ISSN 1817-2172, рег. Эл. № ФС77-39410, ВАК

Differential Equations and Control Processes
(Differencialnie Uravnenia i Protsesy Upravlenia)

Global Problems of Differential Inclusions: the Problems of Kalman and Vyshnegradskii, Chua's Circuit

Author(s):

G. A. Leonov

Saint-Petersburg State University
Mathematics and Mechanics Faculty
Department of Applied Cybernetics
Professor, Head of Department
Dr. of Science
Universitetsky prospekt, 28
St.-Petersburg, Petrodvoretz,198504, RUSSIA

leonov@math.spbu.ru

N. V. Kuznetsov

Saint-Petersburg State University
Mathematics and Mechanics Faculty
Department of Applied Cybernetics
Professor, Deputy Head of Department
PhD,Dr. of Science
Universitetsky prospekt, 28
St.-Petersburg, Petrodvoretz,198504, RUSSIA

nkuznetsov239@gmail.com

M. A. Kiseleva

Saint-Petersburg State University
Mathematics and Mechanics Faculty
Department of Applied Cybernetics
PhD, Leading Researcher
Universitetsky prospekt, 28
St.-Petersburg, Petrodvoretz,198504, RUSSIA

maria.kiseleva.87@gmail.com

R. N. Mokaev

Saint-Petersburg State University
Mathematics and Mechanics Faculty
Department of Applied Cybernetics
Junior Researcher
Universitetsky prospekt, 28
St.-Petersburg, Petrodvoretz,198504, RUSSIA

r.mokaev@spbu.ru

Abstract:

This paper describes various approaches to determine the solutions of differential equations with discontinuous right side and differential inclusions. For discontinuous systems within the classical Vyshnegradskii problem the Lyapunov discontinuous functions are applied. To construct counterexamples to the Kalman conjecture for smooth systems the discontinuous approximation method and the ideas of Aizerman and Pyatnitskii are applied.

Keywords

References:

