
dx
dt6

�-

?

DIFFERENTIAL EQUATIONS
AND

CONTROL PROCESSES
N. 1, 2019

Electronic Journal,
reg. N ΦC77-39410 at 15.04.2010

ISSN 1817-2172

http://diffjournal.spbu.ru/
e-mail: jodiff@mail.ru

Functional differential equations

On Stability and Boundedness of Solutions of a Certain
non-Autonomous Third-Order Functional Differential Equation with

Multiple Deviating Arguments
Mohamed A. Abdel-Razek 1, Ayman M. Mahmoud 2, Doaa A. M. Bakhit 2

1 Department of Mathematics, Faculty of Science, Assiut University,
Assiut 71516, Egypt

e-mail: abdel razek555@yahoo.com
2 Department of Mathematics, Faculty of Science, New Valley University,

El-Khargah 72511, Egypt
e-mail: math ayman27@yahoo.com & doaa math90@yahoo.com

Abstract

This paper investigates the explicit criteria of the stability of the zero solu-
tion and the boundedness of all solutions for a certain non-autonomous third-
order functional differential equation with multiple deviating arguments. To
study the stability of the zero solution we construct the Lyapunov functional.
The Gronwall-Reid-Bellman inequality is employed to establish the bounded-
ness of all solutions of the addressing model. This study includes and improves
some related results existing in the relevant literature. For illustration, two
examples are given.
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1 Introduction

It is well-known that functional differential equations (FDEs), in particular,
delay differential equations (DDEs) are very important in many areas of engi-
neering and science. These equations are frequently encountered as mathemat-
ical models of most dynamical processes in mechanics, control theory, physics,
chemistry, etc. (see [6, 12, 13, 14, 31, 39] and the references therein). One of the
most attractive areas of the qualitative theory of FDEs is the stability and the
boundedness of solutions. In the study of stability and boundedness problems
for FDEs, it is well-known that Lyapunov’s second method is very important
and effective. This technique is also called the direct method because it can
be applied to a differential equation directly, without any knowledge of solu-
tions. Today, this method is widely recognized as an excellent tool not only
in the study of differential equations but also in the theory of control systems,
dynamical systems, systems with time-lag, power system analysis, time varying
non-linear feedback system and so on. It worth mentioning that there are nu-
merous books studied the stability and the boundedness by Lyapunov’s direct
method (see for example [8, 10, 11, 13, 17, 18, 40]), etc. In the last few decades,
the theory of FDEs has attracted much attention and numerous of papers have
been published, we can mention the works in [1-3, 5, 9, 19-25, 27-30, 32-35, 37,
41], and the references therein. In the particular, many results on the stability
and the boundedness of solutions of non-autonomous third-order FDEs have
been studied. It can briefly be summarized as the following:

Sadek [30] investigated the asymptotic stability of the zero solution of the
delay differential equation

...
x + a(t)ẍ+ b(t)ẋ+ c(t)f(x(t− r)) = 0,

where a(t), b(t) and c(t) are positive and continuously differentiable functions
on [0,∞); where r is a positive constant; f(x) is a continuous function and
f(0) = 0.

Omeike [20] studied the stability and the boundedness of solutions of the
third-order non-autonomous nonlinear differential equation with delays of the
form

...
x + a(t)ẍ+ b(t)g(ẋ) + c(t)h(x(t− r)) = p(t),

where r is a positive constant, a(t), b(t), c(t), g(ẋ) and h(x) are real-valued
functions continuous in their respective arguments; g(0) = h(0) = 0.

Mahmoud [19] established sufficient conditions for the asymptotic stability
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of the zero solution for a certain nonlinear non-autonomous third-order delay
differential equation

...
x + a(t)ẍ+ b(t)g(ẋ(t− r(t))) + c(t)h(x(t− r(t))) = 0,

where 0 ≤ r(t) ≤ γ, γ > 0, a(t), b(t), c(t), g(ẋ) and h(x) are real-valued
functions continuous in their respective arguments; g(0) = h(0) = 0.

Besides it is worth-mentioning that according to our observation, there are
few papers studied the behaviour of solutions of certain differential equations
of third and fourth-order with multiple delays, (see, [4, 15, 16, 26, 36, 38]).

