Existence of Integrable Solutions for a Functional Integral Inclusion
Author(s):
A.M.A. El-Sayed
Faculty of Science
Alexandria University
Alexandria, Egypt
amasayed@alexu.edu.eg
Nesreen F. M. El-Haddad
Faculty of Science
Damanhour University
Behera, Egypt
nesreen_fawzy20@yahoo.com
Abstract:
In this paper we concern with the nonlinear functional integral
inclusion in the real line R. The existence of integrable solutions is studied
under the assumptions that the set-valued function F has summable Caratheodory selection
and measurable selection. We reformulate the functional integral inclusion
according to these selections and study two cases of such problem.
Keywords
- functional integral inclusion
- integrable solution
- measurable selection
- selection of the set-valued function
- Set-valued function
- summable Caratheodory selection
References:
- J. P. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag, (1984)
- M. Benchohra, S. Hamani, S. K. Ntouyas, Boundary value problems for differential equations with fractionl order and nonlocal conditions, Nonlinear Analysis, 71(2009), 2391-2396
- J. Banas, On the superposition operator and integrable solutions of some functional equations, Nonlinear Anal. 12 (1988), 777-784
- J. Banas, Integrable solutions of Hammerstein and Urysohn integral equations, J. Ausfral. Math. Sot. Ser. A 46 (1989), 61-68
- J. Banas, Integrable solutions of Hammerstien and Urysohn integral equations, J. Austral. Math. Soc. (series A) 46 (1989), 61-68
- M. Cichon, A. M. A. El-Sayed and A. H. Hussien, Existence theorems for nonlinear functional integral equations of fractional orders. Commentationes mathematicae XLI (2001)
- B. C. Dhage, A functional integral inclusion involving Carathodories. Electron. J. Qual. Theory Differ. Equ. 2003, Paper No. 14, 18 p., electronic only (2003)
- B. C. Dhage, A functional integral inclusion involving discontinuities. Fixed Point Theory 5, No. 1, (2004), 53? 64
- J. Dugundji and A. Granas, Fixed point theory, Monografie Mathematyczne, PWN, Warsaw, (1982)
- K. Deimling, Nonlinear functional Analysis, Springer-Verlag, (1985)
- A. M. A. El-sayed and A. G. Ibrahim, Multivalued fractional differential equations, Applied Mathematics and Computation, 68(1995), 15-25
- M. A. Kransel'skii, on the continuity of the operator Fu(x)=f(x, u(x)), Dokl. Akad. Nauk., 77, (1951), 185-188
- M. A. Kransel'skii, P. P. Zabrejko, J. I. Pustyl'nik and P. J. Sobolevskii, Integral operators in spaces of summable functions, Noordhoff, Leyden, (1976)
- K. Nikodem, set-valued solutions of the pexider functional equations, Funkcial. Ekvac 31(1988), 227-231
- M. Z. Nashed, Integrable solutions of Hammerstein integral equations, Applicable Analysis, 50(1990), 277-284
- D. O'Regan, Integral inclusions of upper semi-continuous or lower semi- continuous type. Proc. Amer. Math. Soc. 124(1996), 2391-2399
- P. P. Zabrejko, A. I. Koshelev, M. A. Kransel'skii, S. G. Mikhlin, L. S. Rakovshchik and V. J. Stetsenko, Integral equations, Nauka, Moscow, 1968 [English Translation: Noordhoff, Leyden (1975)]