  1. A. Marchaud, Sur les champs de demi-droites et les equations differentielles du premier ordre, Bulletin de la Societe mathematique de France 62 (1934) 1-38
  2. A. Marchaud, Sur les champs continus de demi-cones convexes et leurs integrales, Compositio Mathematica 3 (1936) 89-127
  3. S. C. Zaremba, Sur une extension de la notion d'equation differentielle, CR Acad. Sci. Paris 199 (10) (1934) 545-548
  4. S. C. Zaremba, Sur les equations au paratingent, Bull. Sci. Math 60 (2) (1936) 139-160
  5. A. A. Agrachev, Y. L. Sachkov, Control Theory from the Geometric Viewpoint, vol. 87 of Encyclopedia of Mathematical Sciences. Control Theory and Optimization, II, Berlin: Springer, 2004
  6. S. Bennett, A history of control engineering, 1930-1955, no. 47, IET, 1993
  7. B. Brogliato, Nonsmooth mechanics: Models, Dynamics and Control, Springer, 1999
  8. F. Pfeiffer, C. Glocker, Multibody dynamics with unilateral contacts, John Wiley & Sons, 1996
  9. V. Utkin, Sliding Modes in Control and Optimization, Springer-Verlag, 1992
  10. S. V. Emelyanov, Automatic control systems with variable structure, Nauka, 1967 (in Russian)
  11. F. Plestan, Y. Shtessel, V. Bregeault, A. Poznyak, New methodologies for adaptive sliding mode control, International journal of control 83 (9) (2010) 1907-1919
  12. A. S. Poznyak, W. Yu, E. N. Sanchez, J. P. Perez, Nonlinear adaptive trajectory tracking using dynamic neural networks, IEEE Transactions on Neural Networks 10 (6) (1999) 1402-1411
  13. C. Edwards, S. Spurgeon, Sliding mode control: theory and applications, CRC Press, 1998
  14. R. C. Arkin, Behavior-based robotics, MIT press, 1998
  15. P. E. Kloeden, P. Marin-Rubio, Negatively invariant sets and entire trajectories of set-valued dynamical systems, Set-Valued and Variational Analysis 19 (1) (2011) 43-57
  16. I. G. Goryacheva, Contact Mechanics in Tribology, Series: Solid Mechanics and Its Applications, Vol. 61, Kluwer Academic, Boston, MA, 1998
  17. I. G. Goryacheva, P. T. Rajeev, T. N. Farris, Wear in partial slip contact, Journal of Tribology 123 (4) (2001) 848-856
  18. V. I. Kolesnikov, Thermophysical processes in metal-polymeric tribosystems, Nauka, 2003 (in Russian)
  19. L. M. Kachanov, Fundamentals of the Theory of Plasticity, Nauka, 1969 (in Russian)
  20. A. Polyakov, L. Fridman, Stability notions and lyapunov functions for sliding mode control systems, Journal of the Franklin Institute 351 (4) (2014) 1831-1865
  21. Y. V. Orlov, Discontinuous systems: Lyapunov analysis and robust synthesis under uncertainty conditions, Springer Science & Business Media, 2008
  22. I. M. Kershtein, V. D. Klyushnikov, E. V. Lomakin, S. A. Shesterikov, Fundamentals of Experimental Mechanics of Destruction, MSU, 1989 (in Russian)
  23. I. Boiko, Discontinuous control systems: frequency-domain analysis and design, Springer Science & Business Media, 2008
  24. M. Dolgopolik, A. Fradkov, Nonsmooth and discontinuous speed-gradient algorithms, Nonlinear Analysis: Hybrid Systems 25 (2017) 99-113
  25. I. Flugge-Lotz, Discontinuous Automatic Control of Missiles, Stanford University. Division of Engineering Mechanics, 1950
  26. I. Flugge-Lotz, Discontinuous Automatic Control, Princeton University Press, 1953
  27. D. V. Anosov, On the stability of the equilibrium positions of the relay systems, Avtomatika i Telemekhanika 20 (2) (1959) 135-149 (in Russian)
  28. Y. I. Neimark, On the sliding mode of relay systems of automatic control, Avtomatika i Telemekhanika 18 (1957) 27-33 (in Russian)
