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Abstract
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1 Introduction

In this paper we investigate the asymptotic stability of the zero solution of the
delays differential equations

(q(t)(p(t)x′(t))′)′ + a(t)x′′(t) + b(t)x′(t) + c(t)f(x(t− r)) = 0, (1.1)
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and

(q(t)(p(t)x′(t))′)′ + a(t)x′′(t) + b(t)x′(t) + c(t)f(x(t− r)) = R(t). (1.2)

Where a(t), b(t), c(t), p(t), q(t), R(t), and f(x) are real valued functions contin-
uous in their respective argument, f(0) = 0.

In recent years, the asymptotic stability and boundedness of solutions of
non-autonomous delay differential equation of the third order have been stud-
ied by a variety of authors, and we mention only a sampling of such papers
[1–13] and other references therein.

Omeike, in 2009 [4], considered the following nonlinear differentiable of
third order, with a constant deviating argument r ensure the stability and the
boundedness of system

x′′′ + a(t)x′′ + b(t)x′ + c(t)f(x(t− r)) = R(t). (1.3)

He discussed the stability and boundedness of solutions of this equation when
R(t) = 0 and R(t) 6= 0.

Our objective in this paper is to show that Omeike results obtained in [3, 4]
do hold equally well in the case of the more general third order nonlinear delay
differential equation (1.1). Thus, our theorems contain the results of Omeike
[3, 4] as special case (p(t) = q(t) = 1).

We shall use appropriate Lyapounov function and impose suitable condi-
tions on the functions p, q and f .

2 Preliminaries

First, we will give the preliminary definitions and the stability criteria for the
general non-autonomous delay differential system. We consider

ẋ = f(t, xt), xt = x(t+ θ) , −r ≤ θ ≤ 0, t ≥ 0, (2.1)

Where f : I × CH → Rn is a continuous mapping, f(t, 0) = 0, and we suppose
that f takes closed bounded sets into bounded sets of Rn. Here (C, ‖.‖) is the
Banach space of continuous function φ : [−r, 0] → Rn with supremum norm,
r > 0; CH is the open H-ball in C; CH := {φ ∈ (C[−r, 0], Rn) : ‖φ‖ ≤ H}.
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Definition 2.1 [12] A function x(t0, φ) is said to be a solution of the system
(2.1) with the initial condition φ ∈ CH at t = t0, t0 ≥ 0, if there is a constant
A > 0 such that x(t0, φ) is a function from [t0 − r, t0 + A] into Rn with the
properties:

1. x(t, t0, φ) ∈ CH for t0 ≤ t ≤ t0 + A,

2. xt(t, φ) = φ,

3. xt(t, φ) satisfies (2.1) for t0 ≤ t ≤ t0 + A.

Standard existence theory, see Burton [1], shows that if φ ∈ CH and t ≥ 0,
then there is at least one continuous solution x(t, t0, φ) such that on [t0, t0 +α)
satisfying Equation (2.1) for t > t0, xt(t, φ) = φ and α is a positive constant.If
there is a closed subset B ⊂ CH such that the solution remains in B, then α =
∞. Further, the symbol |.| will denote the norm in Rn with |x| = max1≤i≤n |x|.

Definition 2.2 A set Q ⊂ CH is an invariant set if for any φ ∈ Q, the solution
of (2.1), x(t, 0, φ), is defined on [0,∞) and xt(φ) ∈ Q for t ∈ [0,∞).

Lemma 2.3 If φ ∈ CH is such that the solution xt(φ) of (1,3) with x0(φ) = φ

is defined on [0,∞) and ‖xt(φ)‖ ≤ H1 < H for t ∈ [0,∞), then Ω(φ) is a
non-empty, compact, invariant set and

dist(xt(φ),Ω(φ))→ 0 as t→∞.

Lemma 2.4 let V (t, φ) : I × CH → R be a continuous functional satisfying a
local Lipschitz condition.V (t, 0) = 0, and such that:
(i) W1(|φ(0)|) ≤ V (t, φ) ≤ W2(‖φ‖) where W1(r), W2(r) are wedges.
(ii) V̇(2,1)(t, φ) ≤ 0, for φ ≤ CH .
Then the zero solution of (2.1) is uniformly stable.
If Z = {φ ∈ CH : V̇(2,1)(t, φ) = 0}, then the zero solution of (2.1) is asymptoti-
cally stable, provided that the largest invariant set in Z is Q = {0}.

