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Abstract

In the present work we for the first time apply a relatively new method
of constructive unfixed change of variables to the Harry Dym (HD) and the
Korteweg–de Vries (KdV) equations. We construct two dynamical systems
and formulate necessary conditions for the stability of phase trajectories. A
system of functional algebraic equations is constructed and it is proved that
two formal solvability conditions for a system of first order partial differential
equations have one non–trivial common factor. An important feature of the
HD and KdV equations was found: after an unfixed constructive change of
variables, a new ”hidden” key equation for the function of the partial first
derivative can be separated from the other equations. The exact solutions
constructed with the help of a non-autonomous dynamical system coincide with
global solutions. That is not the case for equations with dissipation. Two classes
of exact solutions are found for the HD and for the KdV equation. A possibility
arises to construct new asymptotic solutions.

Keywords: the Harry Dym and Korteweg–de Vries equations, dynamical sys-
tems, stability of phase trajectories
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1. Introduction

In the 80s of the XX century, in a cycle of works made under the guidance of
the member of the USSR Academy of Sciences V.P. Maslov [1–7, 24–34], new
original methods were proposed for the analysis of nonlinear partial differential
equations (NLPDE’s). These works dealt with semilinear parabolic equations,
as well as with quasilinear parabolic equations with dissipation and with quadric
and cubic nonlinearities. These equations could also contain a small parameter
0 < ε < 1.

The solutions studied belong not only to the type of deformed simple waves
1, but also to those arising from their small disturbances. Some solutions to the
equations connected with the liquid and gas dynamics, to the Burgers equation
in particular, evolve to those close to shock waves. In the limit, as a small
parameter tends to 0, they transform into shock waves [3, 6, 7].

An analysis of such solutions for the Burgers equation is presented in detail
in Appendix of [1]. Solutions of smoothed shock wave type for semilinear and
quasilinear parabolic partial differential equations (PDE) are constructed, in
particular, in Appendices of [10–16, 24, 25]. The solutions of the said type have
the following interesting feature: they tend to 0 as t→ −∞ on any finite interval
of x–axis. According to a figure of speech by V.P. Maslov,“solutions originate
from nothing”. Such “0 – initial conditions” were used in the inverse problem
of scattering, in particular, for Korteweg – de Vries, Kadomtsev–Petviashvili,
sine–Gordon NLPDE’s [24–34]. In other situation, they were also considered,
for example, in [4].

The present study is based on a generalisation of a transformation proposed
for the first time in [5]. Consider a quasilinear (actually strongly nonlinear)
NLPDE

Z ′t − (K(Z)Z ′x)
′
x + F (Z) = 0

and put
K(Z) = ρ(χ) χk > 0, Z(x, t) = χ(τ),

τ = x + bt. Thus we get a first ordinary differential equation (ODE1): b
dχ
dτ −

d
dτ

(
ρ(χ)dχ

k

dτ

)
− F (χ(τ)) = 0, where ρ(χ) > 0, ρ(0) > 0, ρ(1) > 0, k > 1.

Consider a semilinear (actually also nonlinear) NLPDE

u′t − u′′xx +R(u) = 0

1It is known that equations invariant under the translation group have a solution, commonly called the simple

wave, which is described by a function of the argument Z(x, t) = Z(τ)
∣∣∣
τ=x+bt

with the invariant τ, b = const.
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and put
u(x, t) = Θ(ξ), ξ = x+ bt.

Thus we get a second ordinary differential equation (ODE2): b
dΘ
dξ −

d2Θ
dξ2 −R(Θ) =

0, where
dR

dΘ
(Θ) is the continuously differentiable function Θ ∈ [ 0, 1], with the

conditions Θ
∣∣∣
ξ→−∞

→ 0, Θ
∣∣∣
ξ→∞

→ 1. Then the transformation ρ(χ)dχ
k

dτ =

dΘ
dξ (τ(χ)) relates ODE2 with ODE1, where the functions of the source and of
dissipation F (χ), R(χ) are related to each other in the following way: F (χ) =
R(χ)χ1−k

kρ(χ) .

This transformation was used in the cited works to study the reference
equation with the scope to establish properties of asymptotic solutions [5–7,
24, 25]. The idea of the method called by us “the method of unfixed constructive
change of variables” (the UCCV method) was for the first time proposed in
[10]. In the cited above second order quasilinear parabolic partial differential
equation QLPDE, the variables of the unknown function Z(x, t) and its first
partial derivatives, as well as the independent variables x = x(ξ, δ), t = t(ξ, δ)
were changed by arbitrary twice continuously differentiable functions [10–16].

At first, three relations were studied. Namely, two arbitrary functions were
introduced to change the partial derivatives ∂Z(x,t)

∂t , ∂Z(x,t)
∂x in new independent

variables. One more relation follows from the QLPDE. They generalize the de-
scribed above transformation for the case of two independent variables. These
relations were studied in [10, 7]. Later, these relations were completed by the
fourth condition of the equality of mixed derivatives of the unknown function
in both old and new variables for different QLPDE’s for the case of two inde-
pendent variables. These relations were studied in [11–16].

Note that the addition of the fourth relation cardinally changes the situa-
tion. In [11–16], it is proved that the four relations make a system of functional
linear algebraic equations (SFLAE’s) in new variables. The derivatives of the
old variables x = x(ξ, δ), t = t(ξ, δ) with respect to the new ones, ξ, δ, are
chosen as new variables.

The work [15] also gives a solution of a model optimal control problem for
the Hamilton–Jacobi–Bellman equation. The solution is constructed by the
UCCV method for the case of three independent variables. In a simplified way,
it is described in [22, 23].

Problems connected with the KdV equation have long been subject of in-
terest of the scientific school by the academician V.P. Maslov. Asymptotic
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solutions were studied in [3, 32–34] and in a number of V.P.Maslov’s works
made together with his pupils [26–34]. For example, in [6, p. 180], [7, pp. 47–
51], a rational soliton solution and a two-soliton solution of the KdV equation
were found. The UCCV method was defended as a D.Sc. thesis [15]. Formulas
for a nonlinear dynamical system (NLDS) and variants of SFLAE’s for the KdV
equation were for the first time obtained in [18–20]. In the cycle of works [8–9,
17], other authors developed methods applicable to different NLPDE’s, such as
the HD, the KdV equations, and others.

