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Abstract

In the field of holomorphic dynamics in one complex variable, the ‘hedge-
hog’ is the local and invariant set arising around irrationally indifferent fixed
point with a small or empty local linearization domain. Endowed with a very
complicate shape, its existence depends upon weak numerical conditions and
the problem of its digital visualization is open. We give an approach enjoying a
far-reaching insight and crunching the long computation times, as required by
other graphical methods.

1 Introduction

Let C be the complex plane. Since oo cannot be handled like an ordinary point,
the compactification Co, = CU{oo} turns C into the so—called extended complex
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plane. Anyway the visual representation of the neighborhood of oo is still
impracticable; Riemann cracked this problem by the stereographic projection
of C, onto a sphere model, usually of unit diameter: namely, the Riemann
sphere C.

Under the term ‘holomorphic dynamics’ (or ‘complex dynamics’), one col-
lects the studies on the sequences of points generated by the families of functions
fn(z), where f(z) : C, — CY, 2z € CY, in the backward and forward sense:

f—n = f—l[f(*nJrl)]’"'?f—? = f—l[f—l]
Jo= 2,
fl = f7f2 = fl[fl]?"'a fn = f[f(n—l)]a

depending if n < 0 and n > 0 respectively. The function f is non-linear and of
finite degree, of given kind (entire, meromorphic, transcendental, permutable,
...), in one or several complex variables (depending on v > 1). Given a starting
point zy € CY (the seed), the sequence of points z, = f,(z), generated by the
family along both senses, is termed ‘orbit’.

Since Arthur Cayley’s works in 1879-80 on the Newton-Raphson iterative
method [7, 8, 9], together with Schroder’s [27, 28] and Koenigs’ seminal results
[14, 15, 16], it was clear that the fate of forward orbits is susceptible to changes
either topologically, according to the seed 2 location, and algebraically because
it is locally characterized by the linear term of f(z) or of its Taylorian expansion.
The natural development path was to catch a new perspective for understanding
the orbits behavior all over @; this was accomplished via the classification of
invariant features (or invariants, for short), i.e. of entities (of any nature) which
do not change under the (iterated) application of the function f(z). One may
speak of local or of global geometrical invariants, if they extend in a bounded
domain X C C or not, when X = C__.

We will focus on the holomorphic dynamics in one complex variable (v =
1), representing the most prolific trend in research terms today. The related
history features periods of strong interest alternating to intervals of apathy
for the subject: last century events tell that it drastically developed as local
investigations extended to global scope, when Cl_ was assumed as the maximal
domain of investigation. A first and comfortable envision of this field may
come out from splitting (only theoretically) the ‘local’ results from ‘global’ ones.
These two branches are only conceptually disjoint, in fact one branch results
can be applied to the other: nevertheless the fate of (inverse and forward!)

"Whether the iterative index n is negative or positive respectively.
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orbits closely relates, locally and globally, to the nature of the fixed point ¢ and
its neighborhood.

Topologically, the dynamics in one complex variable could approach to limit
invariants up to dimension (dim) 2 at most: points (dim 0), lines (dim 1) or
surfaces (dim 2). Again, they could include finitely and of infinitely many
points (dim 0); or be a continuum (dim 1 and 2). The union of invariants
with the same properties is the invariant set. The goal of holomorphic dy-
namics is to understand the structure and role of such invariant sets by the
algebraic, topological, geometrical and, in some particular cases, from the nu-
merical viewpoint too. And coming along that way, some advanced questions
arise to high degrees of complication, even deserving a multilateral attack via
Complex Analysis, Topology, Theory of Numbers, Uniformization Theory.

Invariants including finitely many points of order £ > 1 are said limit cycles
of periodic points o,:

F(51) = 82, f(62) = 03, ..., £(6;) = 61 (1.1)

A cycle is again an orbit, but consisting of recurrent points exclusively. Given a
period order k > 1, then d1<;<; = fr(d1<i<k) holds in general. If k£ = 1, we have
a one-point-cycle, said the fized point 0 and the expression (1.1) boils down to:

5= f(5). (1.2)

In the economy of dynamics over C, cycles may include finitely, infinitely or
uncountably many points: their different topologies associate to different roles,
whose mathematical details are unveiled by an appropriate local or global anal-
ysis. The global results over @, discovered during early XXth century, defined
the two complementary sets of the ‘basins B of attraction’ and of ‘Julia set’ J.
Each basin B is the maximal set of seeds whose forward orbits converge to the
same neighborhood N of non-repelling fixed point. Most often, N includes a
limit cycle of finitely many points; with regard to all local cases, non-repelling
fized points do not necessarily match with the concept of limit cycle in general.
On the other hand, J could be totally disconnected and including infinitely
many points, or a continuous line (Jordan or including double points); finally,
it could be two-dimensional (J = C,). J is the complement of the union of all
basins, F = UB, and it is also the boundary of F: so J = dF and J = @\.7:
This union is also termed ‘Fatou set’ in honor of Pierre Fatou (1878-1929),
who co-pioneered these early global researches in the same times (1918-20)
and independently from Gaston Julia (1893-1978), credited as the first official
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discoverer? of the sets J in 1917-18.

Julia sets are well-known objects at all levels today, sparkling the imagina-
tion a wide range of people, from mathematicians to artists and to the curious.
Their suggestive, very complicated fractal shapes were disclosed to human eyes
through early computer experiments during late 1970s: machines accuracy,
speed and screen resolutions became indispensable for unveiling the graphical
details of their very complicate topologies, hardly reproducible via the hand-
made and rough drawings available to ancient mathematicians. For the eye,
at least, not for the mind. The topological features were already clear to Fa-
tou and Julia; although the Technology run is continuously reaching to finer
and finer results and shorter computation times, this progress is not meant
as a relevant leg along the whole road-map of holomorphic dynamics: speed
and numerical accuracy are comfortable tools but they represent the ‘brutal
force’ side of the deal and thus cannot turn mathematicians’ eyes away from
the development of methods deepening the analytical and geometrical laws de-
termining our invariants. Machines are just means. The graphical methods
may however rise to some nobility if developed along the ‘intelligent’ direction:
algorithmically speaking, they are as efficient as the fine display is achieved by
fitting the dynamical features of the given local invariants, not exploiting full
machine performances. This especially holds true for local invariants, where
specific methods are more often required. The textbooks [2, 6, 19] are good
entry points to deepen these introductory concepts in mathematical terms.

After a first part on some introductory theory and culminating in the ‘hedge-
hog’ definition, the second will go over most available techniques, shown to fail
to display it adequately and finally we will blaze a trail in a new approach, with
the support of pseudo-C++ code. We will begin to revisit a number of basic
concepts in this field now; despite of their triviality, they will drive the reader
along the further considerations which allowed to solve this practical problem.

