ISSN 1817-2172, рег. Эл. № ФС77-39410, ВАК

Differential Equations and Control Processes
(Differencialnie Uravnenia i Protsesy Upravlenia)

Visualization of Four Limit Cycles of Two-dimensional Quadratic Systems in the Parameter Space

Author(s):

G. A. Leonov

Professor
Saint-Petersburg State University,
The Faculty of Mathematics and Mechanics
Universitetsky prospekt, 28,
198504, Peterhof, St. Petersburg, Russia

leonov@math.spbu.ru

Irina G. Burova

Dr. of Science
Mathematics and Mechanics Faculty,
St. Petersburg State University
Universitetsky prospekt, 28,
198504, Peterhof, St. Petersburg, Russia.

burovaig@mail.ru

Konstantin D. Alexandrov

Mathematics and Mechanics Faculty,
St. Petersburg State University
Universitetsky prospekt, 28,
198504, Peterhof, St. Petersburg, Russia.

Konstantin.239.Alexandrov@gmail.com

Abstract:

This work is devoted to the visualization of a domain which contains four limit cycles for quadratic dynamic systems of differential equations of the first order with real coefficients. Visualization of the domain is made in three-dimensional space of the coefficients which correspond to nonlinear part of the quadratic system. Theoretical and practical aspects of the numerical solutions of the Cauchy problem for unstable systems are discussed.

References:

