→
k is con-

stant (that is, it does not depend on
−→
k ), equal to the particle’s velocity

−−→v = −vxe1 − vye2 − vze3 (negative sign is the consequence that ei, i ≥ 1
are imaginary, thus the scalar products of (only) spatial vectors are negative),
that can depend on the time t as well.
Consequently, for any fixed instance of time t, by integration we obtain that,

(0)
∫ −→k−→
k0
dω = ω(k)− ω(k0) = −

∫ −→k−→
k0

−→v d
−→
k = −−→v

∫ −→k−→
k0
d
−→
k = −−→v (

−→
k −

−→
k0),

where the constant
−→
k0 =

−→p
~ for a given momentum −→p = pxe1 + pye2 + pze3 of

a particle that is collinear with the velocity −→v , that is, −→p−→v = −pv. Because
of that we can write −→p = p

−→
iv , −→v = v

−→
iv , where

−→
iv is unitary vector tangent to

the trajectory of a particle (i.e.,
−→
iv
−→
iv = −1). Thus,

ω(k) = ω0 + vx(kx − px
~ ) + vy(ky − py

~ ) + vz(kz − pz
~ ),

where ω0 denotes the constant ω(k0) that does not depend on k but may depend
on time as we will see in what follows.
The phase velocity of a particle’s pocket-wave, observed in a given referential
system, is defined by ϑ = ω0

k0
.

The constant ω0 is determined as follows in the following two cases, by consid-
ering that the angular frequency ω(k) for its particular values is correlated by
De Broglie [1] to the total energy o particle E = ~ω(k):

• Case for massive particles (with rest mass m0 > 0), denominated as mass-
particles as well: when −→v = 0 then the energy of this particle is E = m0c

2,
that is, the energy in the rest-state of this particle. Consequently, from (0)
we have that ω0 = ω(k) = m0c

2

~ .
Consequently, for the total energy of these mass-particles that propagates
with velocity v = |−→v |, with β = v

c , it holds that,

E =
√

(m0c2) + (pc)2 =
√

(~ω0)2 + (pc)2 = m0c
2√

1−β2
= ~ωv,

where ωv = ω0/
√

1− β2 is a computed angular frequency relative to the
velocity v of this particle w.r.t. the reference system of an observer (for
different observes in different referential systems, that move with different
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velocities, this computed value of the same observed particle is different).
For an observer in a given fixed position (the origin of its coordinate system,
for example), this observed particle’s frequency is by Lorentz low slowed
down by the factor

√
1− β2, so that the really observed particle’s angular

frequency of the observed wave-pocket Ψ(−→r4) given above is constant and
equal to ωv

√
1− β2 = ω0. Thus, ω0 is the angular frequency of this massive

particle equal in any inertial system (without acceleration), that is, an
invariant as is the rest-mass m0.

• Case for massless particles (with rest mass m0 = 0): they propagate, as
usual, with very high velocity c ≥ v > 0 equal to the maximal velocity
of light if this particle propagates in the vacuum, thus the zero value of

equation (0) we can obtain when
−→
k =

−→
k 0 =

−→p
~ . Consequently, the value

of E is the total energy of this particle with the given momentum −→p , so
that ω0 = ω(k) = ω(p~) = E

~ . The total energy of massless particles is
defined by E = ~ωo = (~k0)ϑ = pϑ. When a particle propagates in the
vacuum then ϑ = c, so that E = pc.
When the total energy changes in time, to a fixed observer this angular
frequency appears to change as well (for example, the relativistic effects
for red-shifting of photons for a fixed observer). Thus, differently from
massive particles where for a fixed observer ∂ω0

∂t = 0, here ω0 can change in
time, if a particle changes its total energy during the propagation.

2 Definition of the wave-pocket in the Minkowski pseu-

doeuclidean space

Consequently, from the introduction to matter-events given in the previous Sec-
tion, for the wave-pocket of an elementary particle, and given reference system,
we have that
(1) Ψ(x, y, z, t) =

∫
A(k)ei(−

−→
k−→r −ω(k)t)dk =

= (
∫
A(k)e−i(

−→
k−→r −−→v (

−→
k−
−→
k0)t)dk)e−iω0t =

= (
∫
A(k)e−i(

−→
k−
−→
k0)(−→r −−→v t)dk)ei(−

−→
k0
−→r −ω0t) =

= Φ(−→r , t)ei(−
−→p−→r
~ −ω0t) = Φ(−→r , t)ei p~ (−−→iv−→r −ϑt).

In what follows we introduce the spatial vector −→u = −→r −−→v t, that is equal to
zero for the time-space points of particle’s trajectory.
The ”corpuscular” geometric wave-pocket shape (matter’s distribution) of a
particle, that appears to a fixed observer, is given by
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Φ(−→r , t) = Φ(x, y, z, t) =
∫
A(k)e−i(