Our work is based on a new method (the UCCV method), which, when
applied to the HD and KdV equations, permits us to reveal, separately for each
of them, a “hidden” new key NLPDE that allows us to construct new solutions.
The main results of this work were presented in [21].

2. A system of functional linear algebraic equations for the KdV
equation

Consider together the whole set of the KdV equations:

∂Z(x, t)

∂t
+ Zn ∂Z(x, t)

∂x
+ β

∂3Z

∂x3
= 0. (1)

Commonly, one distinguishes the case of n = 1 (weak dispersion) and that of
(n = 2) corresponding to a modified KdV equation and to a strong dispersion.
Let’s assume that the all functions involved are smooth, namely, they are trice
continuously differentiable in their arguments.

It is well known [8–9] that the group of translation transformations Z(x, t) =
u(θ) with the invariant θ = x − V t allows one to reduce the KdV equation
to a third order ODE. The first integral of this ODE describes a nonlinear
anharmonic oscillator. Multiplying the second order ODE obtained by the first
derivative u′(θ) and integrating once more, we get

(u′(θ))2 = E − 2 (u(θ))n+2/(β(n+ 1)(n+ 2)) + V (u(θ))2/β − C1 u(θ),

β, n 6= −1,−2. The last equation means that an ODE for the function of the
first derivative may be separated from the other equations. In the case of an
ODE, this conclusion is trivial and well known. It is known that, at different
values of the constants, the cited ODE has the C. Jacobi soliton solution or
different solutions describing nonlinear oscillations.

In the present work we found variables for the HD and KdV equations,
in which an equation for the first derivative can be separated from the other
equations. We call this NLPDE a “hidden” one. All other functions can be
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expressed in terms of the solution of this equation. This new property of the said
equations is connected with integrability. Then the initial NLPDE is integrable
in parametric form. It is important that these new in the theory of the HD
and KdV equations nonlinear differential equations for the functions of the first
derivative are partial differential equations. This permits us to construct exact
and asymptotic formulas for the first derivative, the function Y (ξ, δ). All other
functions (derivatives) can be expressed in Y (ξ, δ).

Let’s apply the UCCV method to equation (1). Let’s make an unfixed
constructive change of variables for the solution of this equation Z(x, t) using
a smooth unknown function of new variables U(ξ, δ):

Z(x, t)
∣∣∣
x=x (ξ, δ), t=t (ξ, δ)

= U(ξ, δ). (2)

Suppose that the Jacobian of the transformation detJ = x′ξt
′
δ − t′ξx

′
δ is

neither zero nor infinity (otherwise this method is not applicable). Then there
exists, at least locally, an inverse transformation ξ = ξ(x, t), δ = δ(x, t), and

Z(x, t) = U(ξ, δ)
∣∣∣
ξ=ξ(x,t), δ=δ(x,t)

.

The Jacobian matrix of the inverse transformation has the form

J−1 =

(
ξ′x(x, t) δ′x(x, t)

ξ′t(x, t) δ′t(x, t)

)
.

The equality JJ−1 = E must be satisfied. The derivatives of old variables
x, t with respect to new variables ξ, δ are connected by the relations

∂x

∂ξ
= detJ

∂δ

∂t
,
∂t

∂ξ
= −detJ

∂δ

∂x
,
∂x

∂δ
= −detJ

∂ξ

∂t
,
∂t

∂δ
= detJ

∂ξ

∂x
. (3)

Analogously, we make three more changes of variables:

∂Z

∂t

∣∣∣
x=x(ξ, δ), t=t (ξ, δ)

= T (ξ, δ)

∂Z

∂x

∣∣∣
x=x(ξ, δ), t=t(ξ, δ)

= Y (ξ, δ),

∂Y (ξ(x, t), δ(x, t))

∂x

∣∣∣
x=x(ξ, δ), t=t(ξ, δ)

= M(ξ, δ). (4)

Using (2) and (3),(4), we get the three equations

−∂U
∂ξ

∂x

∂δ
+
∂U

∂δ

∂x

∂ξ
= T (ξ, δ) (x′ξ t

′
δ − t′ξ x′δ), (5)

Electronic Journal. http://www.math.spbu.ru/diffjournal 198



Differential Equations and Control Processes, N 4, 2017

∂U

∂ξ

∂t

∂δ
− ∂U

∂δ

∂t

∂ξ
= Y (ξ, δ) (x′ξ t

′
δ − t′ξ x′δ), (6)

∂Y

∂ξ

∂t

∂δ
− ∂Y

∂δ

∂t

∂ξ
= M(ξ, δ) (x′ξ t

′
δ − t′ξ x′δ). (7)

Equation (1) in new variables takes the form

∂M

∂ξ

∂t

∂δ
− ∂M

∂δ

∂t

∂ξ
= −T1(ξ, δ) (x′ξ t

′
δ − t′ξ x′δ)/β,

T1(ξ, δ) = T (ξ, δ) + U(ξ, δ)n Y (ξ, δ), (8)

Necessarily, for the function Z(x, t), the equality of mixed derivatives

Z ′′tx = Z ′′xt (9)

must hold in new variables ξ, δ.

Using (2)–(4), we get one more equation

∂x

∂δ

∂Y

∂ξ
− ∂x

∂ξ

∂Y

∂δ
+
∂t

∂δ

∂T

∂ξ
− ∂t

∂ξ

∂T

∂δ
= 0. (10)

The KdV equation is equivalent to the system of NLPDE’s (5)–(8), (10).

We will analyse this system in two stages. At the first stage, we consider
the system of NLPDE’s (5),(6),(8),(10) as an algebraic system with respect to
the derivatives

x′ξ, x
′
δ, t′ξ, t

′
δ. (11)

Theorem 1.

