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Abstract

In this note, we present a reliable process for computing the determinant of any general
block pentadiagonal and block heptadiagonal matrices with (or without) corners. Then
we extend this process for finding determinant of block anti-pentadiagonal and block anti-
heptadiagonal matrices. We do this work by determinant of a block tridiagonal matrix
and expansions det(X) = exp(trace(log(X))).

Mathematics Subject Classification: 65F40; 65F50; 15B36.

Keywords: Determinant, Tridiagonal, Pentadiagonal, Heptadiagonal, Block Matrix.

1 Introduction

Consider the equation MΨ = 0,

M =



A1 B1 D1 E−1 C0

C1 A2 B2 D2 E0

E1 C2 A3 B3 D3
. . . . . . . . . . . . . . .

En−4 Cn−3 An−2 Bn−2 Dn−2

Dn−1 En−3 Cn−2 An−1 Bn−1

Bn Dn En−2 Cn−1 An


(1)
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or

M =



A1 B1 D1 E1 S−2 Q−1 C0

C1 A2 B2 D2 E2 S−1 Q0

Q1 C2 A3 B3 D3 E3 S0

S1 Q2 C3 A4 B4 D4 E4

S2 Q3 C4 A5 B5 D5 E5
. . . . . . . . . . . . . . . . . . . . .

Sn−6 Qn−5 Cn−4 An−3 Bn−3 Dn−3 En−3

En−2 Sn−5 Qn−4 Cn−3 An−2 Bn−2 Dn−2

Dn−1 En−1 Sn−4 Qn−3 Cn−2 An−1 Bn−1

Bn Dn En Sn−3 Qn−2 Cn−1 An



(2)

where elements of matrix M in ( 1) and ( 2) are matrices m×m and Ψ ∈ Cnm

is unknown. These equations applied for the thigh binding model for a crystal,
a molecule, or a particle in a lattice with random potential or hopping ampli-
tudes.
In [5, 7], Molinari and Salkuyeh proposed different processes for finding de-
terminant of BTD with(or without) corners. In this note, we present ap-
proximations for the determinant of block pentadiagonal and block hepta-
diagonal matrices with(or without) corners by reblocking and expansions of
det(X) = exp(trace(log(X))).
We expand this process for block anti-pentadiagonal and anti-heptadiagonal
matrix with(or without) corners.
We do this work by determinant of a block tridiagonal matrix. This work
has the ability to save time and memory specially for some large block band
matrices. This process can use for parallel computing and solving differential
equations using finite differences.
The rest of this paper is organized as follows: in the next section, we present
a process for finding determinant of general block pentadiagonal and block
heptadiagonal matrices. In section 3 we expand this method for block band
matrices with corners. Finally compute an approximation for determinant by
det(X) = exp(trace(log(X))).

1.1 Notation

We will often (but not always)use the following convention:
BTD for block tridiagonal matrix.
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BPD for block pentadiagonal matrix.
BHD for block heptadiagonal matrix.
BAPD for block anti-pentadiagonal matrix.
BAHD for block anti-heptadiagonal matrix.
log(X) and exp(X) denote logarithm and exponential function of a matrix.
ln(x) and ex denote the natural logarithm and exponential function of a scalar
x. The eigenvalues of a complex square matrix T are λj(T ) and its spectral
radius is ρ(T ) ≡ maxj | λj(T ) |.
In (or simply I if its dimension is clear) is the n× n identity matrix.

2 Computing the Determinant for Block Pentadiagonal

and Block Heptadiagonal Matrices

In [5, 7], are proposed different processes for finding determinant of BTD. We
try to change these process for BPD and BHD. Also we extend this process for
BAPD and BAHDs.
Consider determinant for matrix M,

M =



A1 B1 D1

C1 A2 B2 D2

E1 C2 A3 B3 D3
. . . . . . . . . . . . . . .

En−3 Cn−2 An−1 Bn−1

En−2 Cn−1 An


(3)

or

M =



A1 B1 D1 E1

C1 A2 B2 D2 E2

Q1 C2 A3 B3 D3 E3

S1 Q2 C3 A4 B4 D4 E4

S2 Q3 C4 A5 B5 D5 E5
. . . . . . . . . . . . . . . . . . . . .

Sn−6 Qn−5 Cn−4 An−3 Bn−3 Dn−3 En−3

Sn−5 Qn−4 Cn−3 An−2 Bn−2 Dn−2

Sn−4 Qn−3 Cn−2 An−1 Bn−1

Sn−3 Qn−2 Cn−1 An



(4)
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Suppose N be a nonsingular matrix similar:

N =



G1 H1

F1 G2 H2

F2 G3 H3
. . . . . . . . .

