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Abstract

This article presents the main features of two programs, Inwards to Chaos and Com-
plex Mapper, coded by the author and aiming to support the investigations in complex
analysis and dynamics in one complex variable via some techniques differently based
upon colors, upon Geometry and Topology. Both programs are built on visual interfaces
so that all integrated features can be reach through an easy and intuitive use of windows
graphics. All has been customized for a user-friendly focus on the behavior of a given
complex system. Their use wants to be flexible and both can be offered as valid tools for
researchers and also for teaching courses in complex analysis and dynamics, due to the
chance of displaying any user-defined map, because a complete parser handling arithmetic,
trigonometry and hyperbolic functions is implemented. Moreover, the user can also count
on the support of an on-line and step-by-step help. Inwards to Chaos mainly points to
global dynamics, besides developing the chromatic aspects of fractal images in the com-
plex plane, where colors play an enlightening role for the dynamics involved, beside the
search for the aesthetic taste. Complex Mapper is more devoted to the investigations on
local systems and it focuses on the geometry of the dynamics of maps. This article is
simply descriptive and all information about the internals, the algorithms and about the
ways they have been coded can be obtained by writing to author’s e-mail below.

1 Introduction

My interests in complex analysis and dynamics, together with my experience
as programmer, led me to produce two programs as a self-help to understand
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many topics of such fields. During their coding, I developed techniques to
display complex (possibly iterated) maps in one complex variable and to take
this all to quaternions just for fun. In order of time, I first coded Inwards to
Chaos (IC ), mostly devoted to complex and quaternion dynamics; some months
later, another program - Complex Mapper (CM ) - came up and its development
recently got to the latest release 2.001. Since the first lines of code for IC, I
found essential to count on a parser to input any user-defined formula, either
for complex numbers and for quaternions: it is author’s opinion that any robust
computer program shall be based upon an high degree of freedom, with special
regard to public domain software devoted to Mathematics. Then I developed
methods to focus on aspects involving graphics, computation and also to play
with fractal images which, in several occasions, look very pretty.

2 Inwards To Chaos

The first rows of code were written in spring 20002. The development of IC
went side by side to my learning of complex dynamics so that first the early
coding tested my notions which, conversely, I used after to refine by computing
several different examples, thanks to the mentioned freedom of inputing. In
that same period I saw my interests in complex dynamics rapidly increasing
and something was urgently required to produce figures, after I also embarked
upon the writing of a book3.

As the program opens a window welcoming (See Figure 1) the user to five
possible sections is shown: 1) complex; 2) complex in 3D; 3) quaternions; 4)
domain coloring; 5) reals.

2.1 COMPLEX

The goal of this section is to explain how IC investigates on the iterations of
functions in one complex variable by playing with a number of parameters. It
opens with the dialog window in Figure 3, very simple in structure, according
to a deliberate feature the author chose for Inwards : no much stuff at a glance,
so that any process can be easily understood and managed. The dialog shows

1As this article is in print, new features are being developed and a recent version will be released on August.
2IC is included inside a package, also including another program, entitled ’IFS to Chaos’ and devoted to

Iterated Function Systems, which will not be treated in this article.
3See [1]. Currently on final revision, it concerns the history of complex dynamics via the translations in

English of the original works in French and German and a long historical investigation.
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Figure 1: The starting window.

Figure 2: The palette applied to figures 3,5 and 6.

the Mandelbrot set in the large view and a Julia set4 in the little one on the
top left corner; in addition region coordinates are displayed at the four sides.

As anticipation of section 2.2, a 3D view of the same set is displayed on the
figure 3 on the right: given an upper bound of iterates for preventing the process
to loop5, the height of the solid Mandelbrot set is computed according to the
number of iterates which are trapped inside a ’critical’ disk of given radius6.

At the bottom, two rectangles show the complex xy coordinates (z = x+iy)
of the pointer while floating over the large window. On the top right corner,
a green button displays the tips related to this window, while the red one
minimizes the dimensions so that some screen space is saved when multiple
dialog windows are opened all together. Two menu entries on the top, below the
caption, collect a number of basic operations for drawing, storing and resizing
the image. At a first glance, all might look like pour to manage robustly all
processes and calculations here involved. Hence it is worth introducing the
window in Figure 4 on the left.