Let the system of the four NLPDE’s (5), (6), (8), (10) with respect to
the variables (11) be given. Then it is a system of linear functional algebraic
equations with respect to the variables (11) and it has a unique nontrivial
solution

∂x

∂ξ
def
= z1(ξ, δ) = (β Y (ξ, δ)

(
T ′δ(ξ, δ) M

′
ξ(ξ, δ)− T ′ξ(ξ, δ) M ′

δ(ξ, δ)
)
U ′ξ(ξ, δ) +

+T1(ξ, δ)
(
T ′δ(ξ, δ) U

′
ξ(ξ, δ)− T ′ξ(ξ, δ) U ′δ(ξ, δ)

)
U ′ξ(ξ, δ) +

+β T (ξ, δ)
(
M ′

δ(ξ, δ) U
′
ξ(ξ, δ)−M ′

ξ(ξ, δ) U
′
δ(ξ, δ)

)
Y ′ξ (ξ, δ))/Ψ, (12)

∂x

∂δ
def
= z2(ξ, δ) = (β Y (ξ, δ)

(
T ′δ(ξ, δ) M

′
ξ(ξ, δ)− T ′ξ(ξ, δ) M ′

δ(ξ, δ)
)
U ′δ(ξ, δ) +

+T1(ξ, δ)
(
T ′δ(ξ, δ) U

′
ξ(ξ, δ)− T ′ξ(ξ, δ) U ′δ(ξ, δ)

)
U ′δ(ξ, δ) +

+β T (ξ, δ)
(
M ′

δ(ξ, δ) U
′
ξ(ξ, δ)−M ′

ξ(ξ, δ) U
′
δ(ξ, δ)

)
Y ′δ (ξ, δ))/Ψ, (13)
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∂t

∂ξ
def
= z3(ξ, δ) =

(
β Y (ξ, δ) M ′

ξ(ξ, δ) + T1(ξ, δ) U
′
ξ(ξ, δ)

)
×

×
(
Y ′δ (ξ, δ) U

′
ξ(ξ, δ)− Y ′ξ (ξ, δ) U ′δ(ξ, δ)

)
/Ψ, (14)

∂t

∂δ
def
= z4(ξ, δ) = (β Y (ξ, δ) M ′

δ(ξ, δ) + T1(ξ, δ) U
′
δ(ξ, δ))×

×
(
Y ′ξ (ξ, δ) U

′
δ(ξ, δ)− Y ′δ (ξ, δ) U ′ξ(ξ, δ)

)
/Ψ,

Ψ = β Y 2
(
T ′ξ(ξ, δ) M

′
δ(ξ, δ)− T ′δ(ξ, δ) M ′

ξ(ξ, δ)
)

+

+T T1

(
Y ′ξ (ξ, δ) U

′
δ(ξ, δ)− Y ′δ (ξ, δ) U ′ξ(ξ, δ)

)
+

+Y (T1

(
U ′ξ(ξ, δ) T

′
δ(ξ, δ)− U ′δ(ξ, δ) T ′ξ(ξ, δ)

)
+

+β T
(
Y ′ξ (ξ, δ) M

′
δ(ξ, δ)− Y ′δ (ξ, δ) M ′

ξ(ξ, δ)
)
). (15)

The Jacobian has the form

detJ = (β
(
M
′
ξ(ξ, δ) U

′
δ(ξ, δ)−M ′

δ(ξ, δ) U
′
ξ(ξ, δ)

)
×

×
(
U
′
δ(ξ, δ) Y

′
ξ (ξ, δ)− U ′ξ(ξ, δ) Y ′δ (ξ, δ)

)
)/Ψ. (16)

The function T (ξ, δ) is found from (7) and has the form

T (ξ, δ) = (β M(ξ, δ)
(
M ′

ξ(ξ, δ) U
′
δ(ξ, δ)− β M ′

δ(ξ, δ) U
′
ξ(ξ, δ)

)
+

+Y (ξ, δ) (−Y ′δ (ξ, δ)
(
U ′ξ(ξ, δ) U

n + β M ′
ξ(ξ, δ)

)
+

+Y ′ξ (ξ, δ) ( U ′δ(ξ, δ) U
n + β M ′

δ(ξ, δ))))/Ψ0,

Ψ0 = Y ′δ (ξ, δ) U
′
ξ(ξ, δ)− Y ′ξ (ξ, δ) U ′δ(ξ, δ). (17)

Proof. At first, using elementary transformations, as in the Gaussian
method for solving systems of linear algebraic equations, we eliminate the Ja-
cobian from equations (5), (6), (8) and get two linear equations. Equation (10)
is linear. Using (11), we express any three derivatives of old variables with
respect to new ones and substitute them into the remaining fourth equation.
After the reduction of similar terms, the resulting equation turns out to be lin-
ear. Then we get (12)–(15). Afterwards, we calculate (16), (17). Substituting
the function of the Jacobian into the right sides of equations (5)–(8), we get a
classical form of the SFLAE.

Theorem 1 is proved.

3. The possibilities to study the stability of solutions

Let the system of equations (12)–(15) be given. One can construct the
first nonlinear dynamical system (NLDS) (12), (14), and the second NLDS
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(13), (15). Actually, new variables ξ and δ may be interpreted as a new time
along trajectories.

a. The system (12), (14) may be considered as a NLDS. It has a fixed point
(14), in which there is no degeneration (16): detJ 6= 0.

M ′
ξ(ξ, δ) = −U ′ξ(ξ, δ) T1/(β Y ). (18)

Thus t′ξ(ξ, δ) = 0. Then t(ξ, δ) = τ(δ). From (6) we obtain x′ξ(ξ, δ) =
U ′ξ(ξ, δ)/Y (ξ, δ) and from (7) it follows that

M(ξ, δ) = Y ′ξ Y (ξ, δ)/U ′ξ(ξ, δ). (19)

Equating (18) to the partial derivative of (19) with respect to the variable
ξ, we get

T (ξ, δ) = −Un Y − β Y
(
∂

∂ ξ

(
Y Y ′ξ/U

′
ξ

))
/U ′ξ. (20)

Then we can calculate the elements of a new Jacobian matrix J1 for the
system (12), (14), its eigenvalues and trace, a new Jacobian, as well as the
information on the phase flow and other characteristics.

b. The system (13), (15) may be also considered to be a NLDS. It also has
a fixed point (15), in which there is no degeneration: detJ 6= 0.

