Periodic Systems of Differential Equations with Infinite Set of Stable Periodic Solutions
Author(s):
Ekaterina Viktorovna Vasileva
Assoc.Prof.
St.Petersburg State University,
Universitetski pr. 28,
St Petersburg, Russia
ekvas1962@mail.ru
Abstract:
Periodic systems of differential equations with a hyperbolic periodic
solution and non-transversal homoclinic solution are considered.
In the works of S. Newhouse, L. P. Shil’nikov, B. F. Ivanov
it has been shown that under certain conditions on the type of contact of
the stable and unstable manifolds, the neighborhood of the homoclinic solution
may contain a countable set of stable periodic solutions, but at least one of
their characteristic exponents tends to zero when period increasing.
The goal of this work is to prove that under certain conditions imposed
on the character of tangency between the stable and unstable manifolds,
the neighborhood of the homoclinic solution may contain a countable set of
stable periodic solutions whose characteristic exponents are negative and
bounded away from zero.
References 36 w.
References:
- Newhouse. Sh. Diffeomorphisms with infinitely many sinks . Topology, 1974; (12): 9-18
- Newhouse Sh., Palis J., Takens F. Stable arcs of diffeomorphisms. Bull. of theAmerican Math. Society, 1976; 82 (3): 499-502
- Newhouse Sh. On Homoclinic Point. Proc. of the American Math. Society, 1976; 60(10): 221-224
- Birkhoff G. D. Dynamical Systems. Amer. Math. Soc. Colloquium Publications, 1927
- Broer H. W. Dumortier F., van Streen S. J., Takens F. Structures in Dynamics. Finite dimensional deterministic studies. Elsevier Science Publishers B. V., 1991
- Vasil’eva E. V. [Stability of the trajectories, lying in a neighborhood of homoclinic curve]. Tezisy Dokladov mezdunarodnoi konferenzii “Chetvertie Okunevskie Chteniya”, Sympozium “Puancare I problemy nelineinoi mehaniki” [Theses ”The Fourth Okunev’s Reedings”, Symposium “Poincare and problems of nonlinear mechanics”], St. Petersburg, 2004, p. 137. (In Russian)
- Vasil’eva E. V. [Stability of the trajectories in a neighborhood of homoclinic curve]. Tezisy Dokladov mezdunarodnoi konferenzii “Differencial’nie uravneniya I smejnie voprosi” [Int. Conf. Book of Abstracts, “ Differential Equations and Related Topics”], Moscow, 2004, p. 233. (In Russian)
- Vasil’eva E. V. On the Stability of Periodic Points Lying in a Neighborhood of a Homoclinic Point, Doklady Mathematics, 2005; 71(2):29-30
- Vasil'eva E. V. Stable periodic points of two-dimensional diffeomorphisms. Vestnik St. Petersburg University, Mathematics, 2007, 40(2): 107-113
- Vasil'eva E. V. [Stable Periodic Points of Smooth Diffeomorphisms with Homoclinic Point]. Tezisy Dokladov mezdunarodnogo Kongressa “Nelineinii Dinamicheski Analiz-2007” [Book of Abstracts, Int. Cong. “Nonlinear Dynamical Analysis-2007”], St. Petersburg, 2007, p. 363. (In Russian)
- Vasil'eva E. V. [Stable Periodic Points of N-dimensional Diffeomorphisms] Tezisy Dokladov mezdunarodnoi konferenzii “Differencial’nie uravneniya I topologiya” [Int. Conf. Abstracts, “Differential Equations and Topology”] Moscow, 2008, p. 110. (In Russian)
- Vasil'eva E. V. [Smooth Diffeomorphisms with Infinite Set of Stable Periodic Points]. Differencial'nie uravnenia i processy upravlenia, 2010, no. 4 (In Russ. ) Available at: http://www. math. spbu. ru/diffjournal/pdf/anosov_zuzoma. pdfhttp://www. math. spbu. ru/diffjournal/pdf/anosov_zuzoma. pdf