  29. V. I. Venets, Differential inclusions in convex problems, Avtomatika i Telemekhanika (9) (1979) 5-14 (in Russian)
  30. VV Solodovnikov, Fundamentals of Automatic Regulation. Theory, Mashgiz, 1954 (in Russian)
  31. VA Besekersky, EP Popov, The theory of automatic control systems, FML, 1972 (in Russian)
  32. H. K. Khalil, Nonlinear Systems, Prentice Hall, N. J, 2002
  33. Y. Z. Tsypkin, Relay Control Systems, Univ Press, Cambridge, 1984
  34. J. D. Hartog, Forced vibrations with combined viscous and coulomb damping, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 9 (59) (1930) 801-817
  35. M. V. Keldysh, On dampers with a nonlinear characteristic, Tr. TsAGI 557 (1944) 26-37 (in Russian)
  36. A. I. Lurie, V. N. Postnikov, On the stability theory of controlled systems, Journal of Applied Mathematics and Mechanics 8 (3) (1944) 246-248 (in Russian)
  37. B. V. Bulgakov, Self-oscillations of controlled systems, Journal of Applied Mathematics and Mechanics 7 (2) (1943) 97-108 (in Russian)
  38. A. A. Andronov, N. N. Bautin, The motion of a neutral aircraft equipped with an autopilot, and the theory of point transformations of surfaces, DAN SSSR 43 (5) (1944) 197-201 (in Russian)
  39. A. A. Andronov, N. N. Bautin, Stabilization of the course of a neutral aircraft by an autopilot with a constant speed of the servo motor and a dead zone, Dokl. The USSR AS 46 (4) (1945) 158-161 (in Russian)
  40. A. A. Andronov, N. N. Bautin, Theory of stabilization of a neutral aircraft using an autopilot with a constant speed of a servomotor, Izv. AN SSSR. Ser. tech. sciences. I part (3) (1955) 3-32 (in Russian)
  41. A. A. Andronov, N. N. Bautin, Theory of stabilization of a neutral aircraft using an autopilot with a constant speed of a servomotor, Izv. AN SSSR. Ser. tech. sciences. Part II (6) (1955) 54-71 (in Russian)
  42. A. KH. Gelig, G. A. Leonov, V. A. Yakubovich, Stability of Stationary Sets in Control Systems with Discontinuous Nonlinearities, Nauka, 1978 (in Russian)
  43. M. A. Aizerman, F. R Gantmakher, Absolute stability of controlled systems, USSR Academy of Sciences Publishing House, 1963 (in Russian)
  44. A. F. Filippov, Differential equations with discontinuous right-hand side, Sbornik: Mathematics 51 (1) (1960) 99-128 (in Russian)
  45. M. A. Aizerman, E. S. Pyatnitskii, Foundation of a Theory of Discontinuous Systems, Avtomatika i Telemekhanika 4 (1974) 33-37 (in Russian)
  46. J. P. Aubin, A. Cellina, Differential Inclusions: Set-valued Maps and Viability Theory, Grundlehren der mathematischen Wissenschaften, Springer, Berlin, 1984
  47. F. H. Clarke, Y. S. Ledyaev, R. J. Stern, P. R. Wolenski, Non-smooth analysis and control theory, Springer-Verlag, 1998
  48. R. I. Leine, H. Nijmeijer, Differential Inclusion, Dynamics and Bifurcations of Non-Smooth Mechanical Systems, Springer Berlin Heidelberg, 2004
  49. G. V. Smirnov, Introduction to the theory of differential inclusions, Vol. 41, American Mathematical Soc., 2002
  50. A. Kh. Gelig, Investigation of the stability of nonlinear discontinuous automatic control systems with a non-unique equilibrium state, Avtomatika i Telemekhanika 25 (1964) 153-160 (in Russian)
  51. G. A. Leonov, Concerning stability of nonlinear controlled systems with non-single equilibrium state, Automation and Remote Control 32 (10) (1971) 1547-1552
  52. I. A. Vyshnegradskii, On regulators of direct action, Izv. St. Petersburg Institute of Technology (1877) 21-62 (in Russian)
  53. A. Andronov, A. Mayer, Vishnegradskii's problem in the theory of direct regulation, Avtomatika i Telemekhanika 8 (5) (1947) 314-334 (in Russian)