−→
k−
−→
k0)(−→r −−→v t)dk =

=
∫
A(|
−→
k +

−→
k0|)e−i

−→
k−→u dk =

(here we denote by B(k) the value A(|
−→
k +

−→
k0|)),

=
∫ ∫ ∫ +∞

−∞ B(k)ei(kx(x−vxt)+ky(y−vyt)+kz(z−vzt))dkxdkydkz =

=
∫ ∫ ∫ +∞

−∞ B(k)ei(kxux+kyuy+kzuz)dkxdkydkz.
In the case when a particle propagates in the vacuum with a constant velocity
−→v (stationary case), then the coefficients B(k) does not change in time, i.e.
∂B(k)
∂t = 0, so that the ”corpuscular” geometry (matter distribution) does not

change in time and Φ(−→r , t) = Φ(−→u ) = Φ(−→r −−→v t) = Φ(x−vxt, y−vyt, z−vzt)
is a wave-pocket that propagates with a velocity −→v .
For instance, in such a stationary case, for a particle with m0 = 0 (for example
boson as photon, graviton, etc..) that propagates in the vacuum with a veloc-
ity equal to its phase velocity (when c = |−→c | = ϑ), so that the total energy is
E = pϑ = pc = −−→p−→c , we have that ω0 = −−→p−→c /~, so that
Ψ(x, y, z, t) = Φ(−→r −−→c t)e−i−→p (−→r −−→c t)/~ = Ψ(−→r −−→c t).
But in non-stationary cases, when a particle changes its velocity and total
energy, its distribution (”corpuscular” geometry) Φ changes in time as well,
because the coefficients B(k) in the Fourier integral above change in time, that

is, ∂B(k)
∂t 6= 0. In such more complex cases with an acceleration of particles,

we have both phenomena: particle changes its velocity, momentum and total
energy (because of the interaction with another particles), and its corpuscular
geometry as well.
There are particular cases, when a particle does not change its total energy and
with ∂

∂t(
−→p−→v ) = 0, with acceleration caused only by (constant) velocity that

changes its direction, when Φ does not change in time its distribution w.r.t. its
trajectory, so that it is of the form Φ(−→r −−→v t). For instance in the case of the
stationary rotation of electrons around nucleus of an atom.
Thus, based on standard Fourier transformation, the function Φ(−→r , t) is a real
function, differently from Ψ(x, y, z, t that is complex. The real and imaginary
components of Ψ(x, y, z, t) are determined by the oscillation of the complex os-

cillator component ei(−
−→p−→r
~ −ω0t), that is an oscillation identical to the complex

plain wave (like, for example, the complex electromagnetic plain wave). The
amplitudes B(k) of the harmonics can be obtained by the inverse Fourier trans-
formation, for each given instance of time t, by:
B(k) =

∫ ∫ ∫ +∞
−∞ Φ(x, y, z, t)e−i(kxux+kyuy+kzuz)dkxdkydkz.

Thus, generally any particle is determined by the pocket-wave Ψ(x, y, z, t)
composed by two sub components: by the corpuscular matter distribution
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Φ(x, y, z, t) that is a real function, and by the ’phase wave’ ei(−
−→p−→r
~ −ω0t) that

is a complex function.
Example 1: speed of light.
When light propagates through a material, it travels slower than the vacuum
speed. This is a change in the phase velocity ϑ of the light and is manifested
in physical effects such as refraction. The ratio between c and the speed ϑ at
which light travels in a material is called the refractive index n of the material
(n = c/ϑ). Refraction occurs when light waves travel from a medium with a
given refractive index to a medium with another at an angle. At the bound-
ary between the media, the wave’s phase velocity is altered, usually causing
a change in direction. Its wavelength increases or decreases but its frequency
remains constant (thus photons change their momentum and velocity but does
not change their energy). This reduction in speed is quantified by the refractive
index of the material.
For example, for visible light the refractive index of glass is typically around
1.5, meaning that light in glass travels at c/1.5 ≈ 200, 000km/s; the refractive
index of air for visible light is about 1.0003, so the speed of light in air is very
close to c.
Certain materials have an exceptionally low group velocity for light waves, a
phenomenon called slow light. In 1999, a team of scientists led by Lene Hau
were able to slow the speed of a light pulse to about 17 meters per second (61
km/h; 38 mph) [3], they were able to momentarily stop a beam [2].
�
It can be shown that, in the case of these massless elementary particles that
propagate in vacuum with the velocity of light c, we have that this ”corpuscu-
lar” wave pocket in the stable(general) state corresponds to the Dirac function
(with A(k) = B(k) = 1/(2π)3), δ(−→r − −→c t) = δ(x − cxt, y − cyt, z − czt) =
δ(x − cxt)δ(y − cyt)δ(z − czt). It is reasonable assumption that the volume of
a distribution Φ (where it is greater than zero) of a massive particle (with rest
mass m0 greater than zero) is always greater than zero, so that it is a reason
that such particles can not reach the limit velocity of light. In the analog way,
the massless particles (with rest mass equal to zero) must have, in their stable
state, this volume equal to zero, so that their distribution Φ is equal to Dirac
function above, and they are able to propagate with the velocity of light in the
vacuum. The non stable states of particles with rest mass m0 = 0 can have
more complex wave-pocket forms and it happen only in a very short instances
of time, when the particle enters in strongly unsymmetric space region, as will
be explained in what follows. In such situations its velocity of propagation
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becomes less than the velocity of light in the vacuum so that this particle can
have a similar behavior as massive particles with Φ that occupies a limited but
nonzero volume (so called spatial explosion of excited bosons). This unstable
state of the particles with m0 = 0 tends to come back into the stable state with
Dirac function geometry for distribution Φ.
For any matter-perturbation of an elementary particle that propagates in the 3-
dimensional space with a velocity that changes in the time, because of external
forces that influence this particle, the 3-dimensional wave-pocket distribution
Φ(x, y, z, t) changes as well, but it must satisfy the conservation matter prin-
ciple, that is, at each given time instance t it must be satisfied the following
invariance property:
(2) 1Φ =