The fundamental parameters and tools to play with iterates are offered by
a management panel (see figure 4) : region coordinates, methods to trap the
iterated orbits, a number of iterations methods for solving equations7, prede-

4When ‘Mandelbrot’ mode is set, the ‘J’ key shows the Julia set related to pointer position.
5If, for example, it should depend on analytic properties exclusively and it might not be satisfied in the

investigated region.
6This method is commonly known as ’escape time’ or ’Level Set’. See [2], page 190.
7Historical note: complex dynamics first stepped to understand the behavior of such methods all over the
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Figure 3: the window of the ’complex’ section on the left and a perspective 3D view of the
Mandelbrot set on the right.

Figure 4: On the left the panel reporting the parameter values for the figures 3 and, on the
right, the editor to input user-defined formulas (here showing the map displayed in figures 5).
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Figure 5: A 3D shaded coloring on the left and a wireframe version on the right.

fined formulas for any beginner and mostly an input editor on the right). This
is one of the strongest features of Inwards : the parser includes direct and in-
verse trigonometric, hyperbolic and transcendental functions mainly8 and com-
putes symbolically the first derivative or of higher orders by recursion. Some
implemented iterative methods are: Julia (simply iteration), Mandelbrot (it-
eration in one-parameter-space) and, among those ones for solving equations,
Newton-Raphson either for multiple and non-multiple roots, Koenigs, Schröder,
Steffensen, Halley, Collatz, secant and more.

2.2 COMPLEX IN 3-D9

Basically it deals with 3D colored histograms whose upper vertexes for each
column are linked (Figures 5, left and right) or not (Figure 6). The height
is computed according to a list of rules. This method turns out to be very
enlightening for understanding the map behavior about a singularity, such as
poles in Figures 5 where f(z) = 1/(z3 − 1) is displayed with shaded colors
(on the left) and as a wireframe (on the right). Notice that the asymptotic
values on the unit circle are the three ’peaks’. Figure 6 displays the 3D model
of the transformed map arising from Newton-Raphson method applied to the
cubic equation z3 − 1 = 0. Basically this is like an histogram: the height per
each seed point is set by the minimum value of the iteration index, required to

Riemann sphere.
8... and more other options. See help file of Inwards.
9This option shall be managed together with the dialog in the COMPLEX section.
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Figure 6: 3D Newton’s Method for z3 − 1 = 0.

reach a root at given condition 10. Such index increases for closer and closer
neighborhoods of the Julia set which splits the basins of convergence to the
three roots, while it decreases as we get closer to the roots, as shown in the
three ’valleys’. Any 3D plot can be rotated or viewed in perspective.

2.3 QUATERNIONS

Around early 80’s the field of complex dynamics, also by means of the spectac-
ular images of Julia sets, resurrected and earned so much popularity (getting an
audience also outside the mathematicians circuit in those years) that became a
mainstream scientific topic. This all let enthusiasms and aesthetic tastes grow
up, pushing (me too!) to extend analogous graphic investigations11 from C to
a larger numerical field, namely to quaternions12. Practically the visualization
of a Julia set is more laborious for quaternions and, due to a very huge number
of computations therein involved, it runs quite slower than in C. The prob-
lem of the immersion of this 4D object into a 3D space is of minor importance

10Here an accuracy of 10e5.
11see [7], [11] and [12].
12Invented by Sir William Rowan Hamilton in the middle of the XIXth century, they consist of four (quater,

in Latin) vectors h = a + ib + jc + kd, with non-commutative multiplication: in fact the quaternion field is not
abelian and often indicated as H. In the recent years, some software was develped to display Julia sets in the
octonions, sedenions and in other numerical fields too.
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Figure 7: On the left, the starting panel for quaternions and a magnified view of a cubic Julia
set on the right.

and its solution is easy and intuitive 13. The main question here is how to
accomplish a good rendering of such solid Julia sets because the images must
evince the fractal nature of their boundary. Naive and rough computations
might display 3D models with a flat looking so that bad14 images would come
out. IC implements a solution relying on both a slightly modified version of
Phong illumination model, see [6], p. 729, (assuring a very careful and realistic
computation of the light rays intensity and reflection onto a surface) and an
accurate scanning algorithm of the Julia set. IC opens to quaternion iterates
by means of a parameters management panel (See Figure 7 on the left).