Tunç and Gözen [38] investigated the stability and the boundedness of so-
lutions of the third-order FDE with multidelay of the form

...
x (t) + a(t)ẍ(t) + nb(t)g(ẋ(t)) + c(t)

n∑
i=1

hi(x(t− ri)) = p(t),

where ri are certain positive constants, a(t), b(t), c(t), g(ẋ), h(x) and p(t)
are real-valued and continuous functions in their respective arguments with
g(0) = h(0) = 0.

Tunç [36] discussed the asymptotic stability of the zero solution and the
boundedness of all solutions of the third-order nonlinear differential equation
with multiple deviating arguments as

...
x (t)+F (ẋ(t))ẍ(t) +H(ẋ(t))ẋ(t) +

n∑
i=1

Gi(ẋ(t− gi(t))) + Ψ(x(t))

= P (t, x(t), ..., x(t− gn(t)), ẋ(t), ..., ẋ(t− gn(t)), ẍ(t)),

where F, H, Gi,Ψ and P are continuous functions in their respective arguments,
with Gi(0) = Ψ(0) = 0.

Ademola et al. [4] established the stability and the boundedness to a certain
third-order delay differential equation with multiple deviating arguments as the
following

...
x +

n∑
i=1

fi(t, x, x(t− τi(t)), ẋ, ẋ(t− τi(t)), ẍ, ẍ(t− τi(t))) +
n∑
i=1

gi(ẋ(t− τi(t)))

+
n∑
i=1

hi(x(t− τi(t))) =
n∑
i=1

pi(t, x, x(t− τi(t)), ẋ, ẋ(t− τi(t)), ẍ, ẍ(t− τi(t))),

where fi, gi, hi and pi are continuous functions in their respective arguments.
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Motivated by the above discussion, the present paper investigates the stabil-
ity of the zero solution and the boundedness of all solutions of non-autonomous
third-order FDE with multiple deviating arguments as follows

...
x+a(t)f(ẋ)ẍ+ b(t)

n∑
i=1

gi(x(t− ri(t)), ẋ(t− ri(t))) + c(t)
n∑
i=1

hi(x(t− ri(t)))

= p(t, x, ẋ, ẍ, x(t− r(t))),
(1.1)

where a(t), b(t) and c(t) are positive and continuously differentiable functions
on [0,∞); f, gi and pi are continuous functions for all values of respective
arguments, with hi(0) = gi(x, 0) = 0.
All of the functions which appear and the solutions considered are supposed
to be real. The dots indicate differentiation with respect to the independent
variable t. Also the derivatives ∂

∂xgi(x, ẋ), ∂
∂ygi(x, ẋ), h′i(x), a′(t), b′(t), c′(t) and

r′(t) exist and are continuous moreover, the existence and uniqueness of the
solutions of (1.1) will be assumed.

However, to the best of our knowledge, there is no previous literature on
stability and boundedness of solutions to non-autonomous third-order FDE
with multiple deviating arguments (1.1).

2 Preliminary Results

We consider the following general non-autonomous finite delay differential
system:

ẋ = f(t, xt), xt = x(t+ θ), −r ≤ θ ≤ 0, (2.1)

where f : [0,∞) × CH → Rn is a continuous mapping, f(t, 0) = 0, and we
suppose that f takes closed bounded sets into bounded sets of Rn. Here (C, ‖.‖)
is the Banach space of continuous function ϕ : [−r, 0]→ Rn with the supremum
norm, CH is the open H−ball in C, r > 0 for H > 0, CH = {φ ∈ C : ‖φ‖ <
H}, C = C([−r, 0],Rn). We will give some important definitions (see Burton
[9]).

Definition 2.1 A continuous function V : [0,∞) × CH → [0,∞), which is
locally Lipschitz in φ and the derivative of this function is defined as

V̇ (t, xt) = lim sup
h→0

V (t+ h, xt+h(t0, φ))− V (t, xt(t0, φ))

h
,
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is called a Lyapunov functional for (2.1), if there is a wedge W satisfies the
following conditions

(i) W (|φ(0)|) ≤ V (t, φ), V (t, 0) = 0 and

(ii) V̇(2.1)(t, xt) ≤ 0.

Definition 2.2 The zero solution of (2.1) is said to be stable at t ≥ t0, if for
each ε > 0 and t0 ∈ R there exists a positive constant δ = δ(ε, t0) such that, if
‖φ‖ < δ then |x(t, t0, φ)| < ε for t ≥ t0.

Definition 2.3 The zero solution of (2.1) is said to be uniformly stable, if it
is stable for t ≥ t0 and the positive constant δ is independent of t0.