∫ ∫ ∫ +∞
−∞ Φ(x, y, z, t)dxdydz =

∫ ∫ ∫ +∞
−∞ Φ(x, y, z, 0)dxdydz > 0,

where 1Φ is a time-invariant constant value of an elementary particle (not neces-
sarily equal to 1), and V (t) is a finite cube (or sphere) which contains the whole
”corpuscular” wave-pocket in a given instance of time t, and dV = dxdydz.
We define the minimal (limit) cube Vm(t) = lim(234X4Y 4Z), such that in
this time-instance t, Φ(x, y, z, t) = 0 for (x ≤ −4X or x ≥ 4X or y ≤ −4 Y

or y ≥ 4Y or z ≤ −4 Z or z ≥ 4Z).
The real function Φ(x, y, z, t) is the ”corpuscular” geometric wave-pocket form
of a particle that propagates in the ordinary 3-dimensional space with a veloc-
ity −→v = vxe1 + vye2 + vze3). In the stationary case, when it propagates in the
vacuum with a constant velocity, it has constant distribution, that propagates
as pocket-wave Φ(−→u ) = Φ(−→r −−→v t) = Φ(x− vxt, y − vyt, z − vzt).
The interactions between any two pocket-waves (particles) can be obtained only
by their local collisions, and depending on their energy and velocities they can
produce a kind of Compton effects (elastic collisions) where they survive the
collisions by chaining their momentum and energy (with conservation of total
momentum and energy), or can make total fusion between them with possible
creation of new stable particles (in Feynman’s diagrams). In order to be able
for two pocket-waves to have a collision, and mutual interference, at least one
of them must have a volume Vm(t) (in a given instance of time of mutual col-
lision) greater than zero. So, from this point of view, it can not happen that
the distance between any two particles becomes equal to zero, so that we avoid
classic infinitary problems of gravitational and electronic fields and forces where
the particles are pointlike, so that it is possible to have the distances between
particles equal to zero with, consequently, infinite values of gravitational (or
electric) forces.
The particles with Vm(t) equal to zero are, for example, the particles with
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Φ(x−vxt, y−vyt, z−vzt) equal to the Dirac function δ(x−vxt, y−vyt, z−vzt) =
δ(x− vxt)δ(y − vyt)δ(z − vzt).
Thus, for any two particles with the ”corpuscular” form given by Dirac function,
it is impossible to have the collisions in their stable states, but only when they
are excited and are involved in their temporary ”spatial explosions”. Such ex-
plosions can happen also when two stable particles are very close one to another
so that the ideal spatial symmetry for a free particle in the vacuum does not hold
more: it explains why, for example, photons can interact with gravitons (i.e.,
gravitational field) and may have the gravitational redshifts. Because of that,
it will be natural consequence that the massless particles, as bosons (gravitons,
photons, etc..) in their stable states, will have the volume Vm(t) equal to zero
(with Dirac function for their distribution Φ). In that case they can be used as
intermediators between the massive particles (that have the rest mass and the
volume Vm(t) greater than zero), that is, to be the quantum-correspondence for
the ”fields” (the statistical events as gravitational, electromagnetic, etc., that
are statistical results of actions of a high number of bosons), by avoiding in
more common situations the significant interference between themselves.
This situation can be obtained in the quantum level only if the collisions between
gravitons and photons, for example, are practically improbable. Consequently,
a number of gravitons and photons can coexist in the same small region of space
without any significant direct interference between them during the contempo-
rary collisions with particles with rest mass and volume Vm(t) greater than
zero. Also in such situation we can have the cases of the interference between
a graviton and a photon, in the situation when they are very, very close in a
given instance of time, so that they are involved in temporary spatial explosion
(with their volume of distribution greater than zero in that instance of time).
In normal situations, these interferences statistically can be neglected, while in
the cases of very strong field interactions (when the local density of photons
and gravitons is very high) these inter-boson’s interactions are significant, so
that the gravitation field has strong interactions with the electromagnetic field
in a given local space region.

3 Partial differential equations for the wave-pockets in

the Minkowski space

Let ∇ = e1
∂
∂x + e2

∂
∂y + e3

∂
∂z be the gradient, so that the Laplasian is defined

by 4 = −∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 . Then the derivation of the wave-pocket along
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its trajectory with the unitary tangent vector
−→
iv on the trajectory, collinear

with the vector of its velocity −→v = v
−→
iv =

−→
iv
√
v2
x + v2

y + v2
z , is denoted by the

operator
−→
iv∇.

In what follows, by Re() and Im() we will denote the real and imaginary com-
ponent of complex expressions, so that γ = Re(γ) + iIm(γ) for a complex
number γ.

Proposition 1 The geometric distribution Φ(−→r , t) of the wave-pockets with the
independent space-time variables −→r and t, of an elementary particle given in
(1), is determined by the following differential equations:

(e.1) eiω0t ∂Φe−iω0t

∂t = −i∂(ω0t)
∂t )Φ +−→v1∇Φ + ΦD(−→r , t), where,

−→v1 = ∂
∂t(
−→v t), ΦD(−→r , t) =

∫ +∞
−∞

∂B(k)
∂t ei(kx(x−vxt)+ky(y−vyt)+kz(z−vzt))dkxdkydkz is

equal to zero when this particle is in a stationary state, that is, when ∂B(k)
∂t = 0.

Thus,
(e.2) ∂Ψ

∂t = −iωpΨ +−→v1∇Ψ + ΨD(−→r , t),

where ΨD(−→r , t) = ΦD(−→r , t)ei(−
−→p−→r
~ −ω0t), with ωp = ω1 +

−→p−→v1
~ and ω1 = ∂

∂t(
−→p−→r
~ +

ω0t) =
−→r
~
∂−→p
∂t + ∂

∂t(ω0t), where the particle’s velocity −→v , momentum −→p , and ω0

in the case of massless particles, may change in time.

Proof: From the fact (1) we have that
∂
∂t(Φe−iω0t) = −i∂(ω0t)

∂t Φe−iω0t + (∂Φ
∂t )e−iω0t.