Since the goal of this article is just to show the features of IC and Mapper,
the author will not get into technical details, referring the reader to [14] for a
deeper discussion by pseudo-code in order to illustrate the general lines on how

13During the scanning of a whole 3D space - a cube for example - the three XYZ values of the ordered triplet
in X × Y×Z coordinates are set to a, b, c quaternion components respectively, which is tested to belong to the
Julia set or not

14One important goal is to render the ’fractality’ of the Julia set boundary. Since the details are too little,
they could easily escape: a good solution was discovered to rely into an appropriate calculus of the light per
each boundary point, given a source somewhere in the model.
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Figure 8: Two pictures of quaternion Julia sets for cos(h) and for cos(z) on the right. Note the
analogous shape.

Figure 9: The Mandelbrot set in H for f(h) : h2 + c, where h, c ∈ H.

to display and render these images. For an easier control, the author coded
a C++ quaternion class for arithmetic and trigonometric, transcendental and
hyperbolic operations currently solved via MacLaurin’s series expansion15. It
can be mathematically proven that quaternion Julia sets look like analogous
sets in C rotated along the vertical axis, say Y , as in Figures 8, where the Julia
set associated to the iteration of the cosine map in the H (left and middle) and
in C (right).

Finally the author argued that this method is inspired to an analogous one
applied in C: but it lacks in flexibility and, for quaternions, works with filled-in

15The author recently knew that direct formulas have been developed to compute such operations: see
http://world.std.com/ sweetser/index.html. Their implementation will be pursued in next versions of IC.
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Figure 10: The quaternion Julia set for z2 + h, where h = 0.5555r+0.5555i, h ∈ H. On the
right, a 3D cube referencing the space position of the displayed 3D fractal.

Figure 11: The analysis window tracking a single orbit in H.

Julia sets16 only. Plotting other classes of Julia sets is an open problem for
the author: for example, how to plot the quaternion Julia set coming from the
Newton-Raphson method applied to h3 − 1 = 0? Inwards allows a minimal
analysis of such Julia sets by means of a window showing the orbit of a seed
point, given the iterated map (see Figure 11).

2.4 TOWARDS DOMAIN COLORING ...

It will be discussed with more details inside the next section because this method
is more consistent with the goals of CM.

16A ’filled-in Julia set’ relates to iteration of polynomials and it is defined as the union of the Julia set of the
polynomial itself and the bounded component of F. See [5], p. 65.
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2.5 REALS

As long as IC was developed, it turned into a studio platform for reals too
and then it came natural to implement some graphics for real maps, for sake of
completeness and also to give the chance of studying a given case from different
viewpoints, because it may be often required in mathematics.

3 Complex Mapper

As it also happened for IC, the birth of CM was exclusively dictated by practical
needs and by new ideas coming up into my mind while working for the book
[1]; so I started to code another program, with some features inherited from
but lighter than in IC, relying on different software architecture and focusing
on new graphical aspects. At the code level, the main difference between IC
and CM is that the latter relies on a Multi-Document Interface (MDI), giving
the chance of handling more experiments simultaneously. The main parent
window is shown first, managing a set of child views, each one keeping the input
formula to be examined. At a mathematical level, the basic feature (starting
this all up) was the need of envisioning the local dynamical aspects of any
(possibly iterated) map in one complex variable17. I mean that the graphical
features already implemented into IC, more systematically based upon colors,
put in evidence the final state of a dynamical system or, regarding the Domain
Coloring method, the values distribution. I deliberately made CM evolve along
the analytic path. The next paragraphs will enlighten the major aspects of
CM. CM was essentially developed for everything to be user-friendly and easy
to understand so that, in the latter direction, a (optionally removable) report
window was implemented to let the user follow each step of any process.

3.1 LAYERS

All main processes have been organized as layers piled on each other: the work-
ing of CM is based upon a fixed sequence of sub-process. Levels are managed
inside the window shown at Figure 12. The left column lists the levels, the right
one indicates whether they are currently operative or not. The most relevant
layers will be discussed further in details.

