ISSN 1817-2172, рег. Эл. № ФС77-39410, ВАК

Differential Equations and Control Processes
(Differencialnie Uravnenia i Protsesy Upravlenia)

Controllability Results for General Integrodifferential Evolution Equations in Banach Space

Author(s):

Kumar Kamalendra

Department of Mathematics,
SRMS CET, Bareilly, U.P. – 243001, India

kamlendra.14kumar@gmail.com

Kumar Rakesh

Department of Mathematics,
Hindu College, Moradabad, U.P.-244001, India

rakeshnaini1@gmail.com

Karnataka Manoj

Department of Mathematics,
Hindu College, Moradabad, U.P.-244001, India

karnatak.manoj@gmail.com

Abstract:

The sufficient conditions for controllability of general class of nonlinear evolution integrodifferential equations in Banach space are established. The results are obtained by using the resolvent operator and Schaefer fixed point theorem.

Keywords

References:

  1. R. Atmania and S. Mazouri, Controllability of semilinear integrodifferential equations with nonlocal conditions, EJDE 2005 (2005), 75, pp. 1-9
  2. K. Balachandran, N. Annapoorani and J. K. Kim, Existence of mild solutions of neutral evolution integrodifferential equations, Nonlinear Functional Analysis and Applications, Vol. 16, No. 2 (2011), pp. 141-153
  3. K. Balachandran and M. Chandrasekaran, Existence of solution of a delay differential equation with nonlocal condition, Indian J. Pure Appl. Math., 27 (1996), pp. 443-449
  4. K. Balachandran and R. Ravikumar, Existence of solutions of integrodifferential evolution equations with time varying delays, Applied Mathematics E-Notes, 7 (2007), pp. 1-8
  5. K. Balachandran and R. Sakthivel, Controllability of semilinear functional integrodiffeential systems in Banach spaces, Kybernetika 36 (2000), 465-476
  6. K. Balachandran and R. Sakthivel, Controllability of integrodifferential systems in Banach spaces, Appl. Math. Comput. 118 (2001), pp. 63-71
  7. L. Byszewski and H. Acka, Existence of solutions of a semilinear functional differential evolution nonlocal problem, Nonlinear Analysis, 34 (1) (1998), pp. 65-72
  8. L. Byszewski, Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem, J. Math. Anal. Appl., 162 (1992), pp. 494-505
  9. R. Grimmer, Resolvent operators for integral equations in a Banach space, Trans. Amer. Math. Soc. 273 (1982), pp. 333-349
  10. M. Hazi and M. Bragdi, Controllability of fractional integrodifferential systems via semigroup theory in Banach spaces, Math. J. Okayama Univ. 54 (2012), 133-143
  11. K. Kumar and R. Kumar, Existence of Solutions of Quasilinear Mixed Volterra-Fredholm Integrodifferential Equations with Nonlocal Conditions, Differential Equations and Control Processes, 3 (2013), pp. 77-84
  12. K. Kumar and R. Kumar, Controllability of Sobolev type nonlocal impulsive mixed functional integrodifferential evolution systems, Electronic Journal of Mathematical Analysis and Applications, 3 (1) (2015), pp. 122-132
  13. Y. Lin and J. H. Liu, Semilinear integrodifferential equations with nonlocal Cauchy problem, Nonlinear Analysis; Theory, Methods and Applications, 26 (1996), pp. 1023-1033
  14. J. Y. Park and H. K. Han, Controllability of nonlinear functional integrodifferential systems in Banach spaces, Nihonkai Math. J. 8 (1997), pp. 47-53
  15. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983
  16. R. Sakthivel, Q. H. Choi and S. M. Anthoni, Controllability of nonlinear neutral evolution integrodifferential systems, J. Math. Anal. Appl. 275 (2002), pp. 402-417
  17. R. Sakthivel, Q. H. Choi and S. M. Anthoni, Controllability result for nonlinear evolution integrodifferential systems, Applied Mathematics Letters, 17 (2004), 1015-1023
  18. K. Sathiyanathan and T. Nandha Gopal, Existence results on general integrodifferential evolution equations in Banach space, Applied Mathematics, 4 (2013), pp. 149-154
  19. H. Schaefer, Uber Die Methods der a Priori Schranken, Mathematische Annalem 129 (1955), pp. 415-416

Full text (pdf)