2 Basic theory

2.1 The four cases

This is a sketch of the mathematics behind our local environment, where com-
plex dynamics focus on the orbits behavior induced by the iterates f,(z) in the

2(Related historical events are not fair.) Each basin relates to a same limit cycle. A fuller historiographic
investigation will appear in [1].
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neighborhoods of limit cycles for the function f(z). For an easier approach,
we will assume that invariants are just fixed points § = f(d), but all next
concepts extend to cycles of higher orders after minor modifications. Further
observations will take on complex numbers in the Euler form: z = re*™?. One
initial difficulty is that they do not satisfy the Trichotomy law. But a classi-
fication necessarily wants them to be ordered under one real parameter. As
previously mentioned, the linear part of z, = f,(z) is an algebraic local in-
variant for any iterate of rank n. The question is then enlightened as one
moves to the real tangent space by retrieving the modulus of the first derivative
A= |u|l = |f'(9)|,u € C at the fixed §. A is a real value, being also the radius r
in the Euler form. This achieves the sought order, regardless of the argument,
as we find the 4 main classes of local dynamics around the fixed points:

1. super-attracting, when |[A| = 0;

2. attracting, when 0 < |\ < 1;

3. indifferent or neutral, when |A\| =1 = ‘627Ti9|;

4. repelling, when || > 0.

2.2 Inclusion and exclusion

The terms in italics, for 1, 2 and 4, refer to the dynamical trend (towards or
outgoing from the fixed point/periodic cycle); only the entry 3 escapes from this
wording convention: dynamics are not uniquely determined here. This basic
classification splits into two extremal cases: (super—)attracting and repelling
dynamics, similar except for their opposite directions.

Standing in the middle, indifferent points play as a sort of conjunction be-
tween attraction and repulsion, in accordance to a dual (un—)relation: inclusive
(the union of the opposites) when both attracting and repelling dynamics play
around the fixed point. Or ezclusive (the absence of opposites) when no attrac-
tion and repulsion applies. In global terms, one sees that (super—)attracting
cycles are approached by forward iterates f,(z),n > 0 and that Julia sets, in-
cluding all repelling cycles, are accessible by backward iterates f,(z),n < 0.
Thus both successions of iterates run along a same road — the orbit — in one
sense or in the other, from cycles of finite order to cycles of infinite order or
viceversa. The indifferent type breaks up this trend, intimating to carefully
revisit the ‘limit’ concept, for example, to accomplish its comprehension.
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Whereas the modulus value was sufficient to feature the entries 1, 2 and 4, it
could no longer apply to neutral points (see table 2.1 ), because the definition
|f(0)] = |9] = 1 lacks of enough information. In fact |u| = |f'(2)|] = 1 (or
the radius r of u) is always set to 1, as well as its exponential part |e*| =
1, but the latter still includes one non-constant and real value. Thus it can
be parameterized in the argument 0 < 6 < 1,0 € R. Analogously to the
previous expedient, we move to an exponential space this time, determined by
the real variable . First we differ 2 fundamental cases: when 6§ € Q (rationally
indifferent 9, parabolic case) or § € R\Q (irrationally indifferent §, elliptic
case). The former geometrically relates to one only invariant set, the Fatou-
Leau flower (see def. at p. 81). While § € R\Q branches out to a richer variety:
the diagram 2.1 shows a sub-level opening to local invariant sets where 6 enjoys
different and extremely weak numerical properties, shunning the machine finite
digits computation.

2.3 Analogies between linear models

The expansion of the derivative formula, together with the modulus, are help-
ful to start to understand the neighboring dynamics around the differentiated
point: this familiar expression

f(z0) — f(21)

20 — <1

lim

= ||, 21 =20+ Ah, llmAh=0

may induce the reader to guess a straight classification of local dynamics through
the geometrical description via one among three elementary motions in the
plane: attraction (0 < |A] < 1), dilation (|[A| > 1) and rotation (|A| = 1), all
represented by the linear map Az. This is not absolutely right nor completely
wrong: in the dynamical terms of a whole family of iterates, one needs to prove
whether the recursive process itself could enjoy the same possibility as it al-
ways does for one function f(z) at once, i.e. whether f,(z) can locally turn
into Az or not. In this reconsidered form, that initial guess was close to what
pushed Schroder and, later, Koenigs to show that most holomorphic dynamics
can be locally turned into Az. To this end, the crucial tool became the so-called
Schrdder functional equation (SFE), here in the general formula:

Dl (2)] = aly(2)]; (2.1)

where 1(z) is an invertible map allowing f(z) to be representable locally by
a(z). The goal of (2.2) is to set up an analogy between the local behavior of
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iterates f,,(z) around § and an easier model. Without loss of generalization,
let the origin be fixed for f(z). Schroder and Koenigs succeeded to prove the
analogy, strengthening the connection between SFE and holomorphic dynamics
when they showed that a(z) can be replaced with A = f’(z); (2.1) turns as
follows:

Dlf(2)] = Mp(z). (2.2)
Given a sufficiently close neighborhood D of 4, the chain rule for derivatives lets

the left diagram below to be re-written in the right form extending to iterates,
both commuting when the related SFEs hold:

D — f(D) D — fYD)
(L) () P ()
c. X C. c., 2% c.

If ¥ (z) can be represented by a convergent Taylor expansion, the SFE com-
mutes and there exists a local change of coordinates where f(0) =0, f'(z) = \:
the local behavior of orbits f,,(z) can be then studied more simply through the
linear map A"z. It is proven that SFE always commutes for (super—)attracting

INDIFFERENT FIXED POINT/CYCLE

F A=(f")(0), N =1 T

RATIONAL CENTER-PROBLEM
A=e2™ 9 cQ IRRATIONAL
A=e2% gcR\Q
FATOU-LEAU FLOWER 3 l v

LINEARIZABLE

SIEGEL DISC
HERMAN RING

Table 2.1 : Resuming the neutrality. A diagram illustrating the classification of all dynamics for
indifferent fixed points.

SEMI-LINEARIZABLE ‘ NON-LINEARIZABLE ‘

HEDGEHOGS

and repelling cases. If the local change of coordinates into Az applies, D is
a Bottcher or a Koenigs’ domain, when |A| = 0 or |A| < 1 respectively.
For |A| > 1, dynamics are locally repelling and regarded as the converse of the
attracting ones; one merit, credited to Fatou and Julia?, was to show that the

3 According to their researches, one evinces the boundary role of repelling fixed points and cycles in the global
dynamics all over the Riemann sphere. The former researchers did not score this goal, because they regarded
repulsion like the converse of attraction.

Electronic Journal. http://www.neva.ru/journal, http://www.math.spbu.ru/user/diffjournal/ 7



Differential Equations and Control Processes, N 1, 2007

role of repelling dynamics shall be completely reconsidered when the investi-
gation extends to C, that is, acknowledged in the economy of the closure set
of all repelling orbits (as resumed in diagram 2.2 ), according to the standard
definition of Julia set, the common frontier for all basins B of convergence.