  54. A. F. Filippov, Differential equations with discontinuous right-hand side, Springer, 1988
  55. T. Wazewski, Sur une condition equivalente a l'equation au contingent, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys 9 (1961) 865-867
  56. J. Cortes, Discontinuous dynamical systems, IEEE control Systems 28 (3) (2008) 36-73
  57. N. N. Krasovskij, Stability of motion: applications of Lyapunov's second method to differential systems and equations with delay, Stanford University Press, 1963
  58. N. N. Krasovskij, A. I. Subbotin, S. Kotz, Game-theoretical control problems, Springer-Verlag New York, Inc. (1987)
  59. H. Hermes, Discontinuous vector fields and feedback control, Academic Press (1967)
  60. A. F. Filippov, On certain questions in the theory of optimal control, Journal of the Society for Industrial and Applied Mathematics, Series A: Control 1 (1) (1962) 76-84
  61. V. G. Boltyanskii, Mathematical methods of optimal control, Nauka, 1969 (in Russian)
  62. A. Tolstonogov, Differential Inclusions in a Banach Space, Springer, 2000
  63. V. A. Pliss, Some Problems of the Theory of Stability of Motion, Izd. Leningrad University Press (1958) (in Russian)
  64. A. Polyakov, Discontinuous Lyapunov functions for non-asymptotic stability analysis, IFAC Proceedings Volumes 47 (3) (2014) 5455-5460
  65. N. Kuznetsov, O. Kuznetsova, G. Leonov, V. Vagaitsev, Analytical-numerical localization of hidden attractor in electrical Chua's circuit, Lecture Notes in Electrical Engineering 174 (4) (2013) 149-158
  66. N. V. Kuznetsov, O. A. Kuznetsova, G. A. Leonov, V. I. Vagaytsev, Hidden attractor in Chua's circuits, ICINCO 2011 - Proceedings of the 8th International Conference on Informatics in Control, Automation and Robotics 1 (2011) 279-283
  67. G. A. Leonov, M. A. Kiseleva, N. V. Kuznetsov, O. A. Kuznetsova, Discontinuous differential equations: comparison of solution definitions and localization of hidden Chua attractors, IFAC-PapersOnLine 48 (11) (2015) 408-413
  68. N. V. Kuznetsov, O. A. Kuznetsova, G. A. Leonov, T. N. Mokaev, N. V. Stankevich, Localization of hidden Chua attractors by the describing function method, arXiv preprint arXiv:1705. 02311
  69. N. V. Kuznetsov, G. A. Leonov, V. I. Vagaitsev, Analytical-numerical method for attractor localization of generalized Chua's system, IFAC Proceedings Volumes (IFAC-PapersOnline) 4 (1) (2010) 29-33
  70. G. A. Leonov, N. V. Kuznetsov, V. I. Vagaitsev, Localization of hidden Chua's attractors, Physics Letters A 375 (23) (2011) 2230-2233
  71. G. A. Leonov, N. V. Kuznetsov, V. I. Vagaitsev, Hidden attractor in smooth Chua systems, Physica D: Nonlinear Phenomena 241 (18) (2012) 1482-1486
  72. G. A. Leonov, N. V. Kuznetsov, Hidden attractors in dynamical systems. From hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractors in Chua circuits, International Journal of Bifurcation and Chaos 23 (1), art. no. 1330002
  73. G. A. Leonov, N. V. Kuznetsov, T. N. Mokaev, Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion, Eur. Phys. J. Special Topics 224 (8) (2015) 1421-1458
  74. N. V. Kuznetsov, Hidden attractors in fundamental problems and engineering models. A short survey, Lecture Notes in Electrical Engineering 371 (2016) 13-25, (Plenary lecture at International Conference on Advanced Engineering Theory and Applications 2015)
  75. A. Sommerfeld, Beitrage zum dynamischen ausbau der festigkeitslehre, Zeitschrift des Vereins deutscher Ingenieure 46 (1902) 391-394
