On Absolute Nonshadowability of Transitive Maps
Author(s):
Sergey Tikhomirov
Saint-Petersburg State University 14th lane 29B, Vasilievsky Island,
St. Petersburg, 199178, Russia.
Max Planck Institute for Mathematics in the Science Inselstrasse 22,
04103 Leipzig, Germany.
Doctor of Science
sergey.tikhomirov@gmail.com
Abstract:
We study shadowing property for random infinite pseudotrajectories
of a continuous map f of a compact metric space. For the cases
of transitive maps and transitive attractors we prove a dichotomy:
either f satisfies shadowing property or random pseudotrajectory
is shadowable with probability 0.
Keywords
- attractor
- Markov chain
- shadowing
- transitivity
References:
- Abdenur F. Attractors of generic diffeomorphisms are persistent. Nonlinearity 16 (2003), no. 1, 301-311
- Abdenur F., Diaz L. J. Pseudo-orbit shadowing in the $C^1$ topology. Discrete Contin. Dyn. Syst., 7 (2003), 223-245
- Anosov D. V. On a class of invariant sets of smooth dynamical systems. Proc. 5th Int. Conf. on Nonlin. Oscill. 2 (1970), 39-45
- Bowen R. Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lecture Notes Math., vol. 470, Springer, Berlin, 1975
- Hammel S. M., Yorke J. A., Grebogi C. Do numerical orbits of chaotic dynamical processes represent true orbits. J. of Complexity 3 (1987), 136-145
- Hammel S. M., Yorke J. A., Grebogi C. Numerical orbits of chaotic processes represent true orbits. Bulletin of the American Mathematical Society 19 (1988), 465-469
- Hasselblatt B., Katok A. Introduction to the modern theory of dynamical systems. Encyclopedia of Mathematics and its Applications, 54. Cambridge University Press, Cambridge, 1995
- Hasselblatt B., Katok A. A first course in dynamics. With a panorama of recent developments. Cambridge University Press, New York, 2003
- Leonov G. A. Strange Attractors and Classical Stability Theory. St. Petersburg University Press, 2009
- Palmer K. Shadowing in Dynamical Systems. Theory and Applications. Kluwer, Dordrecht, 2000
- Pilyugin S. Yu. Shadowing in Dynamical Systems. Lecture Notes Math., vol. 1706, Springer, Berlin, 1999
- Pilyugin S. Yu. Spaces of dynamical systems. De Gruyter Studies in Mathematical Physics, 3. De Gruyter, Berlin, 2012
- Pilyugin S. Yu. Theory of pseudo-orbit shadowing in dynamical systems. Diff. Eqs. 47 (2011), 1929-1938
- Pilyugin S. Yu., Rodionova A. A., Sakai K. Orbital and weak shadowing properties. Discrete Contin. Dyn. Syst., 9 (2003), 287-308
- Pilyugin S. Yu., Tikhomirov S. B. Lipschitz Shadowing implies structural stability. Nonlinearity 23 (2010), 2509-2515
- Sakai K. Pseudo orbit tracing property and strong transversality of diffeomorphisms of closed manifolds. Osaka J. Math., 31 (1994), 373-386
- Tikhomirov S. Holder Shadowing on finite intervals. Ergodic Theory Dynam. Systems, 35 (2015), no. 6, 2000-2016
- Tikhomirov S. Shadowing in linear skew products. J. Math. Sci. (N. Y. ), 209 (2015), no. 6, 979-987
- Yuan G., Yorke J. An open set of maps for which every point is absolutely nonshadowable. Proc. Amer. Math. Soc. 128 (2000), 909-918