Theorem 2.1 [7, 41] Let V (φ) : CH → R be a continuous functional satisfying
a local Lipschitz condition, V (0) = 0 and functions Wi(r), (i = 1, 2) are wedges
such that

(i) W1(|φ(0)|) ≤ V (φ) ≤ W2(‖φ‖) and

(ii) V̇(2.1)(φ) ≤ 0, for φ ∈ CH .

Then the zero solution of (2.1) is uniformly stable.

Assumptions:
In addition to the basic assumptions on f , gi and hi of equation (1.1), suppose
that there are positive constants a0, a1, a2, a3, a4, a5, ai, b0, b1, bi, li, with
a1a0b0ai− c0li > 0, Li, Ni; for all i (i = 1, 2, 3, ..., n), γ and β, which satisfy the
following assumptions:

(i) gi(x,y)
y ≥ ai,

hi(x)
x ≥ bi, for all x 6= 0 and y 6= 0.

(ii) a0 ≤ f(y) ≤ a3, sup{h′i(x)} = li, y ∂gi(x,y)
∂x ≤ 0, for all x and y.

(iii) a1 ≤ a(t) ≤ a2, c1 ≤ b0 ≤ b(t) ≤ b1, c1 ≤ c(t) ≤ c0 such that c0 > 2c1, for
t ≥ 0.

(iv) li
ai
< µ, b′(t) ≤ c′(t) ≤ 0, a5 ≤ a′(t) ≤ a4, for t ≥ 0, ai 6= 0.

(v) ri(t) ≤ γ, r′i(t) ≤ β, 0 < β < 1, for t ≥ 0.

(vi) |h′i(x)| ≤ Li, |∂gi(x,y)
∂y | ≤ Ni, for all x and y.
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3 Main Results

Theorem 3.1 By assuming that the assumptions (i) − (vi) hold true with
hi(0) = gi(x, 0) = 0, suppose that the positive constant γ is also satisfied

γ <min

[
(1− β)(a0a1b0

∑n
i=1 ai − c0

∑n
i=1 li − µa3a4)

2

{
µ(1− β)(b1

∑n
i=1Ni + c0

∑n
i=1 Li) + c0(µ+ 1)

∑n
i=1 Li

} ,
(1− β)(a0a1b0

∑n
i=1 ai − c0

∑n
i=1 li)

2b0

∑n
i=1 ai

{
(1− β)c0

∑n
i=1 Li + (µ− β + 1 + b1)

∑n
i=1Ni

}],
where

µ =
a0a1b0

∑n
i=1 ai + c0

∑n
i=1 li

2b0

∑n
i=1 ai

.

Then the zero solution of (1.1) with p = 0 is uniformly stable.

Proof.
By considering p = 0, equation (1.1) is equivalent to the following system

ẋ = y,

ẏ = z,

ż = −a(t)f(y)z − b(t)
n∑
i=1

gi(x, y) + b(t)
n∑
i=1

∫ t

t−ri(t)

∂gi(x(s), y(s))

∂x
y(s)ds

+ b(t)
n∑
i=1

∫ t

t−ri(t)

∂gi(x(s), y(s))

∂y
z(s)ds

− c(t)
n∑
i=1

hi(x) + c(t)
n∑
i=1

∫ t

t−ri(t)
h′i(x(s))y(s)ds.

(3.1)

The proof of the theorem depends entirely on some fundamental properties of a
certain differentiable Lyapunov functional V = V (xt, yt, zt) of the system (3.1)
defined by

V (xt, yt, zt) =µc(t)
n∑
i=1

∫ x

0

hi(ξ)dξ + c(t)y
n∑
i=1

hi(x)

+ µa(t)

∫ y

0

f(η)ηdη + b(t)
n∑
i=1

∫ y

0

gi(x, η)dη + µyz +
1

2
z2

+
n∑
i=1

λi

∫ 0

−ri(t)

∫ t

t+s

y2(θ)dθ +
n∑
i=1

δi

∫ 0

−ri(t)

∫ t

t+s

z2(θ)dθ.