  76. M. A. Kiseleva, N. V. Kuznetsov, G. A. Leonov, Hidden attractors in electromechanical systems with and without equilibria, IFAC-PapersOnLine 49 (14) (2016) 51-55
  77. G. A. Leonov, N. V. Kuznetsov, Algorithms for searching for hidden oscillations in the Aizerman and Kalman problems, Doklady Mathematics 84 (1) (2011) 475-481
  78. M. A. Aizerman, On a problem concerning the stability in the large of dynamical systems, Uspekhi Mat. Nauk (in Russian) 4 (1949) 187-188
  79. R. E. Kalman, Physical and mathematical mechanisms of instability in nonlinear automatic control systems, Transactions of ASME 79 (3) (1957) 553-566
  80. D. Hilbert, Mathematical problems., Bull. Amer. Math. Soc. (8) (1901-1902) 437-479
  81. N. N. Bautin, On the number of limit cycles generated on varying the coefficients from a focus or centre type equilibrium state, Doklady Akademii Nauk SSSR (in Russian) 24 (7) (1939) 668-671
  82. N. V. Kuznetsov, O. A. Kuznetsova, G. A. Leonov, Visualization of four normal size limit cycles in two-dimensional polynomial quadratic system, Differential equations and dynamical systems 21 (1-2) (2013) 29-34
  83. G. Leonov, N. Kuznetsov, On differences and similarities in the analysis of Lorenz, Chen, and Lu systems, Applied Mathematics and Computation 256 (2015) 334-343
  84. G. Leonov, N. Kuznetsov, Localization of hidden oscillations in dynamical systems (plenary lecture), in: 4th International Scientific Conference on Physics and Control, 2009
  85. M. Kiseleva, E. Kudryashova, N. Kuznetsov, O. Kuznetsova, G. Leonov, M. Yuldashev, R. Yuldashev, Hidden and self-excited attractors in Chua circuit: synchronization and SPICE simulation, International Journal of Parallel, Emergent and Distributed Systems doi:10. 1080/17445760. 2017. 1334776
  86. P. Sharma, M. Shrimali, A. Prasad, N. Kuznetsov, G. Leonov, Controlling dynamics of hidden attractors, International Journal of Bifurcation and Chaos 25 (04), art. num. 1550061
  87. P. Sharma, M. Shrimali, A. Prasad, N. Kuznetsov, G. Leonov, Control of multistability in hidden attractors, Eur. Phys. J. Special Topics 224 (8) (2015) 1485-1491
  88. X. Zhang, G. Chen, Constructing an autonomous system with infinitely many chaotic attractors, Chaos: An Interdisciplinary Journal of Nonlinear Science 27 (7), art. num. 071101
  89. Q. Li, H. Zeng, X. -S. Yang, On hidden twin attractors and bifurcation in the Chua's circuit, Nonlinear Dynamics 77 (1-2) (2014) 255-266
  90. I. M. Burkin, N. N. Khien, Analytical-numerical methods of finding hidden oscillations in multidimensional dynamical systems, Differential Equations 50 (13) (2014) 1695-1717
  91. C. Li, J. C. Sprott, Coexisting hidden attractors in a 4-D simplified Lorenz system, International Journal of Bifurcation and Chaos 24 (03), art. num. 1450034
  92. G. Chen, Chaotic systems with any number of equilibria and their hidden attractors, in: 4th IFAC Conference on Analysis and Control of Chaotic Systems (plenary lecture), 2015, http://www.ee.cityu.edu.hk/~gchen/ pdf/CHEN\_IFAC2015. pdf
  93. P. Saha, D. Saha, A. Ray, A. Chowdhury, Memristive nonlinear system and hidden attractor, European Physical Journal: Special Topics 224 (8) (2015) 1563-1574
  94. Y. Feng, W. Pan, Hidden attractors without equilibrium and adaptive reduced-order function projective synchronization from hyperchaotic Rikitake system, Pramana 88 (4) (2017) 62
  95. Z. Zhusubaliyev, E. Mosekilde, A. Churilov, A. Medvedev, Multistability and hidden attractors in an impulsive Goodwin oscillator with time delay, European Physical Journal: Special Topics 224 (8) (2015) 1519-1539