Analogously to case (a) we have

M ′
δ(ξ, δ) = −U ′δ(ξ, δ) T1/(β Y ). (21)

Then t′δ(ξ, δ) = 0. Let t(ξ, δ) = ξ . From (6) we obtain x′δ(ξ, δ) =
U ′δ(ξ, δ)/Y (ξ, δ), and from (7) it follows that

M(ξ, δ) = Y ′δ Y (ξ, δ)/U ′δ(ξ, δ). (22)

Equating (21) to the partial derivative of (22) with respect to δ, we get

T (ξ, δ) = −Un Y − β Y
(
∂

∂δ
(Y Y ′δ/U

′
δ)

)
/U ′δ. (23)

Taking into consideration the equality t′ξ = 1, we can write equation (14)
in the form

∂

∂δ
( T (ξ, δ)/Y (ξ, δ)) +

(
Y ′δ U

′
ξ − Y ′ξ U ′δ

)
/Y 2 = 0. (24)
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Then one can calculate the elements of a new Jacobian matrix J2 for the
system (13), (15), etc. Note a symmetry in (18)–(20) and (21)–(23) under the
change of ξ by δ. The study of the stability of solutions to the KdV equation
is out of the scope of the present work.

4. The property of solvability conditions for the system (12)–(15)

At the second stage, we consider a system of first order NLPDE’s with
respect to the functions x = x(ξ, δ), t = t(ξ, δ). It is well known that the
solvability condition of such type of system is the equality of mixed second
partial derivatives of the functions x = x(ξ, δ) and t = t(ξ, δ) with respect to
the arguments ξ and δ. Equations (12)–(15) are a basis to calculate these
derivatives. We have then

∂2x(ξ, δ)

∂ξ ∂δ
=
∂2x(ξ, δ)

∂δ ∂ξ
,
∂2t(ξ, δ)

∂ξ ∂δ
=
∂2t(ξ, δ)

∂δ ∂ξ
. (25)

The following theorem is one of the central results of the UCCV method.
Theorem 2. Let the system of equations (12)–(15) be given. Then

a. we have two solvability conditions

∂z1(ξ, δ)

∂δ
− ∂z2(ξ, δ)

∂ξ
= TQ = 0,

∂z3(ξ, δ)

∂δ
− ∂z4(ξ, δ)

∂ξ
= YΨ0

2 Q = 0, (26)

for which there exists a nontrivial common multiplyer Q(ξ, δ) for any smooth
function M(ξ, δ).

b. the two solvability conditions (12)–(15) reduce to an equality to zero of
the common multiplier

Q(ξ, δ) = 0 (27)

for any smooth functions U(ξ, δ), Y (ξ, δ), T (ξ, δ), M(ξ, δ).

Proof. This feature of NLPDE’s was not known before. It was published for
the first time in [11] for the NLPDE cited in the Introduction. A new NLPDE
Q = 0 depends on the unknown functions Y (ξ, δ), T (ξ, δ), M(ξ, δ), U(ξ, δ)
and their first derivatives. Equation (27) can be obtained by direct calculations
of (26). In its initial form, this equation is very cumbersome 2, however, after
the construction of an exact solution, it becomes essentially simpler and, as a
result, we get a “hidden” key equation containing a sum of only three terms.
The equation of the type indicated in the formulation of the theorem for the

2It occupies more that three pages in font 14. To check it we used the mathematical symbolic computation
program Wolfram Mathematica.
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KdV equation in the first case was for the first time proposed in a report at a
conference [21] and is published for the first time in the present work. If any
four smooth functions U, Y, T,M satisfy (27), then the system (12)–(15) and
(5), (6), (8), (10) is solvable. With the added equation (7) the solution of the
initial NPDE KdV (1) is recovered by (2). Theorem 2 is proved.

5. Exact solutions of the Korteweg–de Vries equation.

The construction, for the functions U(ξ, δ), Y (ξ, δ), T (ξ, δ), M(ξ, δ), of ex-
act solutions to the KdV equation by the UCCV method allows us to prove
that if the function of the first derivative Y (ξ, δ) is found, then all the other
functions can also be found. Then we can return to the initial solutions (2)–(4)
of the KdV equation (1) in parametric form.

Theorem 3.

Let the system (5)–(8), (10) be given. Then the change of variables (2)–(4)
allows us to obtain, in new variables, an equation for the function of the first
derivative Y (ξ, δ). This equation may be separated from all the other equations
and depends only on the function U(ξ, δ) and its derivatives:

∂

∂δ

(
Un(ξ, δ) + β

(
∂

∂δ
(Y Y ′δ/U

′
δ )

)
/U ′δ

)
= (Y ′δ U

′
ξ − Y ′ξ U ′δ)/Y 2. (28)

One more change of variables for the function Y (ξ, δ) has the form 3

Y (ξ, δ) =
√
G(η, ξ)

∣∣∣
η=U(ξ,δ)

, η = U(ξ, δ), t(ξ, δ) = ξ. (29)

Thus, a new class of exact solutions of the KdV equation is described by
the formulas

M(ξ, δ) = G′η(η, ξ)/2
∣∣∣
η=U(ξ,δ)

,

T (ξ, δ) = −
√
G(η, ξ) (2 ηn + β G′′ηη(η, ξ))/2

∣∣∣
η=U(ξ,δ)

,

x(ξ, δ) = X(η, ξ)
∣∣∣
η=U(ξ,δ)

,

∂ X(η, ξ)

∂τ
= ηn + β G′′ηη/2,

∂ X(η, ξ)

∂ η
= 1/

√
G(η, ξ),

det J = −U ′δ(ξ, δ)/G(η, ξ)1/2
∣∣∣
η=U(ξ,δ)

, (30)

3In the present work, for the sake of simplicity in the presentation of formulas, they are given for a positive
branch of the solution,except for an example, in which they need to be presented otherwise.
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and the function G(η, ξ) can be found from the equation

∂G(η, ξ)

∂ξ
/(β G(η, ξ)3/2) +

∂3 G(η, ξ)

∂η3
+ 2nηn−1/β = 0. (31)

new in the theory of the KdV equation.