Let us show that ∂Φ
∂t = ∂(−→v t)

∂t ∇Φ + ΦD. We can make the following derivation:

(a.0) ∂Φ
∂t = ∂

∂t(
∫ ∫ ∫ +∞

−∞ B(k)ei(kx(x−vxt)+ky(y−vyt)+kz(z−vzt))dkxdkydkz)

=
∫ +∞
−∞ (−B(k)i(∂(vxt)

∂t kx+
∂(vyt)
∂t ky+

∂(vzt)
∂t kz)+

∂B(k)
∂t )ei(kx(x−vxt)+ky(y−vyt)+kz(z−vzt))dk

= −∂(vxt)
∂t

∫ ∫ ∫ +∞
−∞ (ikx)B(k)ei(kx(x−vxt)+ky(y−vyt)+kz(z−vzt))dkxdkydkz − ...

− ∂(vzt)
∂t

∫ ∫ ∫ +∞
−∞ (ikz)B(k)ei(kx(x−vxt)+ky(y−vyt)+kz(z−vzt))dkxdkydkz + ΦD

= −∂(vxt)
∂t

∂Φ
∂x −

∂(vyt)
∂t

∂Φ
∂y −

∂(vzt)
∂t

∂Φ
∂z + ΦD = ∂(−→v t)

∂t ∇Φ + ΦD.
Consequently, we obtain,
(a.1) ∂

∂t(Φe−iω0t) = (−iω0Φ− it∂ω0

∂t Φ + ∂(−→v t)
∂t ∇Φ + ΦD)e−iω0t,

and the differential equation (e.1).
From the fact that,

(a.2) ∇(Φe−i
−→p−→r
~ ) = (∇Φ)e−i

−→p−→r
~ + Φ i

~(pxe1 + pye2 + pze3)e
−i
−→p−→r
~ =

= (∇Φ + i
~
−→p Φ)e−i

−→p−→r
~ ,

we obtain that (∇Φ)e−i
−→p−→r
~ = ∇(Φe−i

−→p−→r
~ )− i

~
−→p Φe−i

−→p−→r
~ , and

(a.3) (∇Φ)ei(−
−→p−→r
~ −ω0t) = ∇Ψ− i

~
−→p Ψ,

and by substitution in (e.1) we obtain (e.2).

Electronic Journal. http://www.math.spbu.ru/diffjournal 57



Differential Equations and Control Processes, N 1, 2011

�
Notice that ∂ω0

∂t 6= 0 only for the massless particles in their unstable states and
very-very short interval of times 4t ≈ 0, when they change their total energy
E = ~ω0 during the collisions with another particles (the Compton effects). In
what follows we will denote by E = ~ωp the energy associated to this angular
frequency ωp.
Example 2: The stationary case is obtained when a particle propagates with
constant total energy E and constant value E = ~ωp. Thus, in such a stationary
case we have that ΦD(−→r , t) = 0,ΨD(−→r , t) = 0. It is easy to verify that the
stationary case is one, for example, of the following two cases:

1. When a particle propagates with constant momentum−→p , velocity−→v (thus,
∂−→v
∂t = ∂−→p

∂t = 0), and total energy E (in that case ω0 is constant for massless
particles as well). Thus, without any acceleration. In that case ωp is

constant as well, with constant E = ~(
−→r
~
∂−→p
∂t + ∂

∂t(ω0t)+
−→p−→v1

~ ) = ~ω0+−→p−→v =
~ω0 − pv.

2. When a particle routes with constant radius R around a fixed center, with
constant angular velocity ν = |−→v |

R = v
R , constant value of the momentum

p = |−→v |, and total energy E. In this case we can obtain ωp constant in
a particular coordinate system: coordinate center of the reference system
x, y of the plain in which this particles routes. Then, the position of the
trajectory of this particle in a given moment t is equal to −→r = R

−→
iθ , where−→

iθ is a unitary radial vector with angle θ = νt w.r.t the axis x. In this
case the acceleration ∂−→v

∂t = −|∂
−→v
∂t |
−→
iθ , and ∂−→p

∂t = −|∂
−→p
∂t |
−→
iθ are radial vectors

that have the constant values and are orthogonal to the vectors of velocity
−→v and momentum −→p . So that, −→p−→r = 0, −→p ∂−→v

∂t = 0, and

ωp = ∂
∂t(
−→p−→r
~ + ω0t) +

−→p−→v1

~ = +ω0 + 1
~
−→p (−→v + t∂

−→v
∂t ) = ω0 + 1

~
−→p−→v =

= ω0 − pv
~ .

Here both ω0 and pv are constant, and, consequently, we obtained the
stationarity condition

∂ωp
∂t = 0 in all points of the trajectory of this particle,

with constant E = ~ω0 + −→p−→v = ~ω0 − pv. This case will be applied for
the stationary orbits of electrons in an atom, in Example 4.

Notice that in both stationary cases above we obtained that this particular
constant energy is equal to E = ~ωp = ~ω0 +−→p−→v = ~ω0 − pv.

If ωp = ω1 +
−→p−→v1

~ is computed for current space-time positions on the particle’s
trajectory, then, in this particular case, ω1 is taken as a derivation ∂

∂t of the

current particle’s phase −ϕ =
−→p−→r
~ + ω0t (we have that Ψ(−→r , t) = Φ(−→r , t)eiϕ)
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and express the particle’s phase-changing on its trajectory. �
Notice that the energy changes only during collisions with another particles
(Compton effects; we consider a ”field” as a statistical result of the iterations
with bosons of this particular field), so that after it this particle continue to
propagate again as a stationary particle, but with new values of total energy E,
velocity −→v , momentum −→p , and new stable wave-pocket geometry (distribution)
Φ(−→r −−→v t), so that it can be described by the simpler stationary-case (defined
in Example 2) differential equations:

(e.1.1) eiω0t ∂Φe−iω0t

∂t = (−iω0 + ∂(−→v t)
∂t ∇)Φ

(e.2.1) ∂Ψ
∂t = − i

~EΨ + ∂(−→v t)
∂t ∇Ψ,

where, when a velocity −→v is constant, we have that ∂(−→v t)
∂t = −→v + t∂

−→v
∂t = −→v .