Bottcher domain ‘ Fatou-Leau flower ‘

Koenigs’ domain

Hedgehog

not locally linearizable

with or without small cycles

Contraction

(Motz'ons m} Dilation

\ the plane
o

Hedgehog

locally linearizable

Rotation

Siegel disc

Table 2.2 : Classification by motions. Invariant sets for holomorphic dynamics in one complex
variable seen via the three elementary motions in the plane.

without small cycles

As a counterpart to the previous easier cases, the discussion level is upset
around neutral points (see list at p. 54): a much more delicate analysis, com-
paratively to the difficulties of the different situations for this case, is required.
First, SFE re-writes as

YIf(2)] = e (2), (2.3)
and for iterates f,(z), we have
Y[ fal2)] = 7 (2), (2.4)

2m0in 5. the problem was

conjugating (locally) to the family of complex rotations e
to determine whether (2.4) may hold for iterates of rational maps*. Resuming
the core of studies from 1890s to 1940s, it was acknowledged that (2.4) never
commutes for § € Q whereas the numerical nature of 8 € R\Q had to be
elucidated for a definite response in this sense. After the first controversial
results, Cremer (1920-30s) opened the road to a clearer perspective and Siegel
finally (1942) closed such long period of doubt as he showed that the irrational

6 shall satisfy this Diophantine condition® D,: given two numbers r > 0,k > 2,

6 —p/ql >r/q", (2.5)

4The problem is trivial for polynomials.
SFormalized by Liouville decades before.
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for every rational number p/q where p,q € N. Then iterates f,(z) are said
to be linearizable into a complex rigid rotation or just ‘linearizable’ for short®;
topologically speaking, there exists a neighborhood of § which is conformally
isomorphic to a rotatory disc by f,(z), the Siegel disc. When (2.5) holds, 6 is
poorly approximated by rational numbers; otherwise it is goodly approximated
and no such linearization applies. It is clear that rational arguments (parabolic
sub-case, 6 € QQ) are not Diophantine and cannot satisfy (2.5): this also holds
for a subclass of irrationals — the Liouville numbers. Now SFE is no longer useful
and therefore one summarizes the previous concepts as follows:

e if SFE commutes around a (super—)attracting, or indifferent or a repelling
fixed point, the local dynamics are classified by just one among these 3 elemen-
tary motions: contraction, rotation, or repulsion respectively:;

e it also turns out that, when SFE fails to commute, local dynamics no
longer consist of one elementary motion: there exist local vector fields, Fatou-
Leau flowers or Hedgehogs, being compositions of more than one elementary
motion. Thus one may state that the SFE may shut the door to the local lin-
earization of iterates at a fixed point.

2.4 Hedgehogs, the next stop

Stepping in the second level of table 2.1 , let the holomorphic quadratic germ’

flz): ey 4224 ... (2.6)
Iterates f,,(z) can be thus expressed in this form:

fa(2) - €202 4 O(2), n>1k>2. (2.7)

If compared to (2.3), the question boils down to the study of 6 so that
O(z*) vanishes or not. It is straight-forward that, if O(z*) = 0, iterates do
linearize and then show as f,,(z) : €™z, i.e. rigid and aperiodic rotations (fig.
2.3 /A). Due to (neighboring) orbits feature, the point & was termed center
(of rotation) by Julia ([13], ch. IV) like Poincaré did for analogous points of

ordinary differential equations:

6Let the map f(2) be locally turned into Az, the definition indifferent multiplier yields that A = 27| = 1;
hence the linear map turns as Az — €>™2z, the mentioned rotation.

"Most results are subjected to this hypothesis. For germs of higher degrees, results are susceptible to
modifications.
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Definition 2.1 (Siegel Disc) Let f be a non-linear complex function (2.6) and let
§ be an irrationally indifferent fized point, so that |f'(8)| = €*. If 6 enjoys
the diophantine condition (2.5), the SFE (2.3) commutes and there ezists a suf-
ficiently close neighborhood S of §, so that S is a simply connected component
of the basin and analytically conjugated to an aperiodic rotation e*™ of the unit

disc D. ([19], p. 117)

gj_/ﬁ}"‘ ". u/{q

L

Figure 2.1 : Singular dynamics. Tracking down one orbit inside the basin with a Siegel disc S.
The red seed zj is iterated along the green orbit, until the final blue z,, falls into the disc. This figure
was drawn by means of nested equipotential circles.

What happens if this condition is no longer met by § € R\Q? Recent
Mathematics has been stressing that the concept of ‘Natura non facit saltus™
rules in dynamical systems. Related works ([10, 22, 29, 30], to quote a few)
also showed that irrationals 6 can gradually drop off the diophantine condition
(2.5) and the Siegel disc S slowly turns into the hedgehog H. For the above
reason, we cannot expect drastic changes in the local geometry: in fact, the
maximal S squeezes into a smaller disc, together with a complication of the
neighboring orbits at dS while, at a semi-local level, the Julia set is wedging
the surrounding basin B of attraction; when § is not maximal, H has a small
linearization area. There are even irrational arguments # so that & contracts
finally to the fixed point 0: here H has no linearization area and J is no more
a center, but it is termed as a Cremer point?.

8 Ancient Roman phrasing by Linneus, alluding to Nature evolution by gradual and infinitesimal changes.
9In honor of Hubert Cremer (1897-1983) who first proved their existence when 6 does not meet the Dio-
phantine condition.
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During 1920s and 30s, Cremer showed [11] that the set R\Q of all irrationals
can be partitioned into two disjoint subsets M, N:

e let M be the set of arguments 6 so that D, is enjoyed, then a maximal
Siegel disc S exists; M is a full Lebesgue’s measure set;

e let ( € N be arguments whose value is a Liouville number. N is a
null-measure set.

In the course of his proof on the existence of non-centers for rational maps
([11], p. 157), Cremer also showed that the existence of cycles of growing
order n in the neighborhood of the non-linearizable indifferent § and that they

accumulate at d as
lim inf V|38 —1] =0, (2.8)
which holds for

liminf [f" — 1| =0  ad  liminf 8" = 1,8 = ™. (2.9)

n=1,2,... n=1,2,...

(.
o

Z

X
(A) (B)

¥
4
@ :
®
’\

Figure 2.2 : Wedging the bounded basin (I) Two hand-made drawings of the hedgehog entering
the bounded basin (shaded region). The wedging white region is the basin of the point at infinity.

Y

Because of the number of non—repelling cycles is finite (according to Koenigs
conjecture in 1883, proved later by Fatou and Julia) and according to the Julia
set J nature (closure of repelling cycles), most periodic points of these cycles
must be repelling!® so that, roughly speaking, their accumulation shows that,
as n grows, J keeps on wedging (see figs. 2.4 and 5.10 ) the bounded basin
of attraction [10]: if limsupn = oo, then § € J, otherwise the wedging action
of J stops at a certain distance from § for limsupn = K < +o0. (Again, the
hedgehog H is the local invariant subset of the basin B and generated as the
Julia set wedges B.) The above limit may even tell that, algebraically, there

10Cremer never questioned on the nature of the accumulating cycles at ¢ throughout his works.

Electronic Journal. http://www.neva.ru/journal, http://www.math.spbu.ru/user/diffjournal/ 11



Differential Equations and Control Processes, N 1, 2007

are cycles accumulating around ¢ and, topologically, that there are some neigh-
borhoods of this fixed point and belonging to B > § or not, i.e. either to J
or to another basin. This situation!! also applies when 0 is reached in (2.8) so
that 6 € J: it occurs when « is rational or it is a Liouville number. Hence the
poorly rational approximation — the diophantine condition for § — implies a
non-empty linearization area around ¢, because cycles do not accumulate at it.

N

s

—
.

Figure 2.3 : The ideal journey. The local invariant sets for indifferent points, as watched during a
journey where 0 gradually loses its Diophantine condition: from the Siegel disc (A) to the Fatou-Leau
flower (D). The filaments drawn in (B) and (C) mean to the Julia set wedging the basin while the
disc is squeezing to the fixed point.