  96. M. -F. Danca, Hidden transient chaotic attractors of Rabinovich-Fabrikant system, Nonlinear Dynamics 86 (2) (2016) 1263-1270
  97. A. P. Kuznetsov, S. P. Kuznetsov, E. Mosekilde, N. V. Stankevich, Coexisting hidden attractors in a radio-physical oscillator system, Journal of Physics A: Mathematical and Theoretical 48 (2015) 125101
  98. M. Chen, M. Li, Q. Yu, B. Bao, Q. Xu, J. Wang, Dynamics of self-excited attractors and hidden attractors in generalized memristor-based Chua's circuit, Nonlinear Dynamics 81 (2015) 215-226
  99. V. -T. Pham, F. Rahma, M. Frasca, L. Fortuna, Dynamics and synchronization of a novel hyperchaotic system without equilibrium, International Journal of Bifurcation and Chaos 24 (06), art. Num. 1450087
  100. O. S. Ojoniyi, A. N. Njah, A 5D hyperchaotic Sprott B system with coexisting hidden attractors, Chaos, Solitons & Fractals 87 (2016) 172-181
  101. R. Rocha, R. O. Medrano-T, Finding hidden oscillations in the operation of nonlinear electronic circuits, Electronics Letters 52 (12) (2016) 10101011
  102. M. Borah, B. K. Roy, Hidden attractor dynamics of a novel non-equilibrium fractional-order chaotic system and its synchronization control, in: 2017 Indian Control Conference (ICC), 2017, pp. 450-455
  103. Z. Wei, V. -T. Pham, T. Kapitaniak, Z. Wang, Bifurcation analysis and circuit realization for multiple-delayed Wang-Chen system with hidden chaotic attractors, Nonlinear Dynamics 85 (3) (2016) 1635-1650
  104. V. -T. Pham, C. Volos, S. Jafari, S. Vaidyanathan, T. Kapitaniak, X. Wang, A chaotic system with different families of hidden attractors, International Journal of Bifurcation and Chaos 26 (08) (2016) 1650139
  105. S. Jafari, V. -T. Pham, S. Golpayegani, M. Moghtadaei, S. Kingni, The relationship between chaotic maps and some chaotic systems with hidden attractors, Int. J. Bifurcat. Chaos 26 (13), art. num. 1650211
  106. D. Dudkowski, S. Jafari, T. Kapitaniak, N. Kuznetsov, G. Leonov, A. Prasad, Hidden attractors in dynamical systems, Physics Reports 637 (2016) 1-50
  107. J. Singh, B. Roy, Multistability and hidden chaotic attractors in a new simple 4-D chaotic system with chaotic 2-torus behaviour, International Journal of Dynamics and Control, doi: 10. 1007/s40435-017-0332-8
  108. G. Zhang, F. Wu, C. Wang, J. Ma, Synchronization behaviors of coupled systems composed of hidden attractors, International Journal of Modern Physics B 31, art. num. 1750180
  109. M. Messias, A. Reinol, On the formation of hidden chaotic attractors and nested invariant tori in the Sprott A system, Nonlinear Dynamics 88 (2) (2017) 807-821
  110. P. Brzeski, J. Wojewoda, T. Kapitaniak, J. Kurths, P. Perlikowski, Sample-based approach can outperform the classical dynamical analysis - experimental confirmation of the basin stability method, Scientic Reports 7, art. num. 6121
  111. Z. Wei, I. Moroz, J. Sprott, A. Akgul, W. Zhang, Hidden hyperchaos and electronic circuit application in a 5D self-exciting homopolar disc dynamo, Chaos 27 (3), art. num. 033101
  112. U. Chaudhuri, A. Prasad, Complicated basins and the phenomenon of amplitude death in coupled hidden attractors, Physics Letters A 378 (9) (2014) 713-718
  113. H. Jiang, Y. Liu, Z. Wei, L. Zhang, Hidden chaotic attractors in a class of two-dimensional maps, Nonlinear Dynamics 85 (4) (2016) 2719-2727