Notice that, as in Example 2 above, we have particular stationary cases when
−→v is not constant, as for instance, for a stationary electron that rotates around
the nucleus of an atom with a constant radial acceleration (in that case −→p−→v
and total energy of this electron are constant, thus E = E + −→p−→v is constant
as well).
From the quantum state point of view, the external ”field’s” forces that inter-
fere with the particles are based on the collisions between them and a particular
kind of ”field’s” particles with rest mass equal to zero (bosons): it is possible
because the mass-particles (or excited massless particles) have a wave-pocket’s
distribution Φ with a finite space volume, and, consequently, they may mutu-
ally collide with another particles (as bosons of this ”field”).
The bosons with rest-mass m0 equal to zero can interfere between themselves
only when they are excited, i.e., when their space volume distribution of Φ is
greater than zero, so that they can collide. During these collisions, a particle
changes its total energy as well, thus its geometric form (distribution) Φ as well:
in such cases in the equations (e.1) and (e.2), the component,

ΦD(−→r , t) =
∫ ∫ ∫ +∞

−∞
∂B(k)
∂t ei(kx(x−vxt)+ky(y−vyt)+kz(z−vzt))dkxdkydkz,

becomes dominant in these unstationary (unstable) short-time intervals states,

caused by the time-changing of the harmonic amplitudes ∂B(k)
∂t 6= 0. During

these collisions a particle does not change only its velocity −→v , but also its ge-
ometry (distribution) can continuously evolve. For example, as it was discussed
about the changing of massive particle’s geometry and resulting changing of the
relativistic mass, or in ”particle’s explosions”. This kind of explosion happens
when, for instance, a massless particle that propagates in the vacuum with ve-
locity of light come up against a barrier with a small slit (where it will pass),
so that this barrier interrupts drastically the space symmetry and the bound-
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ary conditions for the differential equations (e.1) and (e.2) that determine the
movement and geometry of the particles.
From this point of view, the ”fields” are only statistical results of the influence
that high number of bosons produce to the mass-particles. For example, the
electromagnetic vectorial field is a statistic result of movements of high number
of photons, as it will be explained in the rest of this paper, and, consequently,
Maxwell’s lows are only the statistical lows.
The collisions of one mass-particle with bosons produce an external force

−→
F ,

generated by the interacting bosons (”field”) with this particle, that determines
the propagation and trajectory of this mass-particle. In order to be able to con-
sider the application of these external forces to the mass-particles, we need to
obtain the following second-order differential equations:

Proposition 2 The propagation and geometric form of the wave-pocket

Ψ(x, y, z, t) = Φ(−→r , t)ei(−
−→p−→r
~ −ω0t), of an elementary particle that propagates with

velocity −→v , are defined by the following second-order differential equations:
(e.3) (v1c )24Ψ− 1

c2
∂2Ψ
∂t2 − ((

ωp
c )2 + i 1

c2
∂ωp
∂t − i

−→v1
c2~

∂−→p
∂t )Ψ− (i

2ωp
c2
−→v1 − 1

c2
∂−→v1
∂t )∇Ψ =

= ΥD(−→r , t),

where ωp = E
~ = ω1 +

−→p−→v1
~ , with ω1 = ∂

∂t(
−→p−→r
~ +ω0t) =

−→r
~
∂−→p
∂t + ∂

∂t(ω0t), −→v1 = ∂(−→v t)
∂t ,

v1 =
√
−−→v1
−→v1, can change in time during the propagation. The right side of

(e.3), ΥD(−→r , t) = 1
c2 (
−→v1∇ΦD− i2ω1ΦD + ∂ΦD

∂t )ei(−
−→p−→r
~ −ω0t), is different from zero

only in unstationary cases when ΦD(−→r , t) 6= 0.
In the stationary case, when ωp and ω1 = ω0 are two constants, this equation
can be given in a simpler D’Alambert-like form:
(e.4) (v1c )24Ψ1 − 1

c2
∂2Ψ1

∂t2 = − 1
c2
∂−→v1
∂t ∇Ψ1 − i

−→v1
c2~

∂−→p
∂t Ψ1,

where Ψ1 = eiωptΨ(−→r , t).

Thus, an external force
−→
F influences a particle Ψ as follows:

1. Differential equation for massive particles, non-relativistic case: then we

substitute the acceleration ∂−→v
∂t in the equation (e.3) by the expression

−→
F
m0

.
2. Differential equation for relativistic case when ~ω0 is a constant: then we
substitute ∂−→p

∂t in the equation (e.4) by
−→
F .