2.5 Journeying through the irrationals

The continuity may inspire a suggestive, ideal journey as we associate the
topologies of different invariant sets from (A) to (D) to the numerical con-
ditions met by 6 as it goes from R\Q to Q. The Siegel disc S squeezes (fig. 2.3
/B) until it disappears (fig. 2.3 /C); for both cases B and C, the invariant sets
are ‘hedgehogs’ H, when § is not maximal or has empty interior. Imagining this
journey is possible in virtue of the strong unifying power offered by hedgehogs
theory, which can link together apparently far dynamical configurations. The
mathematical definition of the hedgehog H is [22]:

Definition 2.2 (Hedgehog) Given a neighborhood U of an irrationally indifferent
point o, so that the holomorphic map f is univalent on U, the hedgehog H is an
invariant compactum'?, so that f is not linearizable or has linearization domain
relatively compact in U.

"' This case is out of scope here. Anyway the Fatou-Leau flower dynamics are inductively helpful to watch how
the basin to oo wedges the other basin, so that the Julia sets attaches to §, assumed the germ f(z) : €27z 4 2",
where n € N*,n — oo and 4 € Q.

12A compactum (plural, compacta) is a compact metric space.
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Figure 2.4 : Hedgehogs generation. An illustration of 3 steps (different
shades of grey) of repelling cycles accumulation. The starred-shape, due to
the cycles getting near ¢, as well as wedging action of the Julia set J, are
evident.

About (2.6), the current research is investigating on the semi-local dynamics
around H. Thanks to the results by Pérez-Marco in 1990 (resumed in [19], p.
123) one knows that H may show up in these different three characterizations:

1. hedgehogs H are locally linearizable and with no small cycles;
2. hedgehogs ‘H are not locally linearizable and with small cycles;

3. hedgehogs ‘H are not locally linearizable and without small cycles;

The ‘small cycles’ property refers to the possible existence of infinitely many
cyclic orbits in a sufficiently small neighborhood of the irrationally indifferent
0. It is said that ‘0 has the small cycle property’ or ‘is approrimated by small
cycles’. Other results on small cycles are included in [29, 30]. But this goes
too far, beyond the scope of this introduction to hedgehogs, mostly intended to
acknowledge the reader about the question on their digital visualization.

3 Entering the computer graphics

3.1 Features of ordinary methods

Most available methods for holomorphic dynamics perform a global action and
are then devoted to the Julia set display. Often they do not focus' on the

13The approach by inverse maps achieves it, but it is not exportable to any maps because inverse ones cannot
be always retrieved.
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analytical properties of J. Both its location and shape come out from the human
eye perception of the different colors distribution inside a close neighborhood of
J. These methods do not draw J: they paint the Fatou set F = @\J . So they
are not detective, but deductive: focusing on the complement F, they subtract
it from C so that J is deduced: J = C\F.

3.2 Palette of colors

Suggested by experience, we address the following consideration to color Julia
sets figures: the application of a palette sorted by (ascendent or descendent)
shades' helps to ‘watch’ the attracting and the repelling'® direction of the family
of iterates between distant neighborhoods of the fixed point . The shading
sequence points out to global dynamics, but fails to evince the local dynamics:
the convergence/divergence rate slows down as orbits get closer to the indifferent
0 and very close colors paint the neighboring domains, looking like the same to
the human eye.

3.3 Convergence criteria

The fate of iterated orbits is tested at each f,(2) : z,, for preventing infinite
looping. This is commonly achieved by a trapping disc D of given radius r,
when |z,| < r is tested. This approach, aiming to understand when (in terms
of the value of the iterative index 7) orbits might escape D, is commonly known
as ‘escape time’ algorithm. Some pseudo-code follows:

#include "complex.h" // this is a class handling complex numbers
// downloadable from author’s site
complex z, next_z ;

complex c(0, -1); // this is the complex parameter z = 0.0 - 1.0i
t = 50 ; // top iteration index to prevent infinite looping
r=2.0 ; // the radius of the trapping disc

0; i <t ; i++ )

for( int i

{
next_z = z * z + ¢ ; // we assumed the quadratic iterator
if ( abs( next_z ) > r ) break;
z = next_z ;

}

take-some-color-value-from-the-iterative-index-or-from-the-point-z ;

1For example, of blue or gradients from green to violet.
15With regard to the nature of 6.
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draw-z-on-the-screen ;

Another approach relies upon the distance between two successive iterates as
test condition:

‘fz(z)_fz—&—l(z)‘ <€, 76>0 (31)

It is a variant of escape time and defined the ‘approximation’ method:

#include "complex.h" // this is a class handling complex numbers
// downloadable from author’s site
complex z, next_z ;

complex c(0, -1); // this is the complex parameter z = 0.0 - 1.0i
t = 50 ; // top iteration index to prevent infinite looping
e = 0.00001 ; // the distance ranging between 0 < e < 1

for( int i = 0; i < t ; i++ )

{
next_z = (2%xzxz*xz+1)/(3*z*xz) ; // this is the transformed map
// of z"3-1 by Newton’s method
if ( abs( next_z - z ) < e ) break;
z = next_z ;
}

take-some-color-value-from-the-iterative-index-or-from-the-point-z ;
draw-z-on-the—-screen ;

3.4 Obsolescence with local invariant sets

Our goal now is to discuss ways for bypassing or even lessening the two issues
in sections 3.2 and 3.3. Anyway we remark that a new idea is most wanted and
that as best as one can improve these methods, they will be however insuffi-
cient to obtain a fine drawing of what we seek. A first minor issue, discussed
in section 3.2, refers to colors: gradients sequences are unfitting, so might a
randomly generated palette help otherwise? In figures 3.5 , we iterated the
neighborhoods around fixed points of different nature and painted them by the
random palette. In figs. 3.5 /A and B, we consider the squaring map f(z) : 22,
with a super—attracting fixed point ¢ at 0; in (C), the Newton-Raphson method
was applied to f(z) : 23 — 1, having 3 attracting points on the unit circle oD.
One notices that both sequential and random palettes do work finely when iter-
ated domains shrink to the attracting fixed point(s) step by step (analogously
for the neighborhood of a repelling point). In figs. 3.6 and 3.7 , we tried to
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(A) (B) (©)

Figure 3.5 : Attempts of improvements. The random palette coloring for attracting fixed points.
More than the shading gradient approach, the attracting dynamics are evident here from the nested
discs shrinking up to points.

draw the invariant sets (refer to fig. 2.3 ) arising around indifferent points 6,
with emphasis to colors sequence and numerical accuracy.

For example, the iteration of the rationally indifferent germ f(z) : z + 2*
retrieves a Fatou—Leau’s flower with 3 petals intersecting at the origin. Either
applying random palettes or as infinitesimal values of € are set into inequality
(3.1), one cannot evince the local dynamics, but only the basins shape. And no
benefits are drawn from the experiments with the irrationally indifferent points.
In fig. 3.7 /A and B, the random palette and a very high number of iterates
were respectively tested to work with a Siegel disc case (it should appear in
the green basin). We tried to draw an hedgehog in (C, D). In particular, either
(B) and (D) are displayed by another coloring method (said ‘domain coloring’)
which sets a one-to-one map between each complex point on the finite plane
and the RGB cube, associating to one and only one color. Even if the iterative
index ¢ increases to very huge values, orbits cannot get very close to 9, so that
no finer pictures can be obtained.

. _-_M
>
(A) (B) (€)

Figure 3.6 : Where are the flowered dynamics? Different canonical methods applied to the
Fatou-Leau flower and ...

(D)

Figures 3.6 and 3.7 attest that these methods, as well as any sort of
variation, are unable to attain these local invariant sets as required, most im-
portant, in reasonable times. The main issue is that these methods feel a lot
the convergence rate decrease at indifferent points.
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Figure 3.7 : Still veiled dynamics. ...near a Siegel disc (A), (B) and an hedgehog (C), (D).