Fl−2 Gl−1 Hl−1

Fl−1 Gl


(5)

Salkuyeh [7] by the sequence of matrices:

Ni =



G1 H1

F1 G2 H2

F2 G3 H3
. . . . . . . . .

Fi−2 Gi−1 Hi−1

Fi−1 Gi


, i = 2, . . . , l (6)

proposed a different procedure for the evaluation of the determinant of Ni:
Suppose N1 = G1,

Ni =

(
Ni−1 Ĥi−1

F̂i−1 Gi

)
, i = 2, . . . , l

where
F̂i−1 = (0 0 . . . 0︸ ︷︷ ︸

i−2

Fi−1)
T

Ĥi−1 = (0 0 . . . 0︸ ︷︷ ︸
i−2

HT
i−1)

T

By the block LU factorization [1] of Ni can be written:

Ni =

(
Ni−1 Ĥi−1

F̂i−1 Gi

)
=

(
I 0

F̂i−1N
−1
i−1 I

)(
Ni−1 Ĥi−1

0 Gi − F̂i−1N
−1
i−1Ĥi−1

)
Hence

det(Ni) = det(Ni−1)det(Gi − F̂i−1N
−1
i−1Ĥi−1) (7)

For computing N−1
i−1 use of BSI Algorithm in [6].

Molinari [5] described a transfer matrix T that built as the product of l ma-
trices of size (2m × 2m) for finding det(N), [Gi, Hi−1 and Fi−1 (i =
1, . . . , l) are complex and nonsingular m×m matrices]. Now by transfer
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matrix in [5], where T (i) is the partial product of i matrices, we have:

T (i) =

(
−H−1

i Gi −H−1
i Fi−1

I2m 0

)
T (i− 1), T (0)11 = I2m , T (1)11 = −H−1

1 G1

T (i)11 = −H−1
i GiT (i− 1)11 −H−1

i Fi−1T (i− 2)11

det(N) = det[T11(l)]det(H1 . . . Hl−1) (8)

Theorem 1 For a BPD similar matrix M in Equation( 3), when Ai, Di and
Ei are nonsingular blocks, we can find determinant matrix M by a BTD.

Proof. We can make some partitions similar:

Fi =

(
E2i−1 C2i

0 E2i

)
, Gi =

(
A2i−1 B2i−1

C2i−1 A2i

)
, Hi =

(
D2i−1 0

B2i D2i

)
,

i = 1, 2 . . . , l that l =
n

2

This work helps us for finding det(M) by BTD N in Equations( 5), ( 7) and
( 8):

det(M) = det(N)

Theorem 2 For a BHD similar matrix M in Equation( 4), when Ai , Ei and
Si are nonsingular blocks, we can find determinant of matrix M by a BTD.
Proof. For matrix M and (i = 1, 2 . . . , l that l = n

3 ), suppose:

Fi =

S3i−2 Q3i−1 C3i

0 S3i−1 Q3i

0 0 S3i

 , Gi =

A3i−2 B3i−2 D3i−2

C3i−2 A3i−1 B3i−1

Q3i−2 C3i−1 A3i

 , Hi =

E3i−2 0 0

D3i−1 E3i−1 0

B3i D3i E3i


Now by BTD N in Equations( 5), ( 7) and ( 8), we have:

det(M) = det(N)

Remark. If n is even for Theorem 1 or n mod 3 is zero for Theorem 2, we can
use above partitions.
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In many of applications such as parallel computing and differential equa-
tions using finite differences, determinant and inverse of general anti-
pentadiagonal(AP) or anti-heptadiagonal(AH) matrices are required.

AP =



D1 B1 A1

D2 B2 A2 C1

D3 B3 A3 C2 E1
...

...
...

...

Bn−1 An−1 Cn−2 En−3

An Cn−1 En−2


(9)

AH =



E1 D1 B1 A1

E2 D2 B2 A2 C1

E3 D3 B3 A3 C2 Q1

E4 D4 B4 A4 C3 Q2 S1
...

...
...

Bn−1 An−1 Cn−2 Qn−3 Sn−4

An Cn−1 Qn−2 Sn−3


(10)

For finding determinant of matrices AP and AH, we use the permutation ma-
trices.

For permutation matrix Q, we can proof:

Q = Inverse(Q) = Transpose(Q)

see [2]. Also for finding determinant of BAPD and BAHD, we use of permuta-
tion matrix:

P = AP ×Qn−block×n−block and H = AH ×Qn−block×n−block

Transfer BAPD and BAHD to BTD, by block permutation matrices and devised
matrices in Theorems 1 and 2.