The Jacobian has the form det J = −U ′δ/
√
G(η, τ)

∣∣∣
η=U(ξ,δ)

. The function

U(ξ, δ) remains an arbitrary, smooth, and trice continuously differentiable func-
tion.

Proof. Consider case (b) in Section 3. Let t(ξ, δ) = ξ, then we ob-
tain relations (21)–(24). Then the solvability condition (25) reduces to equa-
tion (24). The equation t′ξ = 1 follows from (14) and also takes the form
(24). Combining relations (23) and (24)and excluding the function T , we
get (24). After the change of variables (29) we again obtain equation (31).
From (12), (13) we get the following relations for derivatives: x′ξ(ξ, δ) =(
U ′ξ/
√
G(η, ξ) + ηn + β G′′ηη/2

)∣∣∣
η=U(ξ,δ)

, x′δ(ξ, δ) = U ′δ/
√
G(η, ξ)

∣∣∣
η=U(ξ,δ)

.

Put x(ξ, δ) = X(U(ξ, δ), ξ). Then relations (30) hold. For the solvability of
(25) in the variables η, ξ, the relations
∂2X(η,ξ)
∂η ∂ξ = ∂2X(η,ξ)

∂ξ ∂η must hold. Then we again obtain equation (31). This means
that the exact solution (28)–(31) does exist. Theorem 3 is proved.

Example. Now we briefly describe a new non-trivial exact solution of
(31) and, consequently, also of (1). At n = 1 , equation (31) has the solution
G(η, ξ) = = Ξ(θ) with the invariant G(η, ξ) = = Ξ(θ) . Then (31) implies an
ordinary differential equation (ODE3). The first integral of ODE3 has the form
ODE4:

Ξ′′(θ)∓ 2V/(β
√

Ξ(θ)) = −C4 − 2θ/β,
Here C4 is a constant. This is a nonlinear ODE with a right–hand side. One
can multiply ODE4 by the function Ξ′(θ). After the integration we get the
quadrature

(Ξ′(θ))2/2 + C5 + C4Ξ(θ) + 2(θΞ−
∫

Ξ(θ) dθ)/β − 4V
√

Ξ(θ)/β = 0,

Here C5, C4 are constants. Put X(η, ξ) = X1(η + V ξ). Then (30) implies
X(θ) = ±

∫
(1/
√

Ξ(θ)) dθ. This is an implicit equation for the calculation of
the function Ξ(θ).

Note, besides, that ODE4 implies a non-autonomous dynamical system
Ξ′(θ) = p(θ), p′(θ) = −C4 − 2θ/β ± 2V/β

√
Ξ(θ)).

Let’s calculate
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dθ
dΞ(θ) = 1/

(
dΞ(θ)
dθ

)
= 1/p(θ). Then the Jacobian matrix2 has the form(

0 1

−2/(βp)± V/(βΞ3/2) 0

)
.

A fixed point is determined by the expressions p = 0, Ξ = 4V 2/(C4β+2θ)2.
Hence it follows that on the equator of the Poincaré sphere there can exist,at
different values of parameters, critical points of center or saddle type. Then one
should analyse the existence of bifurcations. A detailed study shows that the
obtained new exact solution describes an asymmetrical wave with a big value
of the derivative on the leading edge that differs from C.Jacobi’s solution. This
solution is mentioned in Section 2 and is studied in detail, for instance, in [8,
9, 17].

Obviously, a complete study of this solution should be the subject of a
separate work. The other solution has the form G(η, ξ) = ηn+2(Ψ(ϕ))′, ϕ =
η3ns/2ξs, s 6= 0.

Note that equations (28), (31) are new in the theory of the KdV equation.

Remark 1. For the Korteweg–de Vries–Burgers equation [1–3, 9, 17], in
which second derivatives are added to equation (1) (dissipation), there is no
solution constructed by the UCCV method, which would be analogous to the
solution constructed in Theorem 3. When proving Theorem 3 we three times
obtain the same equation (28), (31). In the case of the equation with dissipation
it is not so, because we obtain equations that differ in the terms connected with
dissipation.

6. Possibility to construct, with functional arbitrariness, asymp-
totic solutions of equation (31) and, on the whole, of the KdV equa-
tion.

Remark 2. Let’s show that, in a degenerate case, the formulas of The-
orem 3 imply classic results. The Jacobian (16) equals zero on the group of
translation transformations U(ξ, δ) = U0(δ − V ξ), or if the function of the
first derivative Y (ξ, δ) =
= Y0(U(ξ, δ)) depends only on the function Y (ξ, δ) =
= Y0(U(ξ, δ)). This is a degenerate case, and the UCCV method is not ap-
plicable here.

If Y (ξ, δ) = Y0(U(ξ, δ)), then G(η, ξ) = G(η). Thus from (28), (31)
we obtain the equation for the function of the first derivative Y (ξ, δ) (4)
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Y 2(η) = −2 η2+n/(β(n+ 1)(n+ 2)) + C1 + C2 η + C3 η
2, n 6= −1,−2.

This is an analogue of the ODE in the beginning of section 2.

As an example, we choose a draft for the construction of an approximate,
asymptotic in a small parameter 0 < ε < 1 , solution of equation (31) using
a method similar to the Poincaré–Lighthill–Kuo method, which was actively
applied in [6, 7] in the form

G(η, ξ, ε) = −2ηn+2/(β(n+ 1)(n+ 2)) (1 + s ε ησ−n−2ψ(η, ξ) +O(ε2)) +

+C1(1 + ε ησρ(η, ξ) +O(ε2)) + C2η (1 + ε η−1+σϕ(η, ξ) +O(ε2)) +

+C3η
2 (1 + ε η−2+σµ(η, ξ) +O(ε2)). (32)

Here s, σ are constants. There exist correction functions ψ(η, ξ), ρ(η, ξ), ϕ(η, ξ),
µ(η, ψ) of the order ε, which satisfy a linear PDE. The coefficient in these
functions can be chosen by different ways.