(3.2)
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By differentiating (3.2) in terms of t, we get

dV

dt
=µc′(t)

n∑
i=1

∫ x

0

hi(ξ)dξ + c′(t)y
n∑
i=1

hi(x) + b′(t)
n∑
i=1

∫ y

0

gi(x, η)dη

+ µa′(t)

∫ y

0

f(η)ηdη + c(t)y2
n∑
i=1

h′i(x) + b(t)
n∑
i=1

∫ y

0

y
∂gi(x, η)

∂x
dη

− a(t)f(y)z2 + µz2 + b(t)(µy + z)
n∑
i=1

∫ t

t−ri(t)

∂gi(x(s), y(s))

∂x
y(s)ds

− µyb(t)
n∑
i=1

gi(x, y) + b(t)(µy + z)
n∑
i=1

∫ t

t−ri(t)

∂gi(x(s), y(s))

∂y
z(s)ds

+ c(t)(µy + z)
n∑
i=1

∫ t

t−ri(t)
h′i(x(s))y(s)ds+ y2

n∑
i=1

λiri(t) + z2
n∑
i=1

δiri(t)

−
n∑
i=1

λi(1− r′i(t))
∫ t

t−ri(t)
y2(θ)dθds−

n∑
i=1

δi(1− r′i(t))
∫ t

t−ri(t)
z2(θ)dθds.

From the assumptions (ii), (vi) and by using the inequality xy ≤ 1
2(x2 + y2),

we have

dV

dt
≤µc′(t)

n∑
i=1

∫ x

0

hi(ξ)dξ + c′(t)y
n∑
i=1

hi(x) + µa′(t)

∫ y

0

f(η)ηdη

+ b′(t)
n∑
i=1

∫ y

0

gi(x, η)dη + c(t)y2
n∑
i=1

li − a(t)f(y)z2 + µz2

− µyb(t)
n∑
i=1

gi(x, y) +
µ

2
b(t)y2

n∑
i=1

Niri(t) +
b(t)

2
z2

n∑
i=1

Niri(t)

+
µ

2
c(t)y2

n∑
i=1

Liri(t) +
c(t)

2
z2

n∑
i=1

Liri(t) + y2
n∑
i=1

λiri(t) + z2
n∑
i=1

δiri(t)

+

{
µ

2
c(t)

n∑
i=1

Li +
c(t)

2

n∑
i=1

Li −
n∑
i=1

λi(1− r′i(t))
}∫ t

t−ri(t)
y2(θ)dθds

+

{
µ

2
b(t)

n∑
i=1

Ni +
b(t)

2

n∑
i=1

Ni −
n∑
i=1

δi(1− r′i(t))
}∫ t

t−ri(t)
z2(θ)dθds.
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Therefore by using the assumptions (i)− (v), we obtain

dV

dt
≤µc′(t)

n∑
i=1

∫ x

0

hi(ξ)dξ + c′(t)y
n∑
i=1

hi(x) + µa′(t)

∫ y

0

f(η)ηdη

+

{
c0

n∑
i=1

li − µb0

n∑
i=1

ai +
µ

2
b1γ

n∑
i=1

Ni +
µ

2
c0γ

n∑
i=1

Li + γ
n∑
i=1

λi

}
y2

+ b′(t)
n∑
i=1

∫ y

0

gi(x, η)dη +

{
µ− a0a1 +

b1

2
γ

n∑
i=1

Ni +
c0

2
γ

n∑
i=1

Li + γ
n∑
i=1

δi

}
z2

+

{
c0(µ+ 1)

∑n
i=1 Li

2
− (1− β)

n∑
i=1

λi

}∫ t

t−ri(t)
y2(s)ds

+

{
b1(µ+ 1)

∑n
i=1Ni

2
− (1− β)

n∑
i=1

δi

}∫ t

t−ri(t)
z2(s)ds.

If we take
n∑
i=1

λi =
(µ+ 1)c0

∑n
i=1 Li

2(1− β)
and

n∑
i=1

δi =
b1(µ+ 1)

∑n
i=1Ni

2(1− β)
,

and from assumptions (ii) and (iv), we can obtain

µa′(t)

∫ y

0

f(η)ηdη ≤ µ
a3a4

2
y2.

Then we find

dV

dt
≤G−

{
µb0

n∑
i=1

ai − c0

n∑
i=1

li −
µ

2
a3a4 −

µ

2
b1γ

n∑
i=1

Ni −
µ

2
c0γ

n∑
i=1

Li

− γ
n∑
i=1

λi

}
y2 −

{
a0a1 − µ−

b1

2
γ

n∑
i=1

Ni −
c0

2
γ

n∑
i=1

Li − γ
n∑
i=1

δi

}
z2,

(3.3)
where

G = µc′(t)
n∑
i=1

∫ x

0

hi(ξ)dξ + c′(t)y
n∑
i=1

hi(x) + b′(t)
n∑
i=1

∫ y

0

gi(x, η)dη.