4 Off to ‘composite dynamics’

The author was introduced to the problem of drawing hedgehogs on a computer
by professor Pérez-Marco during an informal meeting at Perugia (Italy) on sum-
mer 2002 and fully reconsidered during Spring 2006. Milnor, in the appendix
H of [19] (p. 244), also pointed out to the open question of retrieving fine pic-
tures of local dynamics around non-linearizable indifferent points in reasonable
times, with emphasis to the irrational kind: — ‘For the fized points of Cremer
type, the situation is much worse. As far as I know, no useful computer picture
of such a point has ever been produced!’.

4.1 The core question

What should the drawing of a local invariant set focus on?

Without relying on a good response to this question, it might not make
so much sense to continue. As remarked in table 2.2 at p. 57, holomorphic
dynamics have different invariant sets. Globally speaking, Julia sets J are easy
to display: one has just to tune the accuracy magnitude or set the top iterates
index, according to the method applied as well as one fine palette.

In local terms, the neighboring dynamics at J points are collected under
one concept: as orbits run across the basins B of attraction, their character,
initially repelling near J, continuously changes while reaching the neighborhood
of a non-repelling cycle (here, one fixed point §). But some local invariant sets
Z, around ¢ enjoy more or less complicated dynamics. The table 2.2 also
offers an overview of invariant sets endowed with ‘composite dynamics’, that is,
involving more than one elementary motion. In geometrical terms, composite
dynamics retrieve more than one information piece at one iterate, and thus they
represent, even by a mere quantitatively viewpoint, an harder situation than
those local dynamics involving one only elementary motion. One also remarks
that the convergence speeds of neighboring orbits around the indifferent § gets
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slower as iterates get closer to d; in the linear case of Siegel discs, convergence
rate even stops to decrease as the modulus of iterates |z,| = |f.(z)| arrests
at one strictly positive value. These are symptomatic reasons of obsolescence,
because the previous methods essentially work on chromatic representations for
dynamics of attracting kind or, at the largest extent, of linear kind. Hence we
conclude that the SFE shall be dropped off as well as the previous graphical
methods: a new basis is required.

As we get back to non-linearizable local dynamics at Z,, we shall consider
that the previous mathematical discussion was helpful to have now some ideas
of how dynamics are working around a Cremer point and thus of a glimmer of
the sets topology around there somehow. After we caught an idea of the shape,
we shall close the circle by rendering the true shape to such ideas. One then
wants (1) to draw the boundary 9Z, (graphically, the shape) and possibly (2) the
motions therein (the orbits behavior). The accomplishment of (2) suggested us
to focus on side considerations about the elementary psychology of Space, which
is the perception of motion ‘as lines in the principal directions of curvature,
which may communicate surface shape better than lines in other directions’
([12], p. 43). This is a common feature of the field of Non-Photorealistic
Rendering (NPR), associated to the concept of ‘perceptually efficient images’,
meaning to the visual representation which emphasizes the important features
and minimizes the superfluous details! This is a convenient concept to be
regarded for our purposes and pushes to seek an analogously shaped geometrical
model of the invariant set and being capable to evince both (1) and (2).

4.2 Obstructions (I) : no ticket for the ideal journey

Drawing local invariant sets around irrationally non-linearizable indifferent points
mainly relates to the degeneration of the irrational argument § € R\Q into a
rational o € Q, owing to finite digits machine computation. When 6 is already
rational, the question boils down to the convergence speed. We cannot want
to attain the hedgehog on the wings of iterates exclusively, because we will
approach to something differing from what we started looking for. Anyway we
cannot quit to work with iterates at alll The strategy is then to alleviate the
error rounding off. Throughout the following pages, in conclusion of some con-
siderations on lacks and issues of several methods to display complex dynamics
on a computer, we will show how this problem was algorithmically cracked for
both the above numerical types.
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Let the formula (2.7). One major issue is to check whether ¢ = 6" could
approximate irrationals poorly or not. One would like to distinguish the formal
value 6 with the input value « in practice, where a = 6: then | — 0| = ¢ > 0.
Analogously the iteration process may retrieve | — 6" = p > ¢ > 0, with
the growth of error magnitude. Then we cannot get contented of : could we
make p tend to 0, if possible? More subtle issues may come up. In addition
to numerical difficulties, even Topology grants no way out: Cremer’s partition
of irrational numbers shows that values 0 € A cannot be picked up easily by
a machine, in order to guarantee the chosen invariant set. The existence of
hedgehogs ‘H depends upon numerical conditions which are extremely weak for
the machine decimals cut-off, that is, here dynamics feel a lot the approximation
and their rendering cannot be pursued through methods relying on numerical
computations exclusively. Again: would it make sense to approrimate a number
a € R\Q wvia another irrational 0™ which possibly enjoys different numerical
properties? The value o™ might give rise to another local invariant set which
differs, more or less evidently, from the one associated to #". Cremer [11]
observed that the null Lebesgue measure property does not imply that the set
N is totally disconnected (pointwise); on the contrary, it may consist of disjoint
intervals with positive, infinitesimal length ¢ > 0. If machine approzimation
could work under at a certain magnitude o < e, we could afford to be more
optimistic, in a way or another, of reaching a sufficiently sharp approximation
for the original value o™ and of finding the related invariant set with adequate
accuracy. At the same cost of long time computations anyway: whatever fast
a computer might be then — times would not be decisively shortened because
the whole process, in its intrinsic nature, lacks of efficiency (see the end of
introduction). Thus the numerical attack path is obstructed. At this point
(1), Topology could be the only way out: having clear in mind that the digital
representation would just offer an approximation of what non—linearizable local
dynamics really are in the continuum, is there an alternative attack possibly
approximating such kind of properties?

Running back into the approximation concept, we recall it refers to another
entity 3 imitating, with a tolerable error, the original a. Hence we questioned
on whether it is plausible to find out another, closer, value 3 and so that

o = ] < |a— 0|

holds? From the above, it seems that, if 3,0 belong to a segment centered at
a and whose width is < e, then the approximation would make some sense.
Otherwise, trying an approximation would throw us into a process generating
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sequences of infinitely many values &,,...,7 and this endless chain of nested
inequalities

a—pl<la—é <la—ql < <la—7] <|a—6]

Could it be associated to infinitely many P between P, for the formal value "
and Py for working value 6”7 In fact, the chain nests as follows:

PsCPeCP,C ... CP;CP

These speculations, together with the topological classification of hedgehogs
at the end of section 2.5 — where small cycles may occur or not and which
depend on such properties P of different nature, could give rise to the following
questions:

Question 4.1 Do we already know all numerical properties so that we can safely
state to already know any hedgehog configuration? Can we find other numerical
properties relating to new and unknown behavior of orbits inside hedgehogs?
Thus, is their number finite? And, if so, how many are they?

More generally one discusses on the possibility of moving from one property to
another and, in our context of hedgehogs theory, the crucial question is:

Question 4.2 Is there a way to move from one Liouville number to a Diophantine
irrational value so that the ideal journey may come true ?

These are questions we are not able to give a response; they arose during the
inventing of our graphical approach.