When solving this linear PDE, one can express one of the functions in terms
of the others. The arbitrariness in the choice of such function can be used to
find a solution of the Cauchy problem. One can consider a variant, in which
one should equate all the four correction functions. A detailed calculation of
asymptotic solutions of the KdV equation deserves a separate study.

7. A second class of exact solutions to the Korteweg–de Vries
equation We describe this class only briefly. It is more complicated than the
first one.

Theorem 4. Let the system (5)–(8), (10) be given. Then an exact solution
of the KdV equation (1) has the form

Y (ξ, δ) =
√
G(η, δ)

∣∣∣
η=U(ξ,δ)

, η = U(ξ, δ), x(ξ, δ) = δ, (33)

M(ξ, δ) = M0(η, δ)
∣∣∣
η=U(ξ,δ)

, t(ξ, δ) = τ(η, δ)
∣∣∣
η=U(ξ,δ)

, (34)

M0(η, δ) = G′δ(η, δ)/(2
√
G(η, δ)) +G′η(η, δ)/2. (35)

The function T (ξ, δ) is given in (17). After the change of

variables T (ξ, δ) we get T (ξ, δ) = T0(U(ξ, δ), δ)
∣∣∣
U(ξ,δ)=η

. Then

T0(η, δ) =−
(√

G(η, δ)(βM ′
0 δ(2M0 −G′η(η, δ)) +G′δ(η, δ)(η

n + βM ′
0 η)/G

′
δ(η, δ)

)
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= −ηn
√
G(η, δ) + β(G′δ)

2/(4
√
G3) − βG′′δδ/(2

√
G) + β ∂G(η,δ)

∂δ
∂G(η,δ)
∂η /(4G)−

−β ∂
2G(η,δ)
∂η∂δ − β

√
G∂2G(η,δ)

∂η2 /2.

Then the equation for the function of the first derivative Y (ξ, δ) =√
G(η, δ)

∣∣∣
η=U(ξ,δ)

Y (ξ, δ) =
√
G(η, δ)

∣∣∣
η=U(ξ,δ)

in new variables can be separated

from the other equations. It depends only on the function U(ξ, δ) and its
derivatives:

∂3G(η, δ)

∂η3
+ 3

∂3G(η, δ)

∂η∂δ2
/G+ 3

∂3G(η, δ)

∂η2∂δ
/
√
G(η, δ)−

−3
(
G′δ +

√
GG′η

) ∂2G(η, δ)

∂η∂δ
/(2G2) + 3

∂G(η, δ)

∂δ

(
∂G(η, δ)

∂η

)2

/(4
√
G5)−

−3
(
−(G′δ)

2 +GG′′ηη
) ∂G(η, δ)

∂η
/(2G3) +

∂3G(η, δ)

∂δ3
/
√
G3 +

+2nηn−1/β − 3G′δG
′′
δδ/(2

√
G5) + 3(G′δ)

3/(4
√
G7) + ηnG′δ/(β

√
G3) = 0. (36)

The derivatives of the function τ(η, δ) have the form τ ′δ(η, δ) =
4 G2(η, δ)/Ψ2, τ ′η(η, δ) = −4

√
G3(η, δ)/Ψ2,

Ψ2 = 4ηnG2(η, δ)− β(G′δ)
2 + 2βGG′′δδ − β

√
GG′δG

′
η + 4β

√
G3G′′δη + 2βG2G′′ηη.

The function U(ξ, δ) is an arbitrary trice continuously differentiable func-
tion.

Proof. Put x(ξ, δ) = δ, x′ξ(ξ, δ) = 0, x′δ(ξ, δ) = 1. Then (12),(13) imply
equations

β Y (ξ, δ)
(
T ′δ(ξ, δ) M

′
ξ(ξ, δ)− T ′ξ(ξ, δ) M ′

δ(ξ, δ)
)
U ′ξ(ξ, δ) +

+T1(ξ, δ)
(
T ′δ(ξ, δ) U

′
ξ(ξ, δ)− T ′ξ(ξ, δ) U ′δ(ξ, δ)

)
U ′ξ(ξ, δ) +

+β T (ξ, δ)
(
M ′

δ(ξ, δ) U
′
ξ(ξ, δ)−M ′

ξ(ξ, δ) U
′
δ(ξ, δ)

)
Y ′ξ (ξ, δ) = 0, (37)

(β Y (ξ, δ)
(
T ′δ(ξ, δ) M

′
ξ(ξ, δ)− T ′ξ(ξ, δ) M ′

δ(ξ, δ)
)
U ′δ(ξ, δ) +

+T1(ξ, δ)
(
T ′δ(ξ, δ) U

′
ξ(ξ, δ)− T ′ξ(ξ, δ) U ′δ(ξ, δ)

)
U ′δ(ξ, δ) +

+β T (ξ, δ)
(
M ′

δ(ξ, δ) U
′
ξ(ξ, δ)−M ′

ξ(ξ, δ) U
′
δ(ξ, δ)

)
Y ′δ (ξ, δ))/Ψ = 1,(38)

The expression for the function T (ξ, δ) follows from (17). Using (37),(38),
after the change of variables (37),(38) we get relation (35). Taking into account
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(37)and(38), after the change of variables (33)-(35), using (36), we obtain rela-
tions connecting the derivatives τ ′δ(η, δ), τ

′
η(η, δ). Then we make some simplifi-

cations. Let’s express the third derivative ∂3G(η,δ)
∂η3 by using (36) and eliminating

the third derivative from the relation between first derivatives τ ′δ(η, δ), τ
′
η(η, δ).