17The most important goals for this version of CM are essentially to display the local behavior about a
singularity (critical, pole-like, essential) and the dynamics of a given iterated orbit.
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Figure 12: The levels management window.

Figure 13: On the left, coloring C through the identity map and the model of the RGB-color
cube on the right.

3.2 DOMAIN COLORING

This is a method applied recently in complex analysis and, as far as the author
knows, spread inside some web-sites devoted to this field18.

A trouble with complex numbers is that they cannot be sorted. Either
if assumed in the standard formula z = x + iy or in the Euler’s form reiθ,
because they consist of two components: so it is not a priori decidable which
component shall be preferred for the sort to take place. But classifications are
required somehow since they are often useful to evince analytical properties.
The ’Domain Coloring’ (DC ) method overcomes this trouble and, getting rid
of any standard approach, it invents a new way which sets a one-to-one map
from C (see Figure 13, left plot) onto the RGB 19 cube (right plot) so that each
complex point is associated to one and only one color.

18See Farris at http://ricci.scu.edu/˜ffarris, Godfrey at http://winnie.fit.edu/˜gabdo, Lundmark at
http://www.mai.liu.se/˜halun.

19It is the acronym of Red-Green-Blue, one of the so-called ‘additive systems’, applied by many standards in
video-diffusion. Each color is detected by a vector of 3 primary (that is, assumed to be undecomposable in this
system itself) colors. If the range is the same for all 3 components, a cube can be ideally modeled (Figure 13
on the right). See [6], p. 584.
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Figure 14: Domain coloring in action.

In particular, the left plot of Figure 13 displays how C is colored20 under
the action of the identity map f(z) : z and DC, the simplest way to show how
DC colors the complex plane. The unit circle has been plot in yellow in order
to gain a start point for understanding the method itself. Figure 14 (on the
left) shows DC in action with f(z) = (z3 + 1)/(z3 − 1). The black and white
regions are located, as known, on the unit circle and they detect the zeros and
poles respectively. The right plot shows the wild behavior about the essential
singularity at the origin for f(z) = sin(1/z).

Anyway, up to now, we gave nothing new about DC : these first lines were
only a very short survey on its use in complex analysis. My new simple idea
consists in applying DC to complex dynamics too, in order to study the final
values distribution after a finite number of iterates: if DC is applied to the image
values returned by f(z) as usual, why cannot we do the same with f ◦n(z), again
a complex map where n is just the index of the nth-fold application of f(z)?
Test showed that, if properly used in complex dynamics, DC can reveal the
Julia sets structure, for example, if consisting of pure repelling fixed points or
poles. Let us take a couple of examples. Figures 15 display the Julia set of
f(z) = z2−0.2+0.7i. We have two basins of attraction: the white21 one to the
point at infinity and the (bounded) basin to an attracting cycle of period 322.
Figures 16 show the known example of the Newton-Raphson method applied

20I slightly modified the original (DC) algorithm so that regions neighboring the zeros and poles are painted
black and white respectively. The original version does the converse.

21In our color convention.
22We need to precise, in order to fix the power scope of DC, that this feature was evinced, not found, by this

method, that is, it came up after some tests. See conclusions inside section 4 for more details.
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Figure 15: Displaying a cycle of period 3 via domain coloring.

Figure 16: Julia set generation for z3 − 1 = 0 under Newton-Raphson’s method.
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to the equation f(z): z3 − 1 = 0, yielding the transformed map g(z):

2z3 + 1

3z2

The left plot shows the state of the system after 5 iterations; notice the genera-
tion of the Julia set at the poles (white regions). On the right, the same system
after an higher number of iterations: now there is no sensitive dependence on
the value of the seed point23. Only three colors are shown and this proves em-
pirically that all orbits (except at the Julia set) converge to the attracting fixed
points of g(z), that is, to the zeros of f(z).