4.3 Obstructions (II): practice really matters

Now with regard to the practical computations involved in the iteration process,
we can find 3 obstructions to to hedgehogs, as drawn via ordinary methods:

1. Statistical: due to the M, N sets distribution over the real interval [0, 1],
it much easier to pick up a value # € M than one ( € N. And due to
above approximation, this task gets harder than ever.

2. Numerical: numbers § € M do not feel the approximation as much as
¢ € N; in fact, under iterates, Liouville numbers ¢ tend to be turned
into new values which are Diophantine irrationals; new resulting values
cannot goodly approximate rational numbers and then one falls back into
the Siegel disc case.
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Y

(A) (B) (C) (D)

Figure 4.8 : T am the star. The (holed) n'"-branched star in monochromatic and colored versions.

3. Procedural: Liouville’s condition is fundamental to draw hedgehogs, but it
is also weakly preserved under iteration. The orbits speed inside H slows
down to the fixed . The remedy to get finer results is to let the iteration
index n explode and we get back to obstructions 1 and 2.

No way out to overcome the two obstructions of approximation and com-
puter usage. Hence, not having a valid solution at hand nor being successful
to find it, the problem was left open until we occasionally came to it during
March 2006, when we planned to find a strategy for lessening the irrationality
wipeout. In the next section, the analysis on ordinary graphical methods for
holomorphic dynamics will bring to their exclusion from the run for accurate
displays of local invariant sets and, mostly, of hedgehogs.

4.4 Quality vs. quantity

Again, we also adduce that the methods described in section 3 are even struc-
turally weak for our purposes: in fact, they have been developed (read, cus-
tomized) for iterates of polynomial maps, in primis the quadratic f(z) : 2> + ¢,
where z,¢ € C and c is a parameter. As we showed before, methods'® might
not work finely or at all when exported to dynamical systems being different
from their original context. The ones we illustrated do work quantitatively and
fail with dynamics claiming very sharp numerical accuracy; that is, the result-
ing geometry of invariant sets (both in local and global terms) is exclusively
retrieved by the value of the last iterated point z,,, where m is the largest it-
erative index available to the machine architecture, at the higher costs of long
computation times.

16This also happened to for quaternionic Julia sets, where the author revisited the analogous escape time
method so to display even those Julia sets which are not closed and bounded curves, but extend to point at
infinity [24, 25] (one example is the Newton-Raphson method applied to the cubic h® — 1 = 0, h € H, where H
is the quaternion space).
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Figure 4.9 : Trying some linear equipotential models. These are equipotential renderings
based upon the linear models of concentric disks (A), vertical (B) and horizontal bands (C). All fail
to evince the hedgehog shape.

Saving time and resources, improving speed and accuracy are goals of Au-
tomatics: even at the cost of indirect attack (a sort of cheat, then!), we found
a way out as we opted to not approach the neighborhoods, but to ‘be-already-
there-and-work-with-orbits’. This new direction cannot avoid the method cus-
tomization: we adopted an half-way strategy which, besides the inevitable fi-
nite digits computation, teams up with a qualitative attack by the imitation
of a model with pre-defined shape. More explicitly, all this came after the con-
clusions in section 2.3, where the failure of SFE for Fatou-Leau flowers and
hedgehogs implied that such dynamics cannot be adequately described by linear
models based upon regular curves, such as concentric circles (isomorphic under
rotations) or straight-lines bands (see figs. 4.9 ). So we liked to use a non-
regular and (mostly) topologically equivalent non—linear model. Namely it is
the (holed) n'"-branched star, whose versions have been depicted in table 4.8 .
It is extremely important to remark that the following results use the quadratic
germ (2.6) exclusively: the theory on irrationally fixed points came to the to-
day robust status for this degree only by now; an attack to the iterates of such
holomorphic germs of higher degrees is documented in [31].

5 Re-elaborating the equipotentials

Related graphical examples can be found inside [20] by Needham and, for holo-
morphic dynamics, in [19] by Milnor — although they weakly already appeared
in older publications [21, 23]. In particular, [19] (p. 123) was rather inspir-
ing to try enhancing graphics as it focused on an imitation graphical model
based upon equipotentials; it also includes the continuous fraction formula of
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an irrational argument 6:

: ) (5.1)
3+ 10+ 555507
yielding an hedgehog with small, non-empty, linearization domain, together

with an (intuitive) figure of it.

5.1 The holed n-th branched star model

The approach roots to one method often applied to dynamical systems, in
general, and in complex analysis too. It is known as ‘equipotential curve’. The
pseudo—code below was reported to aid the explanation rather than to offer an
implementation (in order to lessen the translation to another favorite language):
it consists of a main routine taking on the input finite subregion of C as a grid
of seed points zp; then the holed star model checks whether the dynamics of
the orbit z, should be drawn.

#include "complex.h" // this is a class handling complex numbers
// downloadable from author’s site

complex fxd_pt ; // we assume to already know the hedgehog
fxd_pt.real = 0.0; // is around an indifferent fixed point
fxd_pt.imag = 0.0 ; // at the origin

double val = 0O, tmp_val = 0 ; // these are containers which will

// be later stored and compared

BOOL bInitFlag = FALSE ; // this boolean flag is used
// to check the two previous
// container of [double] type

// the four coordinates (top/x1, left/yl),(right/x2,bottom/y2)
// of the screen port are stored in these containers;

int top = 0, bottom = 320, left = 0, right = 200 ;

complex z ;

for ( x = left + 1; x < right ; x++ )
{
for (y = top + 1; y < bottom ; y++ )
{
// there are different ways to perform this conversion.
// we opted to this backward map from screen coordinates
// to the complex plane, assuring that each screen point

// is associated to one complex z.

rescale-the-pair ( x, y ) to-the-pair ( z.real, z.imag );

LITI11177777777777777777777777777777777777777777777777777777
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// then iterate the function for the required number of steps
// with no test conditions. Refer to the previous code.
// Stop the loop through the iterative top index limiter.

// We chose to not show the related code for the iterated

// function because more complicate explanations would be needed.
// Make sure you are working with a suitable map retrieving

// an hedgehog. We suggest you to use the one below: an

// holomorphic quadratic and indifferent germ whose argument

// theta is given by the continuous fraction reported further.

// We can say we coded a complex parser

// to input any function even in the form; sorry
// but the latex syntax is the best we can use to
// arrange one example:

// £(z) : e~ (2\pi i\theta)z+z"2

complex output_z = iterate-the-function f(z) ;

// NOTE : if you input the identity map, you’ll see
// the holed branched star.

BOOL bDraw = Holed_Star( output_z, fxd_pt, double& val,
double& tmp_val, BOOL& bInitFlag ) ;

if ( bInitFlag )

{
if ( val != tmp_val )
{
if ( bDraw ) pDC->SetPixel( x, y, 0 );
val = tmp_val ;
}
}

else bInitFlag = TRUE ;

The two nested for cycles perform a raster'” scan of the screen port by
rows (y) and columns (x); each point associates to a pair of positive integer
coordinates which is turned into a couple of real and imaginary values, so to
finally obtain the complex point z=x+iy. The following are code details around
the function Holed Star, drawing the hedgehogs/holed star by equipotentials:
below we show how to render a monochromatic hedgehog (refer to table 4.8 /A
and B); the colored version requires one more function handling colors, but we
chose to not include here for keeping a easier approach to the code.