In the present case, besides the solvability condition (25) in variables η, δ,

the condition ∂2τ(η,δ)
∂η ∂δ = ∂2τ(η,δ)

∂δ ∂η must hold. Here, after the change of variables
(33)– (35) we again get equation (36). This means that the exact solution
(33)–(36) does exist.

From the equation x′δ = 1, which has the form (38), with the help of (33)–
(35), we again obtain equation (36). Theorem 4 is proved.

Note that, when proving Theorem 4, we trice obtain the same equation (36).
This does not occur in the case of the Korteweg–de Vries–Burgers equation with
dissipation.

8. A new class of exact solutions to the Harry Dym equation.

In analogy with Teorems 1–4, we for the first time apply the UCCV method
to the Harry Dym equation.

∂Z(x, t)

∂t
+ Zα∂

3Z

∂x3
= 0. (39)

Let’s make the change of variables (2)–(7). Equation (8) follows from (39)
and has the form

∂M

∂ξ

∂t

∂δ
− ∂M

∂δ

∂t

∂ξ
= −T (ξ, δ) det J U−α. (40)

Thus we obtain the system (5), (6), (40), (10). Theorems analogous to
Theorems 1–4 are true.

Theorem 5.

Let the system of the four equations (5), (6), (40), (10) with respect to the
derivatives (11) be given. Then the SFLAE (5), (6), (40), (10) has a unique
solution

∂x

∂ξ
= ((Y (ξ, δ)

(
M ′

δ(ξ, δ) T
′
ξ(ξ, δ)−M ′

ξ(ξ, δ) T
′
δ(ξ, δ)

)
U ′ξ(ξ, δ) +

+T (ξ, δ)
(
U ′δ(ξ, δ) M

′
ξ(ξ, δ)− U ′ξ(ξ, δ) M ′

δ(ξ, δ)
)
Uα + T (ξ, δ) U ′ξ(ξ, δ)×

×
(
U ′δ(ξ, δ) T

′
ξ(ξ, δ)− U ′ξ(ξ, δ) T ′δ(ξ, δ)

)
)/Ψ1, (41)

Electronic Journal. http://www.math.spbu.ru/diffjournal 208



Differential Equations and Control Processes, N 4, 2017

∂x

∂δ
= (T (ξ, δ) U ′δ(ξ, δ)

(
T ′δ(ξ, δ) U

′
ξ(ξ, δ)− T ′ξ(ξ, δ) U ′δ(ξ, δ)

)
+

+Uα (Y (ξ, δ)
(
T ′δ(ξ, δ) M

′
ξ(ξ, δ)− T ′ξ(ξ, δ) M ′

δ(ξ, δ)
)
U ′δ(ξ, δ) +

+T (ξ, δ)
(
M
′
δ(ξ, δ) U

′
ξ(ξ, δ)−M ′

ξ(ξ, δ) U
′
δ(ξ, δ)

)
Y ′δ (ξ, δ))/Ψ1, (42)

∂t

∂ξ
=
(
Y (ξ, δ) M

′
ξ(ξ, δ) U

α + T (ξ, δ) U ′ξ(ξ, δ)
)
×

×
(
Y ′δ (ξ, δ) U

′
ξ(ξ, δ)− Y ′ξ (ξ, δ) U ′δ(ξ, δ)

)
/Ψ1, (43)

∂t

∂δ
= (Y (ξ, δ) M ′

δ(ξ, δ) U
α + T (ξ, δ) U ′δ(ξ, δ))×

×
(
Y ′ξ (ξ, δ) U

′
δ(ξ, δ)− Y ′δ (ξ, δ) U ′ξ(ξ, δ)

)
/Ψ1,

Ψ1 = (Y (Y
(
M ′

δ(ξ, δ) T
′
ξ(ξ, δ)−M ′

ξ(ξ, δ) T
′
δ(ξ, δ)

)
+

+T
(
Y ′δ (ξ, δ) M

′
ξ(ξ, δ)− Y ′ξ (ξ, δ) M ′

δ(ξ, δ)
)
) Uα +

+T (Y
(
U ′δ(ξ, δ) T

′
ξ(ξ, δ)− U ′ξ(ξ, δ) T ′δ(ξ, δ)

)
+

+T
(
Y ′δ (ξ, δ) U

′
ξ(ξ, δ)− Y ′ξ (ξ, δ) U ′δ(ξ, δ)

)
)). (44)

Analogously to (17), the function T (ξ, δ) can be found from (7). Theorem
5 is analogous to Theorem 1 and can be proved in a complete analogy with it.

Theorem 6.

Let the system (5)–(7), (10), (40) be given. Then, after the change of
variables, the equation for the function of the first derivative Y (ξ, δ) in new
variables can be separated from the other equations and depends only on the
function U(ξ, δ) and its derivatives:

∂

∂δ

(
U(ξ, δ)α

(
∂

∂δ
(Y Y ′δ) /U

′
δ

)
/U ′δ

)
= (Y ′δU

′
ξ − Y ′ξU ′δ)/Y 2. (45)

The change of variables for the function Y (ξ, δ) has the form

Y (ξ, δ) =
√
G(η, ξ)

∣∣∣
η=U(ξ,δ)

, η = U(ξ, δ), t(ξ, δ) = ξ. (46)

Then there exists an exact solution of the Harry Dym equation (39) de-
scribed by the formulas

M(ξ, δ) = G′η(η, ξ)/2
∣∣∣
η=U(ξ,δ)

, T (ξ, δ) = −ηα
√
G(η, ξ)G′′ηη(η, ξ)/2

∣∣∣
η=U(ξ,δ)

,

x(ξ, δ) = X(η, ξ)
∣∣∣
η=U(ξ,δ)

,
∂ X(η, ξ)

∂ξ
= ηαG′′ηη/2,

∂X(η, ξ)

∂η
= 1/

√
G(η, ξ),

det J = −U ′δ(ξ, δ)/G(η, ξ)1/2
∣∣∣
η=U(ξ,δ)

, (47)
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after the change of variables (46) with a smooth function Y (ξ, δ) determined
by the equations

G(η, ξ)−3/2∂G(η, ξ)

∂ξ
+

∂

∂η

(
ηα
∂2G(η, ξ)

∂η2

)
= 0. (48)

Here U(ξ, δ) is an arbitrary trice continuously differentiable function.