3.3 GRID-MAPS

The concept behind the method of ‘grid-maps’ (GD), as I named24, is very sim-
ple. Grid-maps can be displayed in three steps: (1) assume a grid25 of complex
points, (2) map (or iterate) such points, (3) link the resulting image points by
the same rule as at 1. CM implements the orthogonal and the radial grid-maps,
displayed in Figures 17. Early α-versions of CM implemented only the orthogo-
nal type but their running suggested to give the user the chance of choosing the
radial shape too, because there would be cases whose understanding requires
different grid-maps. GD are very useful to look at the local dynamics about a
singularity. For example, we will illustrate (locally) the final state of two local
dynamical systems: the first one with a rationally indifferent fixed point and
the other with an irrationally indifferent fixed point26.

Figure 17: The source orthogonal and radial grids.

23With regard to the famous expression, this is the initial condition.
24I apologize myself for my lack of knowledge in the literature of methods in complex analysis: maybe this

same method keeps already a name but I do not know any standard nomenclature yet. As far as I know, I
found it in [10], but without any given standard nomenclature.

25We do not intend a grid as only a geometrical shape but, more abstractly, as the rules linking all points.
26The author assumed that the reader already keeps a basic knowledge of complex dynamics.
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The first example is shown by iterating f(z) = z + z5: this map has a
rationally indifferent point at the origin where four attracting and four repelling
directions branch out. Here the holomorphic germ of the Taylor expansion
about the origin can be represented in the form z + eiθzn, where n − 1 is the
number of attracting and repelling directions and θ is a rational number.

Figure 18: Applying the two grids to the dynamics about a rationally indifferent point.

Iterates give rise to the known vector field, namely the Fatou-Leau flower
with 4 petals. Applying the orthogonal grid does not draw any clear conclusion:
we are just able to deduce a slower and a slower convergence rate as nearer as
we get to the origin: the graphic result is that a new grid, quasi-orthogonal as
the source one, is displayed (look at the left image of Figures 18): the image
grid looks like the source orthogonal one about the origin, whereas it gets
more and more deformed as far as we move away. On the contrary the radial
grid works better, as we can evince from the figure 17 on the right where the
characteristic shape of the Fatou-Leau flower comes out, having four repelling
directions localized at the four points ±1, ±i, as predicted by the theory. So
this question comes out naturally: is there a way to determine which is the
most suitable grid model for a given case?

Actually no definitive response can be given and it is opined that only the
heuristic approach rules here, therefore no straight rules can be defined because
all depends on user needs. The radial grid also helps here to understand that
a sufficiently small neighborhood of the rationally indifferent point can be con-
jugated to an open disk centered at the origin and the radial grid appeared as
the obvious solution to evince these dynamics in the best way. The second ex-
ample shows the dynamics about an irrationally indifferent fixed point, namely
when the holomorphic germ of the Taylor expansion about the origin is in the
form z + eiθzn where θ is irrational and satisfying a diophantine condition. In
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Figure 19: A blow-up of a neighborhood enclosing a Siegel disk. The blue circle tracks approx-
imately that maximal rotation simply connected domain.

1942 C.L. Siegel proved that there exists a subset of irrational numbers enjoy-
ing this property and allowing the linearization about the fixed point so that
a bounded neighborhood of the origin is conformally equivalent to a rotational
disk (so called ’Siegel disk’). Irrationals which are not diophantine are defined
’Liouville numbers’, first studied by Cremer ([3] and [4]) between 20’s and 30’s.
Irrationally indifferent points split in Siegel and Cremer points, whether the
linearization applies or not27. The radial grid is the best to enlighten the experi-
ment here again. A given neighborhood, deliberately exceeding the linearization
domain, was chosen to look at the deformation outside the maximal rotation
domain (here conformal to a disk), as clearly shown in Figure 19.

3.4 CIRCLE / POLYGONAL DOMAINS

Sometimes a grid-map, in both forms, could produce too messy graphics and
thus it is useful to have part of the source grid-map, say a circle or an n-
side polygonal domain, whose generation is achieved by means of parameters
management window including, in particular, a combo-box listing three options:
‘Draw’, ‘Map’ and ‘Contour’.

The first option simply draws the circle/polygon, the second tracks the orbit
exclusively and the last one plots the contours passing through the iterated
polygon points, step by step. We will show here four different cases where

27The set of such numbers has zero Lebesgue measure. Ricardo Pérez-Marco posed me [13] the open question
on how to display, through digital graphics, the shape of the univalent neighborhood arising from the iterates
of a given f(z) about a Cremer point: the finite digits computation breaks the irrationality, approximating and
turning the same number into an algebraic one, always diophantine so that the linearization applies and the
experiment does not make sense anymore.
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these options show to be much useful.