Since b′(t) ≤ c′(t) ≤ 0 and
∫ y

0 gi(x, η)dη ≥ 0, we find the following two cases:
Case (1): if c′(t) = 0, it follows that

G = b′(t)
n∑
i=1

∫ y

0

gi(x, η)dη ≤ 0.
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Case (2): if c′(t) 6= 0 and since b′(t)
c′(t) < 1, then we have

G ≤ c′(t)

(
µ

n∑
i=1

∫ x

0

hi(ξ)dξ + y
n∑
i=1

hi(x) +
n∑
i=1

∫ y

0

gi(x, η)dη

)
.

Since sup{h′i(x)} =
∑n

i=1 li; by (ii) and
∑n

i=1
gi(x,y)
y ≥

∑n
i=1 ai; by (i), it follows

that

G ≤ c′(t)

{
1

2
∑n

i=1 ai

(
y

n∑
i=1

ai +
n∑
i=1

hi(x)

)2

+

∫ x

0

(
µ−

∑n
i=1 h

′
i(ξ)∑n

i=1 ai

) n∑
i=1

hi(ξ)dξ

}
.

≤ c′(t)

∫ x

0

(
µ−

∑n
i=1 li∑n
i=1 ai

) n∑
i=1

hi(ξ)dξ.

Then we obtain

G ≤ c′(t)δ1

∫ x

0

n∑
i=1

hi(ξ)dξ ≤ 0.

By using the assumption (iv), and considering δ1 = µ−
∑n

i=1 li∑n
i=1 ai

> 0, so that we

can write (3.3) as the following

dV

dt
≤−

{
a0a1b0

∑n
i=1 ai − c0

∑n
i=1 li

2
− µ

2
a3a4

− µ(1− β)(b1

∑n
i=1Ni + c0

∑n
i=1 Li) + c0(µ+ 1)

∑n
i=1 Li

2(1− β)
γ

}
y2

−
{
a0a1b0

∑n
i=1 ai − c0

∑n
i=1 Li

2b0

∑n
i=1 ai

− c0(1− β)
∑n

i=1 Li + (µ− β + 1 + b1)
∑n

i=1Ni

2(1− β)
γ

}
z2.

Therefore, if

γ <min

[
(1− β)(a0a1b0

∑n
i=1 ai − c0

∑n
i=1 li − µa3a4)

2

{
µ(1− β)(b1

∑n
i=1Ni + c0

∑n
i=1 Li) + c0(µ+ 1)

∑n
i=1 Li

} ,
(1− β)(a0a1b0

∑n
i=1 ai − c0

∑n
i=1 li)

2b0

∑n
i=1 ai

{
(1− β)c0

∑n
i=1 Li + (µ− β + 1 + b1)

∑n
i=1Ni

}].
Thus for the positive constant D1, we obtain

dV

dt
≤ −D1(y

2 + z2). (3.4)
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Because of
∫ 0

−ri(t)
∫ t
t+s y

2(θ)dθds and
∫ 0

−ri(t)
∫ t
t+s z

2(θ)dθds are non-negative, then

from equation (3.2), we have

V (xt, yt, zt) ≥µc(t)
n∑
i=1

∫ x

0

hi(ξ)dξ + c(t)y
n∑
i=1

hi(x) + µa(t)

∫ y

0

f(η)ηdη

+ b(t)
n∑
i=1

∫ y

0

gi(x, η)dη + µyz +
1

2
z2.

From the assumptions (i)− (v), we get

V (xt, yt, zt) ≥µc1

n∑
i=1

∫ x

0

hi(ξ)dξ + c1y
n∑
i=1

hi(x) +
µa1a0

2
y2 +

b0

2

n∑
i=1

aiy
2

+ µyz +
1

2
z2.

Now we can write the previous inequality as the following form

V (xt, yt, zt) ≥
1

2b0

∑n
i=1 ai

(
b0y

n∑
i=1

ai + c1

n∑
i=1

hi(x)

)2

+
1

2
(µy + z)2

+

∫ x

0

{
c1µ−

c2
1

∑n
i=1 h

′
i(ξ)

b0

∑n
i=1 ai

} n∑
i=1

hi(ξ)dξ +
µ

2
(a1a0 − µ)y2.

