ISSN 1817-2172, рег. Эл. № ФС77-39410, ВАК

Differential Equations and Control Processes
(Differencialnie Uravnenia i Protsesy Upravlenia)

Periodic Systems of Differential Equations with Infinite Set of Stable Periodic Solutions

Author(s):

Ekaterina Viktorovna Vasileva

Assoc.Prof.
St.Petersburg State University,
Universitetski pr. 28,
St Petersburg, Russia

ekvas1962@mail.ru

Abstract:

Periodic systems of differential equations with a hyperbolic periodic solution and non-transversal homoclinic solution are considered. In the works of S. Newhouse, L. P. Shil’nikov, B. F. Ivanov it has been shown that under certain conditions on the type of contact of the stable and unstable manifolds, the neighborhood of the homoclinic solution may contain a countable set of stable periodic solutions, but at least one of their characteristic exponents tends to zero when period increasing. The goal of this work is to prove that under certain conditions imposed on the character of tangency between the stable and unstable manifolds, the neighborhood of the homoclinic solution may contain a countable set of stable periodic solutions whose characteristic exponents are negative and bounded away from zero. References 36 w.

References:

  1. Newhouse. Sh. Diffeomorphisms with infinitely many sinks . Topology, 1974; (12): 9-18
  2. Newhouse Sh., Palis J., Takens F. Stable arcs of diffeomorphisms. Bull. of theAmerican Math. Society, 1976; 82 (3): 499-502
  3. Newhouse Sh. On Homoclinic Point. Proc. of the American Math. Society, 1976; 60(10): 221-224
  4. Birkhoff G. D. Dynamical Systems. Amer. Math. Soc. Colloquium Publications, 1927
  5. Broer H. W. Dumortier F., van Streen S. J., Takens F. Structures in Dynamics. Finite dimensional deterministic studies. Elsevier Science Publishers B. V., 1991
  6. Vasil’eva E. V. [Stability of the trajectories, lying in a neighborhood of homoclinic curve]. Tezisy Dokladov mezdunarodnoi konferenzii “Chetvertie Okunevskie Chteniya”, Sympozium “Puancare I problemy nelineinoi mehaniki” [Theses ”The Fourth Okunev’s Reedings”, Symposium “Poincare and problems of nonlinear mechanics”], St. Petersburg, 2004, p. 137. (In Russian)
  7. Vasil’eva E. V. [Stability of the trajectories in a neighborhood of homoclinic curve]. Tezisy Dokladov mezdunarodnoi konferenzii “Differencial’nie uravneniya I smejnie voprosi” [Int. Conf. Book of Abstracts, “ Differential Equations and Related Topics”], Moscow, 2004, p. 233. (In Russian)
  8. Vasil’eva E. V. On the Stability of Periodic Points Lying in a Neighborhood of a Homoclinic Point, Doklady Mathematics, 2005; 71(2):29-30
  9. Vasil'eva E. V. Stable periodic points of two-dimensional diffeomorphisms. Vestnik St. Petersburg University, Mathematics, 2007, 40(2): 107-113
  10. Vasil'eva E. V. [Stable Periodic Points of Smooth Diffeomorphisms with Homoclinic Point]. Tezisy Dokladov mezdunarodnogo Kongressa “Nelineinii Dinamicheski Analiz-2007” [Book of Abstracts, Int. Cong. “Nonlinear Dynamical Analysis-2007”], St. Petersburg, 2007, p. 363. (In Russian)
  11. Vasil'eva E. V. [Stable Periodic Points of N-dimensional Diffeomorphisms] Tezisy Dokladov mezdunarodnoi konferenzii “Differencial’nie uravneniya I topologiya” [Int. Conf. Abstracts, “Differential Equations and Topology”] Moscow, 2008, p. 110. (In Russian)
  12. Vasil'eva E. V. [Smooth Diffeomorphisms with Infinite Set of Stable Periodic Points]. Differencial'nie uravnenia i processy upravlenia, 2010, no. 4 (In Russ. ) Available at: http://www. math. spbu. ru/diffjournal/pdf/anosov_zuzoma. pdfhttp://www. math. spbu. ru/diffjournal/pdf/anosov_zuzoma. pdf