Figures 20 show the Fatou-Leau flower again but via polygonal domains:
on the left, the boundary points of four circles mutually tangent at the origin
and with very small radius are iterated28; the right picture refers the same
example but two concentric circles are assumed. Figure 21 displays the simple
case f(z) = z2: three (differently colored) source circles outside (r = 1.1),
inside (r = 0.8) and on the unit disk (r = 1) have been iterated29 and plot
respectively. Finally Figure 22 shows the rotational character of the dynamics
in the neighborhood of an Herman ring generated by iterating the complex
map(see [9], page 150) f(z) : e2πiθz2 (z−4)

(1−4z) , where θ = 0.6151732 . . . .

3.5 ADDITIONAL SUBSTITUTIONS

Often the study of a the behavior of a map (that a given f(z) iterated once) or of
a dynamical system (iterated more than once) requires to deal with additional
formulas in order to evince graphically some properties. CM achieves it by
means of the additional substitutions feature: let the input map f(z) be the
main one. Two management modes have been implemented: ‘Simple’ and
‘Attach’. The first one refers to a map applied to the image value of (possibly
iterated) f(z). For example let f(z): 1/z and g(z): cos(z) be the main and the
additional map respectively. Then CM displays the point returned by g(f(z)) :
cos(1/z). The ‘Attach’ mode simply appends g(z) to f(z). For example, assume
that the local (i.e. inside the given region) fixed points are to be displayed after
a given number of iterations: so let g(z) = −z be the additional substitution
helping to detect the fixed points. We can attach it to f ◦n(z) and then have
f ◦n(z) − z, whose zeros are the required fixed points. The following example
could be more inspiring. In figures 18, we are studying the dynamical systems
generated by the iteration of the quadratic map f(z) = z2. As known, the Julia
set is the unit circle, which splits C into two basins: the interior ( |z| < 1 ) and
the exterior ( |z| > 1 ) of the unit circle.

The left image of Figures 23 came out as we iterated f(z) = z2 five times
and attached it to g(z) = −z; thus it shows the localization of (25 = 32) fixed
points, i.e. all zeros of f ◦5(z) − z = 0: z32 − z = 0. What we see is one
attracting point at the origin and 31 repelling ones, belonging to the Julia set,
on the unit circle. The figure on the right shows the values distribution of —

28Figure 20 is a computer display of the geometrical evidence of such flowers: its generation is inspired from
Julia’s related proof of flowers. See [8], fourth part.

29Circles with a same color are the forward images.

Electronic Journal. http://www.neva.ru/journal 17



Differential Equations and Control Processes, N 3, 2004

f ′(z) — = |2z| for f ◦5(z) : z32. As expected, while the values inside the unit
disk are black (i.e. the values of the first derivative is very close to the origin,
which is therefore an attracting fixed point), the fixed points on the unit circle
turn into red (the value is 2 - compare to the identity map shown in figure 13),
showing their repelling character because of |f ′(z)| > 1.

4 CONCLUSIONS

I am very indebted to Daniel S. Alexander (Drake University, Iowa) and to
Felice Iavernaro (University of Bari, Italy) for revising this article and giv-
ing me many tips to improve it. The author recalls that these methods pre-
sented are not to be assumed as a true way to do Mathematics: their goal
is to support the understanding of results exclusively, which have to be ac-
complished via analytic approach, based upon rigor, logic and evidence. IC
and CM can be freely downloaded, for researching and teaching purposes, at
http://www.malilla.supereva.it. The development of IC and CM is currently
in progress, suggestions are very well appreciated. The reader is invited to get
in touch with the author if further details, on ideas and algorithms computing
all images throughout this article, will be required.
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Figure 20: Polygonal domains iterated by z + z5 = 0 about the origin.

Figure 21: Dynamics of z2 about the origin.
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Figure 22: Dynamics inside a region around a Herman ring, viewed by domain coloring and
polygonal domains.

Figure 23: Illustrating Additional substitutions via Domain Coloring.
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