By using the assumptions (i)−(iii) and since a0a1−µ =
a0a1b0

∑n
i=1 ai−c0

∑n
i=1 li

2b0
∑n

i=1 ai
> 0,

then we obtain

V (xt, yt, zt) ≥
∫ x

0

{
c1µ−

c2
1

∑n
i=1 li

b0

∑n
i=1 ai

} n∑
i=1

hi(ξ)dξ +
δ2

2
(y2 + z2).

Suppose that δ3 = c1µ− c21
∑n

i=1 li
b0
∑n

i=1 ai
> 0, by the assumptions b0 > c1 and c0 > 2c1,

with the assumption (i), we have

V (xt, yt, zt) ≥
δ3

2
x2

n∑
i=1

bi +
δ2

2
(y2 + z2).

So we can write Lyapunov functional V (xt, yt, zt) as

V (xt, yt, zt) ≥ D2(x
2 + y2 + z2), (3.5)

where D2 = min{δ32
∑n

i=1 bi,
δ2
2 }, D2 is a positive constant.

Since |
∑n

i=1 h
′
i(x)| ≤

∑n
i=1 Li, |

∑n
i=1

∂gi(x,y)
∂y | ≤

∑n
i=1Ni and hi(0) = gi(x, 0) =
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0, then by using the mean-value theorem we can write equation (3.2) as the
following

V (xt, yt, zt) ≤µc(t)
n∑
i=1

∫ x

0

Liξdξ + c(t)
n∑
i=1

Lixy + µyz + µa(t)

∫ y

0

f(η)ηdη

+ b(t)
n∑
i=1

Ni

∫ y

0

ηdη +
1

2
z2 +

n∑
i=1

λi

∫ t

t−ri(t)

(
θ − t+ ri(t)

)
y2(θ)dθ

+
n∑
i=1

δi

∫ t

t−ri(t)

(
θ − t+ ri(t)

)
z2(θ)dθ.

From the assumptions (i)− (v) and by using the inequality uv ≤ 1
2(u2 + v2), we

have

V (xt, yt, zt) ≤
µc0

2
x2

n∑
i=1

Li +
c0

2
x2

n∑
i=1

Li +
c0

2
y2

n∑
i=1

Li +
µa2a3

2
y2 +

b1

2
y2

n∑
i=1

Ni

+
µ

2
y2 +

µ

2
z2 +

1

2
z2 +

γ2

2
‖y‖2

n∑
i=1

λi +
γ2

2
‖z‖2

n∑
i=1

δi.

So that the above inequality becomes as

V (xt, yt, zt) ≤
1

2

{
c0(µ+ 1)

n∑
i=1

Li

}
‖x‖2

+
1

2

{
c0

n∑
i=1

Li + b1

n∑
i=1

Ni + µ(a2a3 + 1) + γ2
n∑
i=1

λi

}
‖y‖2

+
1

2

{
(µ+ 1) + γ2

n∑
i=1

δi

}
‖z‖2.

Then we obtain

V (xt, yt, zt) ≤ D3(x
2 + y2 + z2), D3 > 0. (3.6)

Then, from inequalities (3.4), (3.5) and (3.6), we conclude that all the assump-
tions of Theorem 2.1 are satisfied, so that the zero solution of equation (1.1) is
uniformly stable. Hence, the proof of Theorem 3.1 is now complete.

Remark 3.1 If we consider equation (1.1) is a differential equation with a
deviating arguments, and if we let f(ẋ) = 1 and g(x(t − r(t)), ẋ(t − r(t))) =
g(x(t − r(t))), we find that the results of the equation discussed by Mahmoud
[19].
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Example 3.1. Consider the non-autonomous third-order nonlinear functional
differential equation with multiple deviating arguments as:

...
x + (4 + sin t)(ẋ)2ẍ+

(
1

4
+

1

t3 + 2

) n∑
i=1

[
3x(t− ri(t)) +

x(t− ri(t))
2 + sin t

]
+

(
2 +

1

t3 + 1

) n∑
i=1

[
4ẋ(t− ri(t)) +

ẋ(t− ri(t))
2 + |x(t− ri(t))|+ |ẋ(t− ri(t))|

]
= 0.