3 Assumptions and main results

We shall state here some assumptions which will be used on the functions that
appeared in equation (1.1):
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i) p(t) and q(t) are positives and continuously differentiable functions on
[0,+∞[, and f(x) is continuously differentiable for x ∈ R,

ii) 0 < m ≤ p(t) ≤M, 0 < m ≤ q(t) ≤M ,

iii) −L ≤ p′(t) ≤ 0, −L ≤ q′(t) ≤ 0, and p′′(t) ≥ 0, t ≥ 0,

iv) f(0) = 0, 0 < δ0 ≤
f(x)

x
with x 6= 0 and |f ′(x)| ≤ δ1,

v) 0 < a0 ≤ a(t) ≤ a1, t ≥ 0,

vi) 0 < n ≤ c(t) ≤ b(t) ≤ N , −N ≤ b′(t) ≤ c′(t) ≤ 0, t ≥ 0,

vii) (p(t)c(t))′ ≤ (q(t)c(t))′ ≤ 0, t ≥ 0.

To simplify the notation in what follows, we let

A(t) =
a(t)

p(t)q(t)
, B(t) =

b(t)p(t)− a(t)p′(t)

p2(t)
,

D(t) =
αM

2

[
2a1p

′2(t)− a2p(t)p
′(t)

p3(t)
− a3c

′(t)

]
≥ 0,

where a2 =
1

αM
a1 + 2n(1− αMδ1) +N, and a3 =

N

nm
+
a1L

nm2
.

Theorem 3.1 Suppose that the assumptions (i)-(vii) hold. Then every solution
of (1.1) is uniformly asymptotically stable, provided that there exists α satisfying
M

a0
< α <

1

Mδ1
such that

1

2
a′(t) ≤ d0 < n(1− αMδ1),

and

r < min(
2c2m

2

Nδ1(1 + α +m2)
,

2c3

αδ1N
),

where c2 =
1

M
[n(1− αMδ1)− d0] > 0, and c3 =

1

M
(
αa0

M
− 1) > 0.
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Proof: We write the equation (1.1) as the following equivalent system:

x′ =
1

p(t)
y,

y′ =
1

q(t)
z, (3.1)

z′ = −A(t)z −B(t)y − c(t)f(x) + c(t)

∫ t

t−r

y(s)

p(s)
f ′(x(s))ds,

and denote θ(t) =
∫ t

0 D(s)ds. We can see that since p(t) and q(t) are continuous

bounded functions, then θ(t) =
∫ t

0 D(s)ds <∞; for all t ≥ 0. Indeed,∫ t

0

D(s)ds = αM

∫ t

0

[
a1p
′2(s)

p3(s)
− a2p

′(s)

2p2(s)
− a3

2
c′(s)

]
ds

≤ a1αM

∫ t

0

(
−p′(s)
p2(s)

)(−p
′(s)

p(s)
)ds+

αa2M

2m
+
αa3MN

2

≤ a1αML

m2
+
αa2M

2m
+
αa3MN

2
≤ ω <∞.

We define the Lyapounov functional W (t, x, y, z) as

W (t, xt, yt, zt) = exp(−θ(t)
µ

)V (t, xt, yt, zt), (3.2)

where

V (t, xt, yt, zt) = p(t)c(t)F (x) + αq(t)B(t)
y2

2
+ αq(t)c(t)f(x)y (3.3)

+
1

2

{
a(t)

p(t)
y2 + αz2 + 2yz

}
+ λ

∫ 0

−r

∫ t

t+s

y2(ξ)dξds,

such that F (x) =
∫ x

0 f(u)du, µ and λ are positives constants which will be
determined later. From the definition of V in (3.3), we observe that the above
Lyapounov functional can be rewritten as follows

V = V1 + V2 + λ

∫ 0

−r

∫ t

t+s

y2(ξ)dξds,

where

V1 = p(t)c(t)F (x) + αq(t)B(t)
y2

2
+ αq(t)c(t)f(x)y,

and

V2 =
1

2

{
a(t)

p(t)
y2 + αz2 + 2yz

}
.
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First consider

V2 =
1

2

{
a(t)

p(t)
y2 + αz2 + 2yz

}
=

α

2
(z +

y

α
)2 +

1

2
y2(

a(t)

p(t)
− 1

α
).