3 Computing the Determinant for some Block band Ma-

trices with corners

Theorem 3 For a BPD with corners similar matrix M in Equation ( 1), when
Ai , Ei and Di, (i = 0, 1, 2 . . . , l that l = n

2 ) are nonsingular, we can find

Electronic Journal. http://www.math.spbu.ru/diffjournal 42



Differential Equations and Control Processes, N 3, 2012

determinant of matrix M by a BTD, when n is even.

Proof. We can make some partitions similar:

Fi =

(
E2i−1 C2i

0 E2i

)
, Gi =

(
A2i−1 B2i−1

C2i−1 A2i

)
, Hi =

(
D2i−1 0

B2i D2i

)
i = 0, 1, 2 . . . , l that l =

n

2
Reblocking helps us for finding det(M) by the following BTD:

N =



G1 H1 F0

F1 G2 H2

F2 G3 H3
. . . . . . . . .

Fl−2 Gl−1 Hl−1

Hl Fl−1 Gl


(11)

Theorem 4 For a BHD similar matrix M in Equation( 2), when Ai , Ei and
Si, (i = 0, 1, 2 . . . , l that l = n

3 ), are nonsingular, we can find determinant of
matrix M by a BTD. For matrix M suppose:

Fi =

S3i−2 Q3i−1 C3i

0 S3i−1 Q3i

0 0 S3i

 , Gi =

A3i−2 B3i−2 D3i−2

C3i−2 A3i−1 B3i−1

Q3i−2 C3i−1 A3i

 , Hi =

E3i−2 0 0

D3i−1 E3i−1 0

B3i D3i E3i


(i = 0, 1, 2 . . . , l that l =

n

3
)

Now by BTD in Equation( 11), we have: det(M) = det(N)

By above theorems we can find determinant for Matrix M in Equations( 1),( 2)
by BTD. We consider the determinant for block tridiagonal matrix N in Equa-
tion( 11) by method in [5]. In this method transfer matrix T built as the
product of l matrices of size (2m× 2m) for finding det(N).

T =

(
−H−1

l Gl −H−1
l Fl−1

Im 0

)
. . .

(
−H−1

1 G1 −H−1
1 F0

Im 0

)
(12)

The transfer matrix is nonsingular, since detT = ∩li=1det(H
−1
i Fi−1) then we can

proof:

detN = (−1)lm−mexp(
2m∑
i=1

ln(1− λi(T )))det(H1 . . . Hl) (13)
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Theorem 5 Let T be a complex matrix of order n, with ‖T‖ < 1 and (λi, i =
1, 2 . . . , n) are eigenvalues of T then

det(I − T ) = exp(
n∑

i=1

ln(1− λi))

Proof. If ‖T‖ < 1 then I − T is nonsingular and ρ(T ) < 1 [1].
We have det(I − T ) = exp(trace(log(I − T ))) see [3].
From the linearity of the trace [4] and the fact that trace(T p) =

∑n
i=1 λi(T )p,

also by power series for any λi with |λi| < 1 follow:

log(I − T ) = log(I + (−T )) =
∞∑
p=1

(−1)p−1

p
(−T )p = −

∞∑
p=1

T p

p

trace(log(I − T )) = −
∞∑
p=1

1

p
trace(T p) =

n∑
i=1

∞∑
p=1

−1

p
λi(T )p =

n∑
i=1

ln(1− λi)

(14)
so

det(I − T ) = exp(trace(log(I − T ))) = exp(
n∑

i=1

ln(1− λi)) (15)

Corollary 1 If matrix N in Equation( 11) is nonsingular and ρ(T ) < 1, we
have

detN = (−1)lm−mexp(
2m∑
i=1

ln(1− λi))det(H1 . . . Hl) (16)

Suppose every block in matrix N is m×m.
Proof. If N is nonsingular so T − I is nonsingular (Lemma 1 in [5]). Since
matrix T is 2m × 2m then det(I − T ) = det(T − I) and det(I − T ) =
exp(trace(log(I − T ))). Now by ρ(T ) < 1 and proof of Theorem( 5), we have
Equation( 16).
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Example 1 We try to find determinant of matrix M (pentadiagonal matrix
with corners) by reblocking and above theorem.

M =



−0.0100 0.0200 0.2200 0 0.0100 −0.0200

0.0030 0.0040 0.0700 0.0090 0.0030 −0.0040

−0.1000 −0.0200 0.5500 0.0600 0.5000 0

0 −0.0400 0.0700 0.0800 0.0200 0.0600

0.0600 −0.5000 0.2000 −0.0030 0.0500 0.1000

0.2000 0.1000 0 −0.0070 0.0110 0.0120


or

M =

A1 B1 C0

C1 A2 B2

B3 C2 A3


that

A1 =

(
−.01 .02

.003 .004

)
, A2 =

(
.55 .06

.07 .08

)
, A3 =

(
.05 .10

.011 .012

)

B1 =

(
.22 0

.07 .009

)
, B2 =

(
.5 0

.02 .06

)
, B3 =

(
.06 −.5
.2 .1

)

C0 =

(
.01 −.02

.003 −.004

)
, C1 =

(
−.1 −.02

0 −.04

)
, C2 =

(
.2 −.003

0 −.007

)
We compute matrix T by Equation( 12).