(3.7)
The previous equation is equivalent to the system

ẋ = y,

ẏ = z,

ż = −(4 + sin t)y2z −
(

2 +
1

t3 + 1

)(
4y +

y

2 + |x|+ |y|

)
+

(
2 +

1

t3 + 1

) n∑
i=1

∫ t

t−ri(t)

[
−y

(2 + |x|+ |y|)2

]
y(s)ds

+

(
2 +

1

t3 + 1

) n∑
i=1

∫ t

t−ri(t)

[
4 +

2 + x

(2 + |x|+ |y|)2

]
z(s)ds

−
(

1

4
+

1

t3 + 2

)(
3x+

x

2 + sin t

)
+

(
1

4
+

1

t3 + 2

) n∑
i=1

∫ t

t−ri(t)

[
3 +

1

2 + sin s

]
y(s)ds.

Then, we can write the function

a(t) = 4 + sin t, a1 = 3 ≤ a(t) ≤ 4 = a2, a
′(t) = cos t, −1 ≤ a′(t) ≤ 1.

Also the function
f(y) = y2, a0 = 2 ≤ y2 ≤ 4 = a3,

and

b(t) = (2 +
1

t3 + 1
), b0 = 2 ≤ b(t) ≤ 2.5 = b1,

therefore we have

b′(t) =
−3t2

(t3 + 1)2
≤ 0.

Also

c(t) = (
1

4
+

1

t3 + 2
), c1 =

1

4
≤ c(t) ≤ 3

4
= c0,
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therefore we have

c′(t) =
−3t2

(t3 + 2)2
≤ 0,

it is clear that
b′(t) ≤ c′(t) ≤ 0.

Therefore from the assumption (ii), we have b0 = 2 > c1 = 1
4 and

c0 = 3
4 > 2c1 = 1

2 .
Now, let the function

n∑
i=1

gi(x, y) =
n∑
i=1

[
4y +

y

(2 + |x|+ |y|)

]
,

then, we have

n∑
i=1

gi(x, y)

y
=

n∑
i=1

[
4 +

1

(2 + |x|+ |y|)

]
≥ 4 =

n∑
i=1

ai.

It follows that the derivative of this function in terms of x is

n∑
i=1

∂gi(x, y)

∂x
=

n∑
i=1

[
−y

(2 + |x|+ |y|)2

]
≤ 0,

and in terms of y is

n∑
i=1

∂gi(x, y)

∂y
=

n∑
i=1

[
4 +

2 + x

(2 + |x|+ |y|)2

]
≤ 4.5 =

n∑
i=1

Ni.

Finally, the function

n∑
i=1

hi(x) =
n∑
i=1

[
3x+

x

2 + sin t

]
,

and
n∑
i=1

hi(x)

x
=

n∑
i=1

[
3 +

1

2 + sin t

]
≥ 3 =

n∑
i=1

bi.

Therefore the derivative in terms of x becomes

n∑
i=1

∂hi(x)

∂x
=

n∑
i=1

[
3 +

1

2 + sin t

]
≤ 4 =

n∑
i=1

Li.
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Then sup {h′i(x)} = 4 =
∑n

i=1 li.
Then we have

a0a1b0

n∑
i=1

ai − c0

n∑
i=1

li = 48− 3 = 45 > 0.

Thus all the assumptions (i)− (vi) of Theorem 3.1 are satisfied.
The following is the second main result of boundedness of solutions for (1.1)
for p 6= 0.

Theorem 3.2 In addition to the assumptions imposed on the functions that
appeared in equation (1.1), we have the assumption

|p(t, x, ẋ, ẍ, x(t− r(t)))| ≤ q(t),

where max{q(t)} < ∞ and q ∈ L1(0,∞), L1(0,∞) is space of integrable
Lebesgue functions. Then, there exists a finite positive constant k such that
the solution x(t) of equation (1.1) defined by initial functions

x(t) = φ(t), ẋ(t) = φ̇(t), ẍ(t) = φ̈(t)

satisfies the inequalities

|x(t)| ≤ k, |ẋ(t)| ≤ k, |ẍ(t)| ≤ k,

for all t ≥ t0, where φ ∈ C2([t0 − r, t0],R).

Proof.
Now, if p 6= 0, then the equation (1.1) is equivalent to the following system

ẋ = y,

ẏ = z,

ż = −a(t)f(y)z − b(t)
n∑
i=1

gi(x, y) + b(t)
n∑
i=1

∫ t

t−ri(t)

∂gi(x(s), y(s))

∂x
y(s)ds

+ b(t)
n∑
i=1

∫ t

t−ri(t)

∂gi(x(s), y(s))

∂y
z(s)ds− c(t)

n∑
i=1

hi(x)

+ c(t)
n∑
i=1

∫ t

t−ri(t)
h′i(x(s))y(s)ds+ p(t, x, y, z, x(t− r(t))).