By (ii), (v) and since α >
M

a0
we have

a(t)

p(t)
− 1

α
≥ a0

M
− 1

α
> 0.

Thus there exist positives constants such that

V2 ≥ δ2y
2 + δ3z

2. (3.4)

On the other hand, using the assumptions (i)-(vi), and since
n ≤ b(t) ≤ p(t)B(t), after some rearrangements we obtain

V1 = p(t)c(t)F (x) +
α

2
q(t)B(t)

{
y +

c(t)f(x)

B(t)

}2

− αq(t)f 2(x)c2(t)

2B(t)

≥ p(t)c(t)

∫ x

0

[
1− αq(t)c(t)

p(t)B(t)
f ′(u)

]
f(u)du

≥ p(t)c(t)

∫ x

0

(1− αMδ1)f(u)du

≥ δ4F (x),

where

δ4 = nm(1− αMδ1) > nm(1− 1

Mδ1
Mδ1) = 0.

Thus from (iv) we obtain,

V1 ≥
δ4δ0

2
x2. (3.5)

Clearly, from (3.5),(3.4) and (3.3), we have

V (t, xt, yt, zt) ≥ δ2y
2 + δ3z

2 +
δ4δ0

2
x2 + λ

∫ 0

−r

∫ t

t+s

y2(ξ)dξds.

Hence, it is evident, from the terms contained in the last inequality, that there
exist sufficiently small positive constant k, such that

V (t, xt, yt, zt) ≥ k(x2 + y2 + z2), (3.6)
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since the integral
∫ t
t+s y

2(ξ)dξ is nonnegative, where k = min(δ2; δ3;
δ4δ0

2 ).
Therefore we can find a continuous function W1(|φ(0)|) with

W1(|φ(0)|) ≥ 0 and W1(|φ(0)|) ≤ W (t, φ).

The existence of a continuous function W2(‖φ‖) which satisfies the inequality
W (t, φ) ≤ W2(‖φ‖), is easily verified.
For the time derivative of the Lyapunov functional V (t, xt, yt, zt), along the
trajectories of the system (3.1), we have

d

dt
V (t, xt, yt, zt) = (p(t)c(t))′F (x) +

α

2
q′(t)B(t)y2 + α(q(t)c(t))′f(x)y

+

[
α

2
q(t)B′(t)− a(t)p′(t)

2p2(t)
+G(t) + λr

]
y2

+

[
1

q(t)
− αA(t)

]
z2

+ c(t)(y + αz)

∫ t

t−r

y(s)

p(s)
f ′(x(s))ds− λ

∫ t

t−r
y2(ξ)dξ.

Where

G(t) =
a′(t)

2p(t)
+ αc(t)

q(t)

p(t)
f ′(x)−B(t).

Since q′c = (qc)′ − qc′, we obtain the following:

α

2
q′(t)B(t)y2 =

α

2

q′(t)c(t)

c(t)
B(t)y2

=
α

2c(t)
(q(t)c(t))′B(t)y2 − α

2c(t)
q(t)c′(t)B(t)y2,

consequently, we have

d

dt
V = (p(t)c(t))′F (x) +

α

2c(t)
(q(t)c(t))′B(t)y2 + α(q(t)c(t))′f(x)y

+

[
αq(t)B′(t)

2
− αq(t)c′(t)B(t)

2c(t)
− a(t)p′(t)

2p2(t)
+G(t) + λr

]
y2

+

[
1

q(t)
− αA(t)

]
z2 (3.7)

+ c(t)(y + αz)

∫ t

t−r

y(s)

p(s)
f ′(x(s))ds− λ

∫ t

t−r
y2(ξ)dξ.

Now, we verify

H(t, x, y) = (p(t)c(t))′F (x) +
α

2c(t)
(q(t)c(t))′B(t)y2 + α(q(t)c(t))′f(x)y ≤ 0,
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for all x, y and t ≥ 0. If (q(t)c(t))′ = 0, then

H(t, x, y) = (p(t)c(t))′F (x) ≤ 0.