  1. Alexandrov P. S. Problemy Hilberta [in Russian]. Nauka, Moscow, 1969. 240 p
  2. Andronov A. A., Leontovich E. A., Gordon I. I., Maier A. G. Kachestvennaya teoriya dinamicheskih system vtorogo poryadka [in Russian]. Nauka, Moscow, 1966. 568 p
  3. Andronov A. A., Witt E. A., Khaikin S. E. Theory of Oscillators. Pergamon Press, Oxford, 1966. 916 p
  4. Arnold V. I. Experimentalnaya Matematica [in Russian]. Fazis, Moscow, 2005. 64 p
  5. Bautin N. N. O chisle predelnih cyclov, poyavlyauschihsya pri izmenenii kofficientov iz sostoyaniya ravnovesia tipa focusa ili centra [in Russian]. Matematicheskii Sbornik (N. S. ) V. 30(72). N. 1, 1952, pp. 181–196
  6. Bakhvalov N. S. Chislennye metody [in Russian]. Nauka, Moscow, 1975. 632 p
  7. Berezin I. S., Jidkov N. P. Chislennye metody, vol. 2. [in Russian]. Nauka, Moscow, 1962. 640 p
  8. Cherkas L. A. , Zhilevich L. I. Some indications of the lack of uniqueness of limit cycles [in Russian]. Differencialnie Uravneniya V. 6. N. 3, 1970, pp. 891–897
  9. Fedorenko R. P. Vvedenie v vychislitelnuy fiziku [in Russian]. MFTI, Moscow, 1994. 528 p
  10. Hairer E., Wanner G. Solving Ordinary Differential Equations II (Stiff and Differential–Algebraic Problems). Springer-Verlag, Berlin, 1991. 614 p
  11. Hairer E., Norsett S., Wanner G. Solving Ordinary Differential Equations I (Nonstiff Problems). Springer-Veriag, Berlin, Heidelberg, 1987. 528 p
  12. Hall G., Watt G. Modern Numerical Methods for Ordinary Differential Equations. Clarendon Press, Oxford, 1976. 336 p
  13. Kholodov A. S., Lobanov A. I., Evdokimov A. V. Raznostnie schemy dlya resheniya jestkih obiknovennyh differencialnih uravneniy v prostranstve neopredelennih koefficientov [in Russian]. MFTI, Moscow, 1985. 49 p
  14. Kuznetsov N. V., Kuznetsova O. A., Leonov G. A. Visualization of four normal size limit cycles in two-dimensional polynomial quadratic system. Differential equations and dynamical systems. V. 21. Nos. 1–2, 2013, pp. 29–34
  15. Kuznetsov N. V. , Leonov G. A. Lyapunov quantities, limit cycles and strange behavior of trajectories in two-dimensional quadratic systems. Journal of Vibroengineering. V. 10. N. 4, 2008, pp. 460–467
  16. Landis E. M., Petrovskii I. G. About number of limit cycles of the equation dy/dx=P(x, y)/Q(x, y), where Q and Q are polynomials [in Russian]. Matematicheskii Sbornik. V. 43(85). 1957, pp. 149–168
  17. Llibre J., Artes J. C. Quadratic vector fields with a weak focus of third order. Publicacions Matematiques. V. 41. N. 1, 1997, pp. 7–39
  18. Llibre J., Bernat J. Counterexample to Kalman and Markus–Yamabe conjectures in dimension larger than 3. Dynamics of Continuous, Discrete & Impulsive Systems. V. 2. N. 3, 1996, pp. 377–379
  19. Leonov G. A. Four limit cycles in quadratic two-dimensional systems with a perturbed first-order weak focus. Doklady Mathematics. V. 81. N. 2, 2010, pp. 248–250
  20. Leonov G. A. Limit cycles in quadratic systems with a first-order weak focus. Doklady Mathematics. V. 82. N. 3, 2010, pp. 923–926
  21. Leonov G. A. Synthesis of two-dimensional quadratic systems with a limit cycle satisfying prescribed initial conditions. Doklady Mathematics. V. 81. N. 2, 2010, pp. 236–237
  22. Leonov G. A. Two-dimensional quadratic systems as a lienard equation. Differential Equations and Dynamical Systems. V. 5. 1997, pp. 289–297
  23. Leonov G. A. Limit cycles of the Lienard equation with discontinuous coefficients. Doklady Physics. V. 54. N. 5, 2009, pp. 238–241
  24. Leonov G. A., Sundkvist E. Localization of the Lienard equation’s attractors and cycles. Differential Equations and Dynamical Systems. V. 13. Nos. 3–4, July & October 2005, pp. 275–294
  25. Leonov G. A. Existence criteria for cycles in two-dimensional quadratic systems. Vestnik St. Petersburg University. Mathematics. V. 40. N. 3, 2007, pp. 172–181
  26. Leonov G. A. A criterion for the existence of four limit cycles in quadratic systems. Journal of Applied Mathematics and Mechanics. V. 74. N. 2, 2010, pp. 135–143
  27. Leonov G. A. Efficient methods in the search for periodic oscillations in dynamical systems. Journal of Applied Mathematics and Mechanics. V. 74. N. 1, 2010, pp. 24–50
  28. Leonov G. A., Kuznetsov N. V. Computation of the first lyapunov quantity for the second-order dynamical system. IFAC Proceedings Volumes (IFAC-PapersOnline). V. 3. N. 1, 2007, pp. 87–89
  29. Leonov G. A., Kuznetsov N. V. Hidden attractors in dynamical systems. From hidden oscillations in Hilbert-Kolmogorov, Aizerman, Kalman problems to hidden chaotic attractors in Chua circuits. International Journal of Bifurcation and Chaos. V. 23. N. 1, 2013, art. no. 1330002
  30. Leonov G. A., Kuznetsov N. V., Kudryashova E. V. A direct method for calculating lyapunov quantities of two-dimensional dynamical systems. Proceedings of the Steklov Institute of Mathematics. V. 272. Suppl. 1, 2011, pp. 119–127
  31. Leonov G. A., Kuznetsov N. V., Kudryashova E. V. Cycles of two-dimensional systems. calculations, proofs, experiments. Vestnik St. Petersburg University. Mathematics. V. 41. N. 3, 2008, pp. 216–250
  32. Leonov G. A., Kuznetsova O. A. Lyapunov quantities and limit cycles of two-dimensional dynamical systems: Analytical methods and symbolic computation. Regular and Chaotic Dynamics. V. 15. N. 2, 2010, pp. 354-377
  33. Leonov G. A., Kuznetsov N. V. Limit cycles of quadratic systems with a perturbed weak focus of order 3 and a saddle equilibrium at infinity. Doklady Mathematics. V. 82. N. 2, 2010, pp. 693–696
  34. Leonov G. A., Kuznetsov N. V., Seledzhi S. M. Hidden oscillations in dynamical systems. Recent Researches in System Science. WSEAS Press, 2011, pp. 292–297
  35. Leonov G. A., Kuznetsov N. V., Kuznetsova O. A., Seledzhi S. M., Vagaitsev V. I. Hidden oscillations in dynamical systems. Transaction on Systems and Control. V. 6. N. 2, 2011, pp. 54–67
  36. Li C. Non-existence of limit cycle around a weak focus of order three for any quadratic system. Chinese Annals of Mathematics. V. 7B. N. 2, 1986, pp. 174–190
  37. Lynch S. Dynamical systems with applications using maple. Birkhauser, Springer, Boston, 2010. 474 p
  38. Lozinskiy S. M. Ocenka pogreshnosti chislennogo integrirovaniya obiknovennih differencialnih uravneniy [in Russian]. Izvestia vuzov. Mathematics. V. 5. N. 6, 1958, pp. 52–90
  39. Mysovskikh I. P. Lekcii po metodam vychisleniy. SPb, 1998. 472 p
  40. Ortega J. and Polle W. An Introduction to Numerical Methods for Differential Equations. Pitman Pub., 1981. 329 p
  41. Petrovskii I. G., Landis E. M. About number of limit cycles of the equation dy/dx=P(x, y)/Q(x, y), where P and Q are polynomials of 2nd degree [in Russian]. Matematicheskii Sbornik. V. 37(79). N. 2, 1955, pp. 209–250
  42. Petrovskii I. G., Landis E. M. Corrections to the articles "About number of limit cycles of the equation dy/dx=P(x, y)/Q(x, y), where P and Q are polynomials of 2nd degree" and "about number of limit cycles of the equation dy/dx=P(x, y)/Q(x, y), where P and Q are polynomials" [in Russian]. Matematicheskii Sbornik. V. 48(90). N. 2, 1959, pp. 253–255
  43. Shi S. L. A concrete example of the existence of four limit cycles for plane quadratic systems. Scientia Sinica. V. 23. N. 2, 1980, pp. 153-158
  44. Skvortsov L. M. Tochnost metodov Runge-Kutta pri reshenii jeskih zadach [in Russian]. Computational Mathematics and Mathematical Physics. V. 43. N. 9, 2003, pp. 1374–1384
  45. Ye Yan-Qian. Theory of Limit cycles. Translations of Math. Monographs, Amer. Math. Soc., Providence. V. 66, 1986. 436 p

Full text (pdf)