BOOL Holed_Star( complex z, complex fxd_pt, double& val,
double& tmp_val, BOOL& bInitFlag )

I7This is a technical term in computer science to indicate that an image is regarded as a mesh of points
distributed along rows and columns; each point is associated to a triplet of values. The first two values are the
unique pair of coordinates which define the location in the mesh. The third value is an index referring to color,
usually defined in the RGB additive model.
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{
#include "complex.h" // this is a class handling complex numbers
// downloadable from author’s site
#define PI 3.14159265358979323846 // we need PI to be the
// sharpest as possible
complex tmp_z = z ; // we need another container for
// storing a temporary value later
double branches_number = 12 ; // this explains itself !
double offset = 0.5 ; // it is the radius of the
// hole in the star: when
// set to 0, the disc is empty
double existence_interval = 2.0 * PI ; // the full range of values for
// computing all branches location
// in radial terms
double potential_rate = existence_interval / branches_number ;
tmp_z -= fxd_pt ; // all points are translated so that
// the fixed point is mapped to the
// origin and the computations get easier
double v = tmp_z.angle();
double out_level = ( f.euclidean_dist( z ) <= offset ) ? -1 : v / potential_rate ;
int ol = (int)out_level ; // this integer is used for the output
// level and possibly to color the point
if ( !bInitFlag ) val = ol ; // if this flag is not set, then it is
// the first value to be stored.
else tmp_val = ol ; // Otherwise, it does not. Refer to
// the main function before
if( 01 < 0 || ol > branches_number ) // check for values ranging
return FALSE ; // out of the interval
return TRUE ;
}

We have now a bunch of code to be cyclically applied for scanning the input
complex bounded region R C C, so that Holed Star classifies the n—fold image
region f,(R) via the star model.

5.2 Unveiling the code

Here we explain the computations performed in the main parts of the code of
section 5.1. First we focus on:
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Figure 5.10 : Wedging the bounded basin (II). Three close-ups of the wedging action along
the hedgehog H generation as the iterates of (2.6) with 6 (5.1) are rendered through the holed star
model. The top iteration index was (just!) set at (A) 150, (B) 300 and (C) 1000 respectively. White
disks are preimages of the star hole; colours change depending on the iteration values attained by
the forward images, in respect of their original distribution (refer to fig. 4.8 ).

double out_level = ( f.euclidean_dist( z ) <= offset ) 7 -1 :
v/potential_rate ;

if the distance of point z, resulting from the iteration process, to the fixed
point f is larger than a preset value offset, then the ratio v/potential rate
is computed in order to know whether the iterated point shall be painted black
or not. Otherwise the negative value —1 is used as a flag indicating that the
point shall not be tested again. The container offset stores the radius value
for the hole in the star model. The value v is the argument of the last image z
in the current orbit and helping to have that point location in relation to the
branches. One also notices that

double potential_rate = existence_interval / branches_number ;

when applied to the first line of code, v / potential rate turns into

) Vv - branches number \'%
index = - - = - - - branches number.
existence_interval existence_interval

The ratio on the right is normalized to the unit interval [0, 1]; when it is
multiplied by branches number, one finds that:

0 < index < branches_number.

So index ranges in the interval of given number of branches. If decimal values
are retrieved, they are rounded off to the lower integer: in fact decimals do
not make sense in terms of branches index. For example, given 31 branches
for the holed star of table 5.13 , we expect the index ranges between [0, 30].
The right product with branches number yields the branch index for the last
computation of the n—iterated point.
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5.3 Trespassing the equipotentials

Thus it is reasonable to wonder now: given a white background, how come are
black lines painted exclusively? Moreover (since black pixels refer to the only
points to draw) why are others not painted? Just because one method generally
relies upon the condition of trespassing equipotentials to draw screen points.

Figure 5.11 : Indexes for equipotentials. Numbers represent the equipotential levels distribution
in the two models: nested circles and holed star. When indexes change, the final point belongs to
one indexed region instead of another (the two regions are adjacent because of continuity), and thus
the equipotential curve between is trespassed.

Our computational model looks at the curves locus playing the qualitative
role and it is often described by one formula. (For example |z —(| = R describes
a circle centered at ¢ or we have an open disc if ‘=" is replaced with ‘<’.) For
meeting the machine efficiency, we need to deal with quality, but in terms of
quantity: so each curve associates to one only index value. When we point
out to one curve or to one branch in the star model, we want its index. The
expression ‘trespassing the equipotentials’ means that, given the final index value
associating to the last iterated point of an orbit, the analogous point of the next
computed orbit, has changed. For a set of points whose orbits retrieve the same
index, only the first one shall be drawn; again, if the indexes of two consecutive
points are different, the equipotential curve was trespassed and the second point
is drawn then. Algorithmically speaking, one stores the last index and, if it
equals the previously stored value, no equipotential is trespassed; otherwise,
the related point is painted black. Implications are straight-forward:

Different indexes — Different equipotential — Trespass — Paint the point.

For example, if we associate each screen point to the resulting branch index,
we find out a chain of indexes which then indicates how pixels and the entire
screen row are processed along the raster process from left to right:

1-1-1-2-2-2-2-2-2-3-3-3-3-4-4-4-4-2-2-2-5-5-5-5-3-3-3-3-3
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The underlined indexes are those making the difference and each one of them
arrests the previous sub-sequence of same values. The point, relating to the
underlined index, is painted black in our monochromatic version (for colors, we
associate the index value to the color index in the palette). Technically this
can be easily understood by handling the boolean flag bInitFlag of the main
routine at section 5.1. The reader would take care that, as the bInitFlag is
set, comparison values are stored in the two containers val and tmp_val, shown
below in the code explaining how the trespass is handled:

BOOL bDraw = Holed_Star( output_z, fxd_pt, double& val, double&
tmp_val, BOOL& bInitFlag ) ;

if ( bInitFlag )

{
if ( val != tmp_val )
{
if ( bDraw ) pDC->SetPixel( x, y , 0 );
val = tmp_val ;
}
}

else bInitFlag = TRUE ;

It is clear that the old equipotential is trespassed and the point is painted black
(the RGB triplet is set to 0) only when

if ( val != tmp._val )

So we ‘jump’'® to the adjacent equipotential level. And the new value val =
tmp_val is taken on for further comparisons.

5.4 Stars and equivalent classes

With regard of their fate (see section 5.5), the holed star model classifies orbits
Z, into equivalence classes

517527---;5k7

where k is the number of the branches. For any bounded top index, the iterate

2z, has necessarily one argument 0 < 6 < 27, thus every orbit inside the bounded

basin Bs must necessarily belong to one such equivalence class: this is straight-
k

forward but suffices to state that U &,, can describe the whole bounded basin.

n=1

Bterations give rise to discrete systems, then a jump is the movement from one equipotential level to another
adjacent (previous or next).
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Orbits of the basin B, cannot reach to the holed star thus, empirically speaking
(since every orbits belongs to the class defined by the branch it lands on), they
do not belong to any class &. Again, the holed star model maps Bs to the
union of the regions between the branches. The equivalence classes allow to
reconstruct the basins distribution in the same fashion as of the star model:
so one also understands why it also works finely with the Fatou-Leau flower, a
similarly shaped vector field, where one basin wedges the other.