If (q(t)c(t))′ < 0, the quantity in the brackets above can be written as,

H(t, x, y) = (q(t)c(t))′
[

(p(t)c(t))′

(q(t)c(t))′
F (x) +

α

2c(t)
B(t)y2 + αf(x)y

]
= (q(t)c(t))′

[
(p(t)c(t))′

(q(t)c(t))′
F (x) +

αB(t)

2c(t)

{
y +

c(t)f(x)

B(t)

}2

− αc(t)f 2(x)

2B(t)

]

also by assumption (vii) we have
(p(t)c(t))′

(q(t)c(t))′
≥ 1 this implies

H(t, x, y) ≤ (q(t)c(t))′
∫ x

0

[
1− αc(t)

B(t)
f ′(u)

]
f(u)du.

From (ii) and (vi) we get c(t) ≤MB(t), thus

H(t, x, y) ≤ (q(t)c(t))′
∫ x

0

(1− αMδ1)f(u)du

≤ (q(t)c(t))′
δ4

nm
F (x) ≤ 0.

Thus, on combining the two cases, we have H(t, x, y) ≤ 0 for all t ≥ 0, x and
y. Using the assumptions of theorem, we get

B(t) ≤ N

m
+
a1L

m2
,

and

B′(t) =
b′(t)p2(t)− (b(t) + a′(t))p(t)p′(t)− a(t)p(t)p′′(t) + 2a(t)p

′2(t)

p3(t)

≤ 2a1p
′2(t)− [2n(1− αMδ1) +N ]p(t)p′(t)

p3(t)
,

hence, it is easy to see that

αq(t)B′(t)

2
− αq(t)c′(t)B(t)

2c(t)
− a(t)p′(t)

2p2(t)

≤ αM

2

[
2a1p

′2(t)− a2p(t)p
′(t)

p3(t)
− a3c

′(t)

]
= D(t),
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and

G(t) ≤ 1

p(t)

[
d0 + b(t)(α

c(t)

b(t)
q(t)δ1 − 1)

]
≤ 1

M
[d0 + n(αMδ1 − 1)] = −c2 < 0,

we have also,

1

q(t)
− αA(t) =

1

q(t)
(1− αa(t)

p(t)
)

≤ 1

M

[
1− αa0

M

]
= −c3 < 0.

Therefore (3.7) becomes

d

dt
V (t, xt, yt, zt) ≤ [D(t)− c2 + λr] y2 − c3z

2 − λ
∫ t

t−r
y2(ξ)dξ

+ c(t)(y + αz)

∫ t

t−r

y(s)

p(s)
f ′(x(s))ds.

Using the Schwartz inequality |uv| ≤ 1
2(u2+v2) and since |f ′(x)| ≤ δ1, we obtain

c(t)y

∫ t

t−r

y(s)

p(s)
f ′(x(s))ds ≤ δ1Nr

2
y2 +

δ1N

2m2

∫ t

t−r
y2(ξ)dξ,

and

αc(t)z

∫ t

t−r

y(s)

p(s)
f ′(x(s))ds ≤ αN

δ1r

2
z2 +

αNδ1

2m2

∫ t

t−r
y2(ξ)dξ.

We rearrange

d

dt
V (t, xt, yt, zt) ≤ −

[
c2 −D(t)− r(λ+

δ1N

2
)

]
y2 −

[
c3 − α

δ1Nr

2

]
z2

+

[
δ1N

2m2
(1 + α)− λ

] ∫ t

t−r
y2(ξ)dξ.

If we take
δ1N

2m2
(1 + α) = λ the last inequality becomes

d

dt
V (t, xt, yt, zt) ≤ −

[
c2 −D(t)− δ1N

2
(
1 + α

m2
+ 1)r

]
y2

−
[
c3 − α

Nδ1r

2

]
z2.
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Using (3.6), (3.2) and taking µ = k we obtain:

d

dt
W (t, xt, yt, zt) = exp(−θ(t)

k
)(
d

dt
V (t, xt, yt, zt)−

D(t)

k
V (t, xt, yt, zt))

≤ exp(−θ(t)
k

)[−(c2 −
δ1N

2
(
1 + α

m2
+ 1)r)y2

−(c3 − α
δ1Nr

2
)z2].