3. Differential equation for a massless particle (with rest mass m0 = 0) during
its unstable state, when it changes the velocity −→v (with c > v > 0) and mo-
mentum −→p , but does not change the total energy E = ~ω0: then we substitute
∂−→p
∂t by

−→
F , ωp by

−→r
~
−→
F + ω0 +

−→v1−→p
~ and

∂ωp
∂t by 1

~(−→r ∂
−→
F
∂t + −→v1

−→
F + −→p ∂−→v1

∂t ), in the
equation (e.3).
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Proof: From Ψ(x, y, z, t) = Φ(−→r , t)ei(−
−→p−→r
~ −ω0t), we obtain that:

(b.0) ∂
∂t(∇Φ) = ∇(∂Φ

∂t ) = ∇(−→v1∇Φ+ΦD) (from (a.0), proof of Proposition
1)
= −−→v14Φ +∇ΦD.
(b.1) ∇(e−i

−→p−→r /~∇Φ) =
= ( ∂

∂xe1 + ∂
∂ye2 + ∂

∂ze3)((
∂Φ
∂xe1 + ∂Φ

∂y e2 + ∂Φ
∂z e3)e

−i−→p−→r /~) =

= −( ipx~
∂Φ
∂x + ∂2Φ

∂x2 +
ipy
~
∂Φ
∂y + ∂2Φ

∂y2 + ipz
~
∂Φ
∂z + ∂2Φ

∂z2 )e−i
−→p−→r /~ =

= −(− i−→p
~ ∇Φ +4Φ)e−i

−→p−→r /~, and

(b.2) 4Ψ = −∇∇Ψ = −e−iω0t∇(∇(Φe−i
−→p−→r /~)) =

= −e−iω0t∇((∇Φ + i−→p
~ Φ)e−i

−→p−→r /~) =

= −e−iω0t(∇(e−i
−→p−→r /~∇Φ) + i−→p

~ ∇(Φe−i
−→p−→r /~)) = (from (b.1))

= e−iω0t((− i−→p
~ ∇Φ +4Φ)e−i

−→p−→r /~ − i−→p
~ (∇Φ + i−→p

~ Φ)e−i
−→p−→r /~) =

= ei(−
−→p−→r
~ −ω0t)(4Φ− i2−→p

~ ∇Φ +
−→p−→p
~2 Φ) =

= ei(−
−→p−→r
~ −ω0t)4Φ− i2−→p

~ (∇Ψ− i−→p
~ Ψ) +

−→p−→p
~2 Ψ.

Thus, from (b.2) we obtain that,

(b.3) ei(−
−→p−→r
~ −ω0t)4Φ = 4Ψ + i2−→p

~ ∇Ψ +
−→p−→p
~2 Ψ. Consequently,

(b.4) −→v1
∂
∂t∇Ψ = −→v1e−iω0t( ∂∂t(∇(Φe−i

−→p−→r /~)− i∂(ω0t)
∂t ∇(Φe−i

−→p−→r /~)) =

= −→v1e−iω0t( ∂∂t((∇Φ + i−→p
~ Φ)e−i

−→p−→r /~)− i∂(ω0t)
∂t (∇Φ + i−→p

~ Φ)e−i
−→p−→r /~) =

(from (a.2) in the prof of Proposition 1)

= −→v1e−iω0t(( ∂∂t∇Φ + i−→p
~
∂Φ
∂t + i

~
∂−→p
∂t Φ)e−i

−→p−→r /~ + ( ∂∂te
−i−→p−→r /~ − i∂(ω0t)

∂t e−i
−→p−→r /~)

(∇Φ + i−→p
~ Φ)) =

= −→v1( ∂∂t∇Φ + i−→p
~
∂Φ
∂t + i

~
∂−→p
∂t Φ− iω1(∇Φ + i−→p

~ Φ))ei(−
−→p−→r
~ −ω0t) =

(from (b.0), and (a.0) in the proof of Proposition 1)

= −→v1(−−→v14Φ+∇ΦD+ i−→p
~ (−→v1∇Φ+ΦD)+ i

~
∂−→p
∂t Φ− iω1(∇Φ+ i−→p

~ Φ))ei(−
−→p−→r
~ −ω0t) =

(from (b.2), and (a.3) in the proof of Proposition 1)

= −→v1(−−→v1(4Ψ+ i2−→p
~ ∇Ψ+

−→p−→p
~ Ψ)+ i−→p−→v1

~ (∇Ψ− i−→p
~ Ψ)+ i

~
∂−→p
∂t Ψ− iω1(∇Ψ− i−→p

~ Ψ+
i−→p
~ Ψ)) + (−→v1∇ΦD + i

−→p−→v1

~ ΦD)ei(−
−→p−→r
~ −ω0t) =

= v2
14Ψ− i(

−→p−→v1

~ + ω1)
−→v1∇Ψ + i

−→v1

~
∂−→p
∂t Ψ + (−→v1∇ΦD + i

−→p−→v1

~ ΦD)ei(−
−→p−→r
~ −ω0t) =

= v2
14Ψ− iωp−→v1∇Ψ + i

−→v1

~
∂−→p
∂t Ψ + (−→v1∇ΦD + i

−→p−→v1

~ ΦD)ei(−
−→p−→r
~ −ω0t).

Finally, ∂2Ψ
∂t2 = ∂

∂t(−iωpΨ +−→v1∇Ψ + ΨD) =

= −i∂ωp∂t Ψ− iωp ∂Ψ
∂t + ∂−→v1

∂t ∇Ψ +−→v1
∂
∂t∇Ψ + ∂ΨD

∂t = (from (e.2))

= −i∂ωp∂t Ψ − iωp(−iωpΨ + −→v1∇Ψ + ΨD) + ∂−→v1

∂t ∇Ψ + −→v1
∂
∂t∇Ψ + (∂ΦD

∂t −
iω1ΦD)ei(−

−→p−→r
~ −ω0t) =

(from (b.4))
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= v2
14Ψ−ω2

pΨ− i2ωp
−→v1∇Ψ− i∂ωp∂t Ψ + ∂−→v1

∂t ∇Ψ + i
−→v1

~
∂−→p
∂t Ψ + (−→v1∇ΦD− i2ω1ΦD +

∂ΦD
∂t )ei(−

−→p−→r
~ −ω0t).