  13. Vasil'eva E. V. Smooth Diffeomorphisms with Countable Set of Stable Periodic Points. Doklady Mathematics, 2011, 84(1): 441-443
  14. Vasil'eva E. V. Multidimensional Diffeomorphisms with Stable Periodic Points. Doklady Mathematics, 2011, 84(3):808-810
  15. Vasil'eva E. V. Diffeomorphisms of Multidimensional Space with Infinite Set of Stable Periodic Points. Vestnik St. Petersburg University, Mathematics, 2012, 45(3):115-124
  16. Vasil'eva E. V. Diffeomorphisms of the Plane with Stable Periodic Points, Differential Equations, 2012, 48(3): 1-9
  17. Vasil'eva E. V. Smooth Diffeomorphisms of the Plane with Stable Periodic Points in a Neighborhood of a Homoclinic Point. Differential Equations, 2012, 48(10): 1-6
  18. Vasil'eva E. V. Stable Periodic Points of Infinitely Smooth Diffeomorphisms. Doklady Mathematics, 2013, 87 (1):1-2
  19. Vasilieva E. V. Smooth Diffeomorphisms of Three-dimensional Space with Stable Periodic Points. Vestnik St. Petersburg University, Mathematics, 2013, 46(4): 25-29
  20. Vasil'eva E. V. Stable Periodic Points for Smooth Diffeomorphisms of Multidimensional Space . Vestnik Udmurt. University, Mathematics, Mechanics, Computer Sciences, 2013, (4):27-35
  21. Gavrilov N. K., Shil’nikov L. P. On three-dimensional dynamical systems close to systems with a structurally unstable homoclinic curve 1, Math. USSR Sbornik, 1972, 88(44):475-492
  22. Gavrilov N. K., Shil’nikov L. P. On three-dimensional dynamical systems close to systems with a structurally unstable homoclinic curve 2, Math. USSR Sbornik, 1973, 90(1): 139-156
  23. Gonchenko V. S., Shil’nikov L. P. On Bifurcations of systems with homoclinic loops to a saddle-focus with saddle index >. Doklady Mathematics, 2007, 76 (3):929-933
  24. Gonchenko S. V., Shil’nikov L. P. Dynamical systems with structurally unstable homoclinic curve. Dokl. Akad. Nauk SSSR , 1986, 286(5):1049-1053 (In Russian)
  25. Gonchenko S. V., Turaev D. V., Shil’nikov L. P. Dynamical phenomena in multidimensional systems with a structurally unstable homoclinic Poincare’ curve. Doklady Mathematics. 1993, 17(3): 410-415
  26. Gonchenko S. V., Shil’nikov L. P. Hyperboli properties of four-dimensional symplectic mappings with a structurally unstable trajectory homoclinic to a fixed point of the saddle focus type. Differential Equations, 2000, 36(11): 1610-1620
  27. Ivanov B. F. On Existence of Closed Trajectories in the neighborhood of a homoclinic curve. Differ. Uravn., 1979, 15(3): 548-550 (In Russian)
  28. Ivanov B. F. Stability of the Trajectories that do not leave the neighborhood of a homoclinic curve. Differ. Uravn., 1979, 15 (8): 1411-1419. (in Russian)
  29. Neimark Ju. I. Motions Close to Doubly-asymptotic motion. Soviet Math. Dokl., 1967, (8):228-231
  30. Nitecki Z. Differential Dynamics. Cambridge, MA: MIT Press, 1971
  31. Pliss V. A. Integralnie mnogestva periodicheskich sistem differencial'nih uravnenii [Integral sets of periodic systems of differential equations]. Moscow, Nauka Publ., 1977. 304 p
  32. Poincare A. Les methods nouvelles de la mecanique celeste. V. 1-3, Gauthier-Villars, Paris, 1899
  33. Smale S. Diffeomorphisms with many periodic points. In: Differential and Combinatorial Topology (ed. S . Cairus) . Princeton, NJ: Princeton University Press, 1965. pp. 63-80
  34. Sten'kin O. V. Sil’nikov L. P. Homoclinic Ω -explotionand domains of hyherbolity. Sbornic Mathematics, 1998, 189 (4):603-622
  35. Hartman Ph. Ordinary Differential Equations. Basel, Boston: Birkhauser, 1982
  36. Shil’nikov L. P. On a Poincare-Birkhoff problem. Math. USSR Sbornic, 1967, (3):415-443

Full text (pdf)