- Vasil'eva E. V. Smooth Diffeomorphisms with Countable Set of Stable Periodic Points. Doklady Mathematics, 2011, 84(1): 441-443
- Vasil'eva E. V. Multidimensional Diffeomorphisms with Stable Periodic Points. Doklady Mathematics, 2011, 84(3):808-810
- Vasil'eva E. V. Diffeomorphisms of Multidimensional Space with Infinite Set of Stable Periodic Points. Vestnik St. Petersburg University, Mathematics, 2012, 45(3):115-124
- Vasil'eva E. V. Diffeomorphisms of the Plane with Stable Periodic Points, Differential Equations, 2012, 48(3): 1-9
- Vasil'eva E. V. Smooth Diffeomorphisms of the Plane with Stable Periodic Points in a Neighborhood of a Homoclinic Point. Differential Equations, 2012, 48(10): 1-6
- Vasil'eva E. V. Stable Periodic Points of Infinitely Smooth Diffeomorphisms. Doklady Mathematics, 2013, 87 (1):1-2
- Vasilieva E. V. Smooth Diffeomorphisms of Three-dimensional Space with Stable Periodic Points. Vestnik St. Petersburg University, Mathematics, 2013, 46(4): 25-29
- Vasil'eva E. V. Stable Periodic Points for Smooth Diffeomorphisms of Multidimensional Space . Vestnik Udmurt. University, Mathematics, Mechanics, Computer Sciences, 2013, (4):27-35
- Gavrilov N. K., Shil’nikov L. P. On three-dimensional dynamical systems close to systems with a structurally unstable homoclinic curve 1, Math. USSR Sbornik, 1972, 88(44):475-492
- Gavrilov N. K., Shil’nikov L. P. On three-dimensional dynamical systems close to systems with a structurally unstable homoclinic curve 2, Math. USSR Sbornik, 1973, 90(1): 139-156
- Gonchenko V. S., Shil’nikov L. P. On Bifurcations of systems with homoclinic loops to a saddle-focus with saddle index >. Doklady Mathematics, 2007, 76 (3):929-933
- Gonchenko S. V., Shil’nikov L. P. Dynamical systems with structurally unstable homoclinic curve. Dokl. Akad. Nauk SSSR , 1986, 286(5):1049-1053 (In Russian)
- Gonchenko S. V., Turaev D. V., Shil’nikov L. P. Dynamical phenomena in multidimensional systems with a structurally unstable homoclinic Poincare’ curve. Doklady Mathematics. 1993, 17(3): 410-415
- Gonchenko S. V., Shil’nikov L. P. Hyperboli properties of four-dimensional symplectic mappings with a structurally unstable trajectory homoclinic to a fixed point of the saddle focus type. Differential Equations, 2000, 36(11): 1610-1620
- Ivanov B. F. On Existence of Closed Trajectories in the neighborhood of a homoclinic curve. Differ. Uravn., 1979, 15(3): 548-550 (In Russian)
- Ivanov B. F. Stability of the Trajectories that do not leave the neighborhood of a homoclinic curve. Differ. Uravn., 1979, 15 (8): 1411-1419. (in Russian)
- Neimark Ju. I. Motions Close to Doubly-asymptotic motion. Soviet Math. Dokl., 1967, (8):228-231
- Nitecki Z. Differential Dynamics. Cambridge, MA: MIT Press, 1971
- Pliss V. A. Integralnie mnogestva periodicheskich sistem differencial'nih uravnenii [Integral sets of periodic systems of differential equations]. Moscow, Nauka Publ., 1977. 304 p
- Poincare A. Les methods nouvelles de la mecanique celeste. V. 1-3, Gauthier-Villars, Paris, 1899
- Smale S. Diffeomorphisms with many periodic points. In: Differential and Combinatorial Topology (ed. S . Cairus) . Princeton, NJ: Princeton University Press, 1965. pp. 63-80
- Sten'kin O. V. Sil’nikov L. P. Homoclinic Ω -explotionand domains of hyherbolity. Sbornic Mathematics, 1998, 189 (4):603-622
- Hartman Ph. Ordinary Differential Equations. Basel, Boston: Birkhauser, 1982
- Shil’nikov L. P. On a Poincare-Birkhoff problem. Math. USSR Sbornic, 1967, (3):415-443