Proof. The proof of Theorem 6 is analogous to that of Theorem 3. Consider
a fixed point t(ξ, δ) = ξ, t′δ = 0 in (44). Then from (40) we get relations

M ′
δ(ξ, δ) = −U ′δ(ξ, δ)TU−α/Y, t(ξ, δ) = ξ, M(ξ, δ) = Y ′δY (ξ, δ)/U ′δ(ξ, δ). (49)

Equating the derivatives M ′
δ ≡M ′

δ from (49), we get

T (ξ, δ) = −UαY

(
∂

∂δ
(Y Y ′δ/U

′
δ)

)
/U ′δ. (50)

Using equation (43) t′ξ = 1, we obtain

∂

∂δ
(T (ξ, δ)/Y (ξ, δ)) +

(
Y ′δU

′
ξ − Y ′ξU ′δ

)
/Y 2 = 0. (51)

Eliminating the function T from (50) and (51), one obtains (45) and (51).
The solvability conditions (25) again imply equations (45) and (48). Put
x(ξ, δ) = X(U(ξ, δ), ξ). Then we get relations (47) for derivatives. From equa-

tions (47) one can also obtain the solvability condition ∂2X(η,ξ)
∂η∂ξ = ∂2X(η,ξ)

∂ξ∂η that
must hold. This again imply equations (45), (48). Theorem 6 is proved.

Note that equation (45), (48) are new in the theory of the HD equation and
that they trice appear in the proof of Theorem 6. This is not so in the case of
the Harry Dym–Burgers equation with dissipation.

7. A second class of exact solutions to the Harry Dym equation.

This class is more complicated than a first one.

Theorem 7.

Let the system (5), (6), (40), (10) be given. Then an exact solution of the
HD equation has the form

Y (ξ, δ) =
√
G(η, δ)

∣∣∣
η=U(ξ,δ)

, η = U(ξ, δ), x(ξ, δ) = δ, (52)

M(ξ, δ)
def
= M0(U(ξ, δ), δ)

∣∣∣
U(ξ,δ)=η

,

M0(η, δ) =
(
G′δ(η, δ)/

√
G(η, δ) +G′η(η, δ)

)
/2,

t(ξ, δ) = τ(U(ξ, δ), δ). (53)
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The function T (ξ, δ)

is determined from (7): T (ξ, δ) = T0(U(ξ, δ), δ)
∣∣∣
U(ξ,δ)=η

. Then T0(η, δ) =

= (1/G′δ(η, δ))
(
ηα
√
G(η, δ)(M ′

0δ(η, δ)(−2M0+G′η(η, δ))−G′δ(η, δ)M ′
0η(η, δ))

)
=

= ηn(G′δ)
2/(4

√
G(η, δ)

3−ηαG′′δδ/(2
√
G)+ηαG′δG

′
η/(4 G)−ηαG′′δη−ηα

√
GG′′ηη/2.

Then,in
new variables, the equation for the function of the first derivative Y (ξ, δ) =

=
√
G(η, δ)

∣∣∣
U(ξ,δ)=η

can be separated from the other equations and depends

only on the function U(ξ, δ) and its derivatives:

∂3G(η, δ)

∂η3
+ 3

∂3G(η, δ)

∂η∂δ2
/G+ 3

∂3G(η, δ)

∂η2∂δ
/
√
G(η, δ) + αG′′ηη/η +

+
(

2α/(η
√
G)− 3G′δ/(2G

2)− 3G′η/(2
√
G3)
) ∂2G(η, δ)

∂η∂δ
+

+3
∂G(η, δ)

∂δ

(
∂G(η, δ)

∂η

)2

/(4
√
G5) +

∂3G(η, δ)

∂δ3
/
√
G3 − α(G′δ)

2/(2 η G2) +

+
(
−αG′δ/(2η

√
G3) + 3(G′δ)

2/(2G3)− 3G′′δδ/(2G
2)
) ∂G(η, δ)

∂η
+

+
(
α/(ηG)− 3G′δ/(2G

5/2)
)
G′′δδ + 3(G′δ)

3/(4
√
G7) = 0. (54)

The derivatives of the function τ(η, δ) have the form

τ ′δ(η, δ) = 4η−αG3/2(η, δ)/Ψ3, τ
′
η(η, δ) = −4η−α

√
G2(η, δ)/Ψ3,

Ψ3 = (G′δ)
2 +
√
GG′δG

′
η − 2G

(
G′′δδ + 2

√
GG′′δη +GG′′ηη

)
. (55)

Here U(ξ, δ) is an arbitrary trice continuously differentiable function.

Proof. The proof is analogous to that of Theorem 4.

Put x(ξ, δ) = δ, x′ξ(ξ, δ) = 0, x′δ(ξ, δ) = 1. Then (41) and (42) imply two
equations. The expression for the function T (ξ, δ) follows from (7) analogously
to (37), (38). Using the changes of variables (52),(53) we get the relation
T0(η, δ) and then (53), as well as equation (54). We calculate the first and
the second derivatives of these functions, which will be later used to simplify
the expressions obtained. Using the changes of variables (52), (53), we get
relations between the derivatives τ ′δ(η, δ), τ

′
η(η, δ) in (55). τ ′δ(η, δ), τ

′
η(η, δ). The

solvability conditions (25) in variables η, δ also must hold: ∂2τ(η,δ)
∂η∂δ = ∂2τ(η,δ)

∂δ∂η .
Thus, we once more obtain equation (54). Theorem 7 is proved.

Electronic Journal. http://www.math.spbu.ru/diffjournal 211



Differential Equations and Control Processes, N 4, 2017

Remark 3. Theorems 4, 5, 7, 8 deal only with one branch of the so-
lution, with the exception of the example, where it was necessary to de-
scribe the both branches. The formulas for a negative branch of the solution
Y (ξ, δ) = −

√
G(η, ξ) are deduced analogously.
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