Therefore, if

r < min(
2c2m

2

δ1N(1 + α +m2)
,

2c3

αδ1N
),

we have

d

dt
W (t, xt, yt, zt) ≤ −β exp(−ω

k
)(y2 + z2), for some β > 0.

It is clear that the largest invariant set in Z is Q = {0}, where

Z = {φ ∈ CH :
d

dt
W (φ) = 0}.

Namely, the only solution of system (3.1) for which d
dtW (t, xt, yt, zt) = 0 is the

solution x = y = z = 0. Thus, under the above discussion, we conclude that
the trivial solution of equation (1.1) is uniformly asymptotically stable. This
fact completes the proof.

In the case R(t) 6= 0 we establish the following result:

Theorem 3.2 In addition to the assumptions of Theorem 3.1, If we assume
that R(t) is continuous in R and∫ t

0

R(s)ds <∞ for all t ≥ 0,

then all solutions of the perturbed equation (1.2) are bounded.

Proof: The proof of this theorem is similar to that of the proof of Theorem
2 in [4] and hence it is omitted.

We give an example to illustrate our main results:
Example: We consider the following third order non-autonomous delay differ-
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ential equation

((
1

1 + t2
+

1

2
)((

2

1 + t2
+

1

2
)x′(t))′)′ + (

1

4
sin t+ 10)x′′(t) (3.8)

+(
1

1 + t
+

1

2
)x′(t) + (

1

4(1 + t)
+

1

4
)(x(t− r) +

x(t− r)
1 + x2(t− r)

) = e−t.

Now, it is easy to see that

1

2
≤ p(t) =

2

1 + t2
+

1

2
≤ 3

2
,

1

2
≤ q(t) =

1

1 + t2
+

1

2
≤ 3

2
,

−1 ≤ p′(t) ≤ 0, −1 ≤ q′(t) ≤ 0, and p′′(t) ≥ 0 for all t ∈ [1,+∞[.

1 ≤ f(x)

x
= 1 +

1

1 + x2
with x 6= 0, and |f ′(x)| ≤ 2 = δ1.

1

4
≤ c(t) =

1

4(1 + t)
+

1

4
≤ b(t) =

1

1 + t
+

1

2
≤ 1,

−1 ≤ b′(t) ≤ c′(t) ≤ 0; for all t ∈ [1,+∞[.

(p(t)c(t))′ ≤ (q(t)c(t))′ ≤ 0 for all t ∈ [1,+∞[.

39

4
≤ a(t) =

1

4
sin t+ 10 ≤ 41

4
, t ∈ [1,+∞[,

M

a0
=

2

13
< α <

1

3
=

1

Mδ1
.

1

2
a′(t) =

1

8
cos t < n(1− αMδ1) <

7

52
,

and
R(t) = e−t,

hence ∫ ∞
1

e−t <∞.

All the assumptions (i) through (vii) are satisfied, we can conclude using The-
orem 3.2 that every solution of (3.8) is bounded.

Remark 3.3 Equation(1.1) can be rewritten as

x′′′(t) + α(t)x′′(t) + β(t)x′(t) + γ(t)f(x(t− r)) = 0, (3.9)

Electronic Journal. http://www.math.spbu.ru/diffjournal 32



Differential Equations and Control Processes, N 1, 2014

where

α(t) =
p(t)q′(t) + 2q(t)p′(t) + a(t)

p(t)q(t)
; β(t) =

q′(t)p′(t) + q(t)p′′(t) + b(t)

p(t)q(t)
, and

γ(t) =
c(t)

p(t)q(t)
.

If we apply Omeike theorem [3] to show that every solution x(t) of (3.9) is
uniform-bounded and satisfies x(t) → 0, x′(t) → 0 and x′′(t) → 0 as t → ∞,
then the differentiability of α and β is needed, which implies the use of the sec-
ond derivative of q and the third derivative of p. However in our theorem this
latter conditions are not required since we just need to deal with p′, p′′ and q′.
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[10] C. Tunç, Some stability and boundedness conditions for non-autonomous
differential equations with deviating arguments, E. J. Qualitative Theory of
Diff. Equ., No. 1. (2010), pp. 1–12.
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