  114. C. Volos, V. -T. Pham, E. Zambrano-Serrano, J. M. Munoz-Pacheco, S. Vaidyanathan, E. Tlelo-Cuautle, Advances in Memristors, Memristive Devices and Systems, Springer, 2017, Ch. Analysis of a 4-D hyperchaotic fractional-order memristive system with hidden attractors, pp. 207-235
  115. R. Rocha, R. -O. Medrano-T, Stability analysis and mapping of multiple dynamics of Chua's circuit in full-four parameter space, International Journal of Bifurcation and Chaos 25 (2015) 1530037
  116. B. Bao, P. Jiang, H. Wu, F. Hu, Complex transient dynamics in periodically forced memristive Chua's circuit, Nonlinear Dynamics 79 (2015) 2333-2343
  117. B. R. Andrievsky, N. V. Kuznetsov, G. A. Leonov, S. M. Seledzhi, Hidden oscillations in stabilization system of flexible launcher with saturating actuators, IFAC Proceedings Volumes 46 (19) (2013) 37-41
  118. B. R. Andrievsky, N. V. Kuznetsov, G. A. Leonov, A. Pogromsky, Hidden oscillations in aircraft flight control system with input saturation, IFAC Proceedings Volumes 46 (12) (2013) 75-79
  119. G. A. Leonov, N. V. Kuznetsov, M. A. Kiseleva, E. P. Solovyeva, A. M. Zaretskiy, Hidden oscillations in mathematical model of drilling system actuated by induction motor with a wound rotor, Nonlinear Dynamics 77 (1- 2) (2014) 277-288
  120. M. -F. Danca, N. Kuznetsov, G. Chen, Unusual dynamics and hidden attractors of the Rabinovich-Fabrikant system, Nonlinear Dynamics 88 (2017) 791-805
  121. N. Kuznetsov, G. Leonov, M. Yuldashev, R. Yuldashev, Hidden attractors in dynamical models of phase-locked loop circuits: limitations of simulation in MATLAB and SPICE, Commun Nonlinear Sci Numer Simulat 51 (2017) 39-49
  122. G. Chen, N. Kuznetsov, G. Leonov, T. Mokaev, Hidden attractors on one path: Glukhovsky-Dolzhansky, Lorenz, and Rabinovich systems, International Journal of Bifurcation and Chaos 27 (8), art. num. 1750115
  123. M. -F. Danca, N. Kuznetsov, Hidden chaotic sets in a Hopfield neural system, Chaos, Solitons & Fractals 103 (2017) 144-150
  124. P. T. Piiroinen, Y. A. Kuznetsov, An event-driven method to simulate Filippov systems with accurate computing of sliding motions, ACM Transactions on Mathematical Software (TOMS) 34 (3) (2008) 13
  125. M. A. Kiseleva, N. V. Kuznetsov, Coincidence of Gelig-Leonov-Yakubovich, Filippov, and Aizerman-Pyatnitskii definitions, Vestnik St. Petersburg University. Mathematics 48 (2) (2015) 66-71
  126. N. E. Barabanov, On the Kalman problem, Sib. Math. J. 29 (3) (1988) 333-341
  127. R. E. Fitts, Two counterexamples to Aizerman's conjecture, Trans. IEEE AC-11 (3) (1966) 553-556
  128. J. Bernat, J. Llibre, Counterexample to Kalman and Markus-Yamabe conjectures in dimension larger than 3, Dynamics of Continuous, Discrete and Impulsive Systems 2 (3) (1996) 337-379
  129. G. Meisters, A biography of the Markus-Yamabe conjecture, http://www.math.unl.edu/ gmeisters1/papers/HK1996. pdf
  130. A. A. Glutsyuk, Meetings of the Moscow mathematical society (1997), Russian mathematical surveys 53 (2) (1998) 413417
  131. A. A. Andronov, E. A. Vitt, S. E. Khaikin, Theory of Oscillators, Pergamon Press, Oxford, 1966
  132. G. A. Leonov, V. O. Bragin, N. V. Kuznetsov, Algorithm for constructing counterexamples to the Kalman problem, Doklady Mathematics 82 (1) (2010) 540-542
  133. V. O. Bragin, V. I. Vagaitsev, N. V. Kuznetsov, G. A. Leonov, Algorithms for finding hidden oscillations in nonlinear systems. The Aizerman and Kalman conjectures and Chua's circuits, Journal of Computer and Systems Sciences International 50 (4) (2011) 511-543
  134. G. A. Leonov, Mathematical problems of control theory. An introduction, World Scientic, Singapore, 2001

Full text (pdf)