The branches of the star model elongate from the outer region up to the
disc, or to the center point if the hole has zero area: this is not merely obvious
and plays relevantly during orbits classification. In a similar fashion but when
applied to iterates, the imitation of the branches distribution allows to track
down the wedging action of B, up the boundary of the hole or, again, to
the center of the star when the hole is empty: even here, consequentially, the
wedging action by By to Bs helps to understand the hedgehog shape (this is the
reason why one needs to know the radius value.) Along a different path than in
section 5.5, we came to the same great benefit: the graphical imitation, up to
the hole boundary, performed by the holed star with regard to hedgehogs and,
as we will see further, for Fatou-Leau’s flowers too, since they enjoy a similar,
less complicate, starred topology.

5.5 The pro(s) and con(s)

Benefits: according to our approach of ‘being-already-there-and-work’ (p. 71),
orbits f"(z) : z,, which finally reach to a same equipotential level R (the
bounded region radially distributed around ), are collected under a same color.
From the early works by Cherry [10] and the later production by Pérez-Marco
[22], hedgehogs dynamics can be simply resumed as follows ([10], p. 33):

“ ..as it progressively deformed through starfish shapes [...] con-
sisting of an infinity or ‘rays’ emanating from O [the origin|; each
such ‘ray’ is a connected closed set, and ‘most’ of them are arbitrarily
short. A zy on any of these rays gives a chain (z,), each of whose
points lies on another of them ...”

From figs. 5.10 , both the star contour drawing'® and the color painting help
to evince the shape of H by a comparatively little iterative index, whereas other
methods — even if pushed to the top machine performances — would have never

9In equipotential terms, it is the same as drawing the contour of the star.
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(A) (B) (©) (D)

Figure 5.12 : Wedging the bounded basin (III) In (A), we moved to the basin boundary 9B
for tracking down the hedgehog wedging action since the beginning. The filaments, where hedgehog
subsets are of infinitesimal size, have been chosen for taking the successive close-ups (red squared
regions). In (A) we started from 0B and applied a small number of iterates (just 100); the elongating
lines to the top of the figure are a side effect of the holed star equipotential, showing the hedgehog
wedging direction. From (B) to (D), a bit larger iterative index (circa 200) grants to see that the
degree of complication grows with the appeareance of several infinitesimally small fjords emanating
from the longest arm which keeps on running towards the linearization domain (empty or not).

reached there. Good pictures on the wedging action can be granted because of
the holed star resembles the hedgehog topology, with no need of inputting very
huge index values for obtaining almost the same results as previous standard
methods may do, because of the very slow speed of neighboring orbits z,, around
d. So this approach completely fills the lack of the previously discussed methods.
All in all, the star model benefits are two-fold: while the regions imitate as
best as possible such dynamics inside the bounded basin, the branch lines are
screening the shape of the basin B, to co. Since the latter and the bounded
basin are complementary sets, in terms of converging orbits, tracking down their
shapes equals to know the hedgehog topology. In fact, we can understand where
fjords will tend to (figs. 5.12 ). Equipotential models, endowing with different
graphical styles, may be thought as sort of interpreters, where the fittest one
‘speaks in the same terms’ as the local dynamics at a fixed point of f(z2).

Lacks: more than any other equipotential model, the holed star does not
grant an ‘intelligent approach’, that is, able to fit the topological characters of
any local invariant set, given the input function f(z). Equipotential curves just
play as a sort of elastic sheet stretched by the action of f(z) and they are used
then to look at the local dynamics via distributed lines: one then understands
that the knowledge of given local set properties is required for the most fitting
choice of the equipotential model among a bunch of them featuring different
distributions (horizontal or vertical straight-lines, concentric discs, stars): in
fact each model works differently on a same case and thus may be more or
less reliable. The hedgehog and the holed star model even enjoy this empirical
rule, so the fine tunings for the star may ensure the most resembling results.
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(C) rs =0.10 (D) rs = 0.09

Figure 5.13 : The radius test. Tuning the radius rs of the Siegel compactum.
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The holed star enjoys a less ‘ready—to—go’ approach than concentric circles or
straight lines equipotentials, because both the hole radius and the branches
amount shall be finely tuned.

Figure 5.14 : Neighboring dynamics. Figure (A) shows the rotatory motion of iterates in the
Siegel compactum, while outer orbits are shown in (B) and (C). According to the caption of figs.
5.12 , the filaments in this full view show how the hedgehog is wedging the whole basin of attraction.

5.6 Tuning the disc radius

The figures 5.13 show the results corresponding to different tunes of the max-
imal disc/hole radius rg. Fine tunes are then required: for large values, the
hole boundary is rather deformed, whereas smaller radii retrieve discs which
may not evince the true extension of the Siegel compactum. The problem of
determining a sharp estimation of the Siegel disc radius was mathematically
discussed and cracked by the author: it represents one application of a wider
theory which will be the object of a later work [26]. In figure 5.13 /D, we set the
hole radius to the value resulting from such computation. The joint application
of computer aided graphics and Mathematics will be finally helpful to obtain a
fine version of hedgehogs pictures.

5.7 Displaying the Fatou-Leau flowers

Since the holed star model was acknowledged to work finely for the hedgehog
— one might like to extend it to Fatou-Leau’s flowers as we did in table 5.15 |
since both invariant sets are resembling as well as flowers can be regarded like
stars with empty hole (radius is 0).

Definition 5.1 Fatou-Leau flower. If Z is a fixed point of multiplicity n+1 > 2,
then there exist attracting petals Py, Po, ..., P, for the n attracting directions
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z42° ey + 22 t=3/7

Figure 5.15 : A bunch of flowers. The application of the holed star to different configurations of
the Fatou-Leau flower.

at z, a repelling petals P;, Py, ..., Pl for the n repelling directions, so that the
union of these 2n petals, together with Z itself, forms a neighborhood Ny of Z.
([19], p- 105)

One first notices that straight lines meet at the origin and they lie at the at-
tracting directions, whereas the divergent ones are deformed into petals-shaped
curves. Like for any indifferent point, the convergence speed rate slows down
in the flower neighborhoods; even here, the holed star model helps to go all
the way down to 0 and save long time computations. It is also useful to re-
mark that here straight segments to the origin are drawn by orbits inside the
converging petals. The application to these flowered invariant sets plays as
another evidence attesting the benefits of such a qualitative approach; again
the star parameters need to be tuned appropriately, although it is much easier
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Table 5.3 : Tuning the number of branches. The iteration of f(z) : z + 2° yields a flower with 4
petals. A better performance is guaranteed when star branches are adjacent to all the 4 converging
and the 4 attracting directions; thus 4 is the smallest number to obtain only the attracting directions
(A). Multiples of 4 are suggested to have finer pictures of the dynamics inside the petals as in figures
(A), (B), (C), (D), (E) where 4, 8, 16, 32 and 64 branches have been respectively set.

here: in fact the radius hole is always 0 and the branches number can be easily
found mathematically. For more correct pictures, one shall be sure to set them
adjacently to the alternating (convergent and divergent) directions.
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7 Conclusions

In author’s opinion, well-drawn figures of local invariant sets necessarily want
customized approaches: empirically, equipotentials seem the best performing
today, susceptible to optimizations coming from the application of topologi-
cally equivalent models. A general method working for any local invariant set,
independently from the input map, thus could be a utopia. Keeping on being

Electronic Journal. http://www.neva.ru/journal, http://www.math.spbu.ru/user/diffjournal/ 34



Differential Equations and Control Processes, N 1, 2007

open-minded to any possibilities offered by Science, anyway one optimistically
would like to add the words ‘up to now I’

Alessandro Rosa

zandor_zz@yahoo.it
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