Thus, by dividing with c2 we obtain the differential equation (e.3).
When ωp and ω0 are two constants, then we obtain (e.4) as follows:
v2

14Ψ1 − ∂2

∂t2Ψ1 = v2
14(Ψeiωpt)− ∂2

∂t2 (Ψeiωpt) =
= (v2

14Ψ)eiωpt − ∂
∂t((

∂
∂tΨ)eiωpt + iωpΨeiωpt) =

= (v2
14Ψ− ∂2

∂t2Ψ− ω
2
pΨ− i2ωp

−→v1∇Ψ)eiωpt = (from (e.3))

= −(∂
−→v1

∂t ∇Ψ + i
−→v1

~
∂−→p
∂t Ψ)eiωpt = −∂−→v1

∂t ∇Ψ1 − i
−→v1

~
∂−→p
∂t Ψ1.

�
The differential equation (e.3) describes the changing (in time) of the geometry
Φ of a the ”corpuscular” particle (wave-pocket) and its trajectory and velocity,

caused by a given external force
−→
F (that is, caused by a total sum of given

external ”fields”, as gravitational, electromagnetic, etc..).

4 Application to quantum mechanics

The Compton effect between any two particles with their distributions
Φ1(x, y, z, t) and Φ2(x, y, z, t), happens when there exists a space-time point
(x1, y1, z1, t1) such that Φ1(x1, y1, z1, t1) · Φ2(x1, y1, z1, t1) 6= 0. This collision of
these two particles is elastic if their kinetic energies are relatively small, with
the well known lows of conservation of the total energy and total momentum
for elastic collisions. In the high-energy collisions we obtain a fusion of these
two particles and a creation of another, as in well-known Feynman diagrams.
In the stationary cases, the basic equation (e.4) can be divided into following
three cases:

• When the velocity v = 0, we obtain a simple equation:
(e.4.0) ∂2Ψ1

∂t2 = 0, that is, ∂2Ψ
∂t2 = −ω2

0Ψ,
with a simple solution, Ψ(x, y, z, t) = Φ(x, y, z)e−ω0t.

• When the velocity −→v and the momentum −→p are constant vectors dur-
ing the propagation, different from zero, then −→v1 = −→v , so we obtain
D’Alambert equation where v is a constant value:
(e.4.1) 4Ψ1 − 1

v2
∂2Ψ1

∂t2 = 0,

with the solution Ψ1(x, y, z, t) = Φ(−→r −−→v t)e−i
−→p
~ (−→r −−→v t), thus,

Ψ(x, y, z, t) = Ψ1e
−ωpt = Φ(−→r −−→v t)ei(−

−→p−→r
~ −ω0t).

• The case when the velocity −→v with v > 0 and the momentum −→v change
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only the direction (they are collinear vectors in each instance of time)

during a propagation, but not their values, so that −∂(−→p−→v )
∂t = ∂(pv)

∂t = 0 and
v1 = v is constant as well (this case includes the second case in Example
2 as well: when the velocity of massive particle with rest mass m0 is
−→v = v(− cos θe1 + sin θe2), where θ = νt = v

Rt is the angle w.r.t the
axis x of a particle that routes around the coordinate center with constant
angular velocity ν = v

R on circular orbit with constant radius R).
Thus, from (e.4) we obtain an extended D’Alambert equation where v2 =
|−→v−→v | > 0 is a constant value:
(e.4.2) 4Ψ1 − 1

v2
∂2Ψ1

∂t2 = Θ(−→r , t),
where Θ(−→r , t) = − 1

v2 (
∂−→v1

∂t ∇Ψ1 + i
−→v1

~
∂−→p
∂t Ψ1). Thus, we obtain a general

solution Ψ1(
−→r −−→v t) = Φ(−→r −−→v t)e−i

−→p
~ (−→r −−→v t).

Notice that the massive particles that does not change the total energy E dur-
ing a propagation are always in the stationary states.
In all cases, the geometric form (the distribution Φ) of a particle in a given
time-instance t depends on the particular boundary conditions for the differ-
ential equations as well. In the case when they are far from another massive
particles (usually it can be considered if another particles are far from this par-
ticle in order of one millimeter), then Φ is symmetric w.r.t. the direction of
propagation. Otherwise, the boundary conditions for these differential equa-
tions can drastically change, with the result that Φ can become enormously
bigger than in normal situations, that is, they can instantaneously ”explode”,
because the single harmonics of the Fourier representation of Φ(x, y, z) in a
given time-instance t are contemporarily present in the whole 3-dimensional
Euclidean space.
Let us consider the following well known example:
Example 3: One-dimensional particle in a box problem.
We assume that that the electron can move freely between two infinitely high
potential barriers, along the x axes between −a

2 and a
2 . The appropriate po-

tential is V (x) = 0 for −a
2 ≤ x ≤ a

2 and V (x) equal to the infinity otherwise,
that is, there are infinitely high walls at x = −a

2 and x = a
2 , and the particle

is trapped between them. This turns out to be quite a good approximation for
electrons in a long molecule, and the three-dimensional version is a reasonable
picture for electrons in metals. Consequently, the field, which is the gradient of
this potential is equal to zero between these walls and directed into the box at
the barriers, so that in the box we have not any field and any acceleration of
the electron, so that the equation (e.4) has a simple D’Alambert form
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(e.4.1) 4Ψ1 − 1
v2
∂2Ψ1