(3.8)

From the assumptions (i)− (vi) of Theorem 3.1 and the equation (3.2), we get

dV (xt, yt, zt)

dt
≤ −D1(y

2 + z2) + (µy + z)p(t, x, y, z, x(t− r(t)))

≤ (µ|y|+ |z|)|p|
≤ D3(|y|+ |z|)q(t),
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where D3 = min (µ, 1).
Therefore, we obtain

dV (xt, yt, zt)

dt
≤ D3(|y|+ |z|)q(t).

Since by the inequalities |y| < 1 + y2, |z| < 1 + z2, then we get

dV (xt, yt, zt)

dt
≤ D3(2 + y2 + z2)q(t). (3.9)

From the inequality (3.5), we have y2 + z2 ≤ D−1
2 V .

Then the inequality (3.9) becomes

dV (xt, yt, zt)

dt
≤ D3(2 +D−1

2 V )q(t),

and by integrating the last inequality from 0 to t, therefore we get

V (xt, yt, zt) ≤ V (x0, y0, z0) + 2D3

∫ t

0

q(s)ds+D3D
−1
2

∫ t

0

V q(s)ds,

since q(t) ∈ L1(0,∞) and by using the Gronwall-Reid-Bellman inequality, we
obtain

V (xt, yt, zt) ≤
[
V (x0, y0, z0) + 2D3

∫ ∞
0

q(s)ds

]
exp

(
D3D

−1
2

∫ ∞
0

q(s)ds
)

= k1 <∞,
for k1 > 0.

Again, since V (xt, yt, zt) ≥ D2(x
2 + y2 + z2); by (3.5), then we have

x2 + y2 + z2 ≤ D−1
2 V ≤ D−1

2 k1 = K.

Thus we conclude

|x(t)| ≤ K, |ẋ(t)| ≤ K, |ẍ(t)| ≤ K, for all t ≥ t0.

Therefore the proof of Theorem 3.2 is now complete.
Example 3.2. Consider the third-order nonlinear functional differential equa-
tion as

...
x + (4 + sin t)(ẋ)2ẍ+

(
1

4
+

1

t3 + 2

) n∑
i=1

[
3x(t− ri(t)) +

x(t− ri(t))
2 + sin t

]
+

(
2 +

1

t3 + 1

) n∑
i=1

[
4ẋ(t− ri(t)) +

ẋ(t− ri(t))
2 + |x(t− ri(t))|+ |ẋ(t− ri(t))|

]
=

1

4 + t2 + x2(t) + y2(t) + z2(t) + x2(t− r(t))
.

(3.10)
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Then, the function

p =
1

4 + t2 + x2(t) + y2(t) + z2(t) + x2(t− r(t))
≤ 1

4 + t2
= q(t),

for all t ∈ R+.
It follows that ∫ ∞

0

q(s)ds =

∫ ∞
0

1

4 + s2
ds =

π

4
<∞,

then q(t) ∈ L1(0,∞).
Since

µ =
a0a1b0

∑n
i=1 ai + c0

∑n
i=1 li

2b0

∑n
i=1 ai

=
51

16
,

then, we obtain
dV (xt, yt, zt)

dt
≤ D3(|y|+ |z|)

1

4 + t2
,

where D3 = min(51
16 , 1) = 1.

Therefore, we get

dV (xt, yt, zt)

dt
≤ 2 + y2 + z2

4 + t2
≤ 2

4 + t2
+
D−1

2 V

4 + t2
.

By integrating the previous inequality from 0 to t, using the fact that
1

4+t2 ∈ L
1(0,∞), we have

V (xt, yt, zt) ≤ (V0 +
π

2
) exp (D−1

2

π

4
) <∞.

So, we can conclude the boundrdness of all solutions of the equation (3.10).

4 Conclusion

We know that the differential equations of third-order play extremely im-
portant and useful roles in many scientific areas such as atomic energy, biology,
chemistry, control theory, economy, engineering, information theory, mechan-
ics, medicine, physics, etc. Sufficient conditions for stability and boundedness
of solutions of third-order functional differential equation with multiple delays
were established. The appropriate Lyapunov functional is used to obtain the
results. The results of this paper improve and complement existing results in
the literature.
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