T =

(
−B−1

3 A3 −B−1
3 C2

I 0

)(
−B−1

2 A2 −B−1
2 C1

I 0

)(
−B−1

1 A1 −B−1
1 C0

I 0

)

=


−0.1748 −0.0425 0.0030 −0.0601

0.1816 0.0451 −0.0111 0.0773

0.2324 0.1085 0.0476 −0.0685

0.7853 0.3864 0.0102 0.2669


Then use of Equation ( 16) in Corollary 1 so:

detM = (−1)6exp(
4∑

i=1

ln(1− λi(T )))det(B1B2B3) = 5.0730e− 006
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If set Hl := −Hl and F0 := −F0 in matrix N of Equation( 11) and −1 <
λi(T ) < 1, 1 ≤ i ≤ 2m, then

detN = (−1)lmdet(I + T )det(H1 . . . Hl) (17)

that

det(I + T ) = exp(
2m∑
i=1

ln(1 + λi(T ))) (18)

see [3, 5].

Example 2 If set C0 := −C0 and B3 := −B3 in Matrix M of Example 1, by eigen-
values of transfer matrix T: (0.2242,−0.0690, 0.0148+0.0305i, 0.0148−0.0305i)
and by Equation( 17) , we have

det(M) = (−1)6exp(
4∑

i=1

ln(1 + λi(T )))det(B1B2B3) = 7.3971e− 006

For block anti-pentadiagonal and block anti-heptadiagonal matrices with cor-
ners similar:

AP =



E−1 C0 D1 B1 A1

E0 D2 B2 A2 C1

D3 B3 A3 C2 E1
...

...
...

...

Bn−1 An−1 Cn−2 En−3 Dn−1

An Cn−1 En−2 Bn Dn


(19)

and

AH =



S−2 Q−1 C0 E1 D1 B1 A1

S−1 Q0 E2 D2 B2 A2 C1

S0 E3 D3 B3 A3 C2 Q1

E4 D4 B4 A4 C3 Q2 S1
...

...
...

Bn−1 An−1 Cn−2 Qn−3 Sn−4 Dn−1 En−1

An Cn−1 Qn−2 Sn−3 Bn Dn En


(20)

use of permutation matrix similar matrix
Q, (P = AP × Qn−block×n−block and H = AH × Qn−block×n−block), see [2].
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Namely transfer BAPD and BAHD to BPD and BHD, by block permutation
matrix Q then find determinant of them by devised matrices of Theorems 3
and 4.

Example 3 For finding determinant of the following matrix:

M1 =



−0.0200 0.0100 0 0.2200 0.0200 −0.0100

−0.0040 0.0030 0.0090 0.0700 0.0040 0.0030

0 0.5000 0.0600 0.5500 −0.0200 −0.1000

0.0600 0.0200 0.0800 0.0700 −0.0400 0

0.1000 0.0500 −0.0030 0.2000 −0.5000 0.0600

0.0120 0.0110 −0.0070 0 0.1000 0.2000


We use of permutation matrix Q and some results of this paper:

Q =



0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 1 0 0

0 0 1 0 0 0

0 1 0 0 0 0

1 0 0 0 0 0


,

and

M2 = M1 ×Q =



−0.0100 0.0200 0.2200 0 0.0100 −0.0200

0.0030 0.0040 0.0700 0.0090 0.0030 −0.0040

−0.1000 −0.0200 0.5500 0.0600 0.5000 0

0 −0.0400 0.0700 0.0800 0.0200 0.0600

0.0600 −0.5000 0.2000 −0.0030 0.0500 0.1000

0.2000 0.1000 0 −0.0070 0.0110 0.0120


We gain determinant of matrix M2 by applied process in Example 1 and deter-
minant of matrix Q, so

detM1 = −(−1)6exp(
4∑

i=1

ln(1− λi(T )))det(B1B2B3) = −5.0730e− 006
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4 Summary

In this paper, we present a sequence of approximations for determinant of BPD,
BHD, BAPD and BAHD with(or without) corners, this work is done by BTD
and expansions det(X) = exp(trace(log(X))).
Introduced processes in this paper try to find determinant for some block band
matrices by determinant of a transfer matrix with smaller rank. This work can
save time and memory specially for some large band matrices. We can apply
this process for parallel computing, telecommunication system analysis and in
solving differential equations using finite differences.
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