∂t2 = 0,
with the solution (we consider case when the momentum and the velociries are
collinear with x axes) Ψ1(x, y, z, t) = Φ(x−vt, y, z)ei(

p
~ (x−vt), where Φ(x−vt, y, z)

is the geometric form of electron during its propagation (notice that this elec-
tron is at position x in the time-instance t when x− vt = 0), and the constant
velocity v can be positive and negative (opposite direction w.r.t. the x axes).
The boundary condition at the walls is that in these points the velocity of the
electron has to be equal to zero, and the stationary solution of the D’Alambert
equation above has to satisfy that (after one complete oscillation, when it passes
the distance 2a), Ψ1(x, y, z, t) = Ψ1(x, y, z, t+ 2a

v ), so that,

ei
p
~ (x−vt) = ei

p
~ (x−v(t+ 2a

v ), that is,
p
~(x− vt) = 2nπ + p

~(x− v(t+ 2a
v ), for n = 0,±1,±2, ..

so that we obtain that p = π~
a n, where n = 0,±1,±2, .., exactly as in the

solution of the Schrödinger equation. The positive and negative values for p
corresponds to the propagation on the left or on the right (opposite direction)
of this electron. Consequently we obtain a constant discrete set of possible
velocities v = p

m0
(we consider only non relativistic case when v << c).

The (non relativistic) kinetic energy of this electron can be one of the following
discrete values:
E = m0v

2

2 = p2

2m0
= (π~)2

2m0a2
n2, n = 0, 1, 2, ..

Thus, the wave-pocket of this electron in the box that oscillates along the axis
x, is given by:

Ψ(x, y, z, t) = Φ(x+ la− vt, y, z)ei(
p(x+la)

~ −ω0t), for t ∈ [(l − 1
2)4t, (l + 1

2)4t],
or, when it propagates in opposite direction,

Ψ(x, y, z, t) = Φ(x− (l+1)a+vt, y, z)ei(
−p(x−(l+1)a)

~ −ω0t), for t ∈ [(l+1− 1
2)4t, (l+

1 + 1
2)4t],

where l = 0, 1, 2, ..., 4t = a
v , and v ∈ {n 4π~

m0a
| n = 0, 1, 2, ...}.

�
The D’Alambrt-like equation (e.4) is very important for the particles with the
rest mass greater than zero as well, and especially to their stationary cases as
well, when ωp 6= 0, as for example in the stationary orbits of electrons in the
atoms. Based on the stationary solutions of the D’Alambert-like differential
equation for electrons, directly from (e.4) we can derive the 3rd Bohr postulate,
as follows:
Example 4: 3rd Bohr postulate for the electrons.
The electrons in the atoms have constant velocity v > 0 and momentum p, so
that the non relativistic equation for electron’s wave-pocket Ψ and its propa-
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gation given by (e.4.2), can be obtained by substituting ∂−→v
∂t with

−→
F /m0, with

the radial force of the electric field F = |
−→
F | = Ze2

4πε0R2 , where Z is a number of
protons in the atom’s nucleus, e is the electrical charge of the electron, ε0 the
electric constant and R is the distance of the electron from the nucleus. Thus,
we obtain the stationary case for the electron’s propagation:
(e.5) 4Ψ1 − 1

v2
∂2Ψ1

∂t2 = − 2
m0v2
−→
F ∇Ψ1,

with a general solution Ψ1(
−→r − −→v t) = Φ(−→r − −→v t)e−i

−→p
~ (−→r −−→v t). The station-

ary solutions are those for which the wave-pocket Ψ1 obtain the same identical
value after every full rotation of electron around the nucleus, That is when
Ψ1(x, y, z, t) = Ψ1(x, y, z, t + 2πR

v ), where 2πR
v is the time period for one com-

plete rotation of the wave-pocket Ψ1 around the nucleus.
Thus, Φ(−→r − −→v (t + 2πR

v )) = Φ(−→r − −→v t), where 2πR
v is the period of time for

one revolution of electron around the nucleus, and we obtain that:

Ψ1(x, y, z, t+ 2πR
v ) = Φ(−→r −−→v (t+ 2πR

v ))e−i
−→p
~ (−→r −−→v (t+ 2πR

v )) =

= Φ(−→r −−→v t)e−i
−→p
~ (−→r −−→v t)e+i

−→p
~
−→v 2πR

v =

= Ψ1(x, y, z, t)e
−i 2πpR~ = Ψ1(x, y, z, t), if 2πpR

~ = 2nπ, n = 1, 2, 3, .., that is,
when pR = n~, as in the 3rd Bohr postulate. Consequntly, for a given mo-
mentum of the electron, the radius R can be only one of the following values
R = n~

p , n = 1, 2, ..
Analogously, for a fixed radius R of an electron in a stationary states, its mo-
mentum p can have only the following discrete values p = n ~

R , with spatial
wavelengths λ = 2π~

p = 2πR
n , n = 1, 2, ...

Thus, for a given radius R, the wave-pocket for an electron will be given by:

Ψ(x, y, z, t) = e−iωptΨ1 = Φ(−→r −−→v t)ei(−
−→p−→r
~ −ω0t) =

= Φ(−→r −−→v t)ei(− n
R

−→
iv (t)−→r −ω0t),

where, if we take the plain x, y for rotation of this electron with a center in
(0,0) and initial position of electron in t = 0 equal to −→r = Re1 + 0e2, then
−→
iv (t) = − cos( vRt)e1+sin( vRt)e2 is the unit vector of the velocity, that is, tangent
vector to the circle with radius R.
Consequently, these stationary cases correspond to the following values of ωp:
ωp = ω0 − pv

~ = ω0 − n v
R , n = 1, 2, ...,

where ω0 = m0c
2

~ , and the stationary values for the energies E = ~ωp are equal
to E = m0c

2 − n~v
R , n = 1, 2, ....

As a consequence, for mass-particles we can have a number of different station-
ary (stable) states for ωp.
�
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