ISSN 1817-2172, рег. Эл. № ФС77-39410, ВАК

Differential Equations and Control Processes
(Differencialnie Uravnenia i Protsesy Upravlenia)

Stability in the Whole and Bifurcations of Invariant Measures in Discrete-time Cocycles Generated by a Cardiac Conduction System

Author(s):

Anastasia A. Maltseva

Saint-Petersburg State University,
The Faculty of Mathematics and Mechanics
Universitetsky prospekt, 28,
198504, Peterhof, St. Petersburg, Russia
Postgraduate student

maltseva.anastacia@gmail.com

Volker Reitmann

70 corp.3, Botanicheskaya st,
Peterhof, Saint-Petersburg,
198516, Russia
Saint-Petersburg State University
professor of the Department of Applied Cybernetics
Prof. Dr.

vreitmann@aol.com

Abstract:

In this paper parameter-dependent cocycles generated by nonautonomous difference equations are considered. As an example of equations of this type a discrete-time cardiac conduction model is investigated. For this system with a control variable a cocycle is constructed. The theorem about global stability of discrete-time cocycles is stated. The existence of an invariant measure for such a cocycle is investigated using some elements of the Perron-Frobenius operator theory, and bifurcations of parameter-dependent measures are discussed.

References:

  1. Arnold, L. Random Dynamical Systems. Berlin: Springer, Springer Monographs in Mathematics, 1998. 586 p
  2. Baladi, V., Viana, M. Strong stochastic stability and rate of mixing for unimodal maps. Ann. Sci. Èc. Norm. Supèr, 1996; vol. 29, no. 4: 483-517
  3. Bandtlow, F., Antoniou, I. Suchanecki, Z. Resonances of dynamical systems and Fredholm-Riesz operators on rigged Hilbert spaces. Comput. Math. Appl., 1997; vol. 34, no. 2-4: 95-102
  4. Crauel, H., Flandoli, F. Hausdorff dimension of invariant sets for random dynamical systems. J. Dyn. Differ. Equations, 1998; vol. 10, no. 3: 449-474
  5. Crauel, H. Lyapunov exponents and invariant measures of stochastic systems on manifolds. In: Arnold, L, Wihstutz, V. (eds. ): Lyapunov Exponents. Berlin: Springer, 1986: 271-291
  6. Glass, L., Guevera, M. R., Shrier, A. Universal bifurcations and the classification of cardiac arrhythmias. Ann. N. Y. Acad. Sci., 1987; no. 504: 168-178
  7. Kloeden, P. E., Schmalfuss, B. Nonautonomous systems, cocycle attractors and variable time-step discretization. Numer. Algorithms, 1997; vol. 14, no. 1-3: 141-152
  8. Maltseva, A., Reitmann, V. Bifurcations of invariant measures in discrete-time parameter dependent cocycles. Proc. Equadiff 2013, Prag, p. 288
  9. Reitmann, V., Dinamicheskiye sistemy, attraktory i otsenki ikh razmernosti [Dynamical Systems, Attractors and Estimates of their Dimension]. St. Petersburg, St. Univ. Publ., 2013. 222 p
  10. Reitmann V., Slepukhin A. [On upper estimates for the Hausdorff dimension of negatively invariant sets of local cocycles. ] Vestnik Sankt-Peterburgskogo Universiteta Publ. Seriya 1. Matematika, Mekhanika, Astronomiya, 2011; no. 4: 61-70. (In Russ. )
  11. Reitmann V. Über Instabilität im ganzen von nichtlinearen diskreten Systemen. ZAMM, 1979; vol. 59: 652 - 655
  12. Reitmann V. Über die Beschränktheit der Lösungen diskreter nichtstationärer Phasensysteme. ZAA, 1982; vol. 1, no. 1: 83 - 93
  13. Sun, J., Amellal, F., Glass L., and Billete, J. Alternans and period-doubling bifurcations in atrioventricular nodal conduction. J. theor. Biol., 1995; vol. 173: 79-91
  14. Yakubovich, V. A. [A frequency theorem in control theory. ] Sibirskii Matematicheskii Zhurnal Publ., March-April, 1973; vol. 14, no. 2: 384-420. (In Russ. )

Full text (pdf)