Upper-semicontinuity of the Global Attractors for a Class of Nonlocal Cahn-hilliard Equations
Author(s):
Joseph L. Shomberg
Assoc.Prof.
Department of Mathematics and Computer Science
Providence College
Providence, RI 02918, USA
jshomber@providence.edu
Abstract:
The aim of this work is to examine the upper-semicontinuity
properties of the family of global attractors admitted by
a non-isothermal viscous relaxation of some nonlocal Cahn-Hilliard equations.
We prove that the family of global attractors is upper-semicontinuous
as the perturbation parameters vanish.
Additionally, under suitable assumptions, we prove that the
family of global attractors satisfies a further upper-semicontinuity
type estimate whereby the difference between trajectories of
the relaxation problem and the limit isothermal non-viscous
problem is explicitly controlled, in the topology of the relaxation problem,
in terms of the relaxation parameters.
Keywords
- global attractors
- Nonlocal Cahn-Hilliard equations
- upper-semicontinuity
References:
- Robert A. Adams and John J. F. Fournier. Sobolev Spaces. Pure and Applied Mathematics - Volume 140. Academic Press / Elsevier Science, Oxford, second edition, 2003
- Fuensanta Andreu-Vaillo, José M. Mazón, Julio D. Rossi, and J. Julián Toledo-Melero. Nonlocal diffusion problems, volume 165 of Mathematical Surveys and Monographs. American Mathematical Society, Real Sociedad Matemática Española, 2010
- A. V. Babin and M. I. Vishik. Attractors of Evolution Equations. North-Holland, Amsterdam, 1992
- J. M. Ball. "Global attractors for damped semilinear wave equations". Discrete Contin. Dyn. Syst., 10(2):31—52, 2004
- Pierluigi Colli, Sergio Frigeri, and Maurizio Grasselli. "Global existence of weak solutions to a nonlocal Cahn—Hilliard—Navier—Stokes system." J. Math. Anal. Appl., 386(1):428—444, 2012
- Monica Conti and Gianluca Mola. "3-D viscous Cahn—Hilliard equation with memory." Math. Models Methods Appl. Sci. , 32(11):1370-1395, 2008
- A. Eden, C. Foias, B. Nicolaenko, and R. Temam. Exponential Attractors for Dissipative Evolution Equations. Research in Applied Mathematics. John Wiley and Sons Inc., 1995
- Sergio Frigeri and Maurizio Grasselli. "Global and trajectory attractors for a nonlocal Cahn—Hilliard—Navier—Stokes system." Dynam. Differential Equations, 24(4):827—856, 2012
- Sergio Frigeri, Maurizio Grasselli, and Elisabetta Rocca. "A diffuse interface model for two-phase incompressible flows with non-local interactions and non-constant mobility." Nonlinearity, 28(5):1257—1293, 2015
- Ciprian G. Gal. "Robust family of exponential attractors for a conserved Cahn—Hilliard model with singularly perturbed boundary conditions." Commun. Pure Appl. Anal. , 7(4):819—836, 2008
- Ciprian G. Gal. "Well-posedness and long time behavior of the non-isothermal viscous Cahn—Hilliard equation with dynamic boundary conditions." Dyn. Partial Differ. Equ. , 5(1):39—67, 2008
- Ciprian G. Gal and Maurizio Grasselli. "The non-isothermal Allen—Cahn equation with dynamic boundary conditions." Discrete Contin. Dyn. Syst. , 22(4):1009—1040, 2008
- Ciprian G. Gal, Maurizio Grasselli, and Alain Miranville. "Robust exponential attractors for singularly perturbed phase-field equations with dynamic boundary conditions." NoDEA Nonlinear Differential Equations Appl. , 15(4-5):535—556, 2008
- Ciprian G. Gal and Murizio Grasselli. "Longtime behavior of nonlocal Cahn—Hilliard equations. Discrete Contin. Dyn. Syst. , 34(1):145—179, 2014
- Ciprian G. Gal and Alain Miranville. "Robust exponential attractors and convergence to equilibria for non-isothermal Cahn—Hilliard equations with dynamic boundary conditions." Discrete Contin. Dyn. Syst. Ser. S, 2(1):113—147, 2009
- Ciprian G. Gal and Alain Miranville. "Uniform global attractors for non-isothermal viscous and non-viscous Cahn—Hilliard equations with dynamic boundary conditions." Nonlinear Anal. Real World Appl. , 10(3):1738—1766, 2009
- S. Gatti, M. Grasselli, A. Miranville, and V. Pata. "Hyperbolic relaxation of the viscous Cahn—Hilliard equation in 3D." Math. Models Methods Appl. Sci. , 15(2):165—198, 2005
- S. Gatti, M. Grasselli, A. Miranville, and V. Pata. "On the hyperbolic relaxation of the one-dimensional Cahn—Hilliard equation." Math. Anal. Appl. , 312:230—247, 2005
- S. Gatti, M. Grasselli, A. Miranville, and V. Pata. "A construction of a robust family of exponential attractors." Amer. Math. Soc. , 134(1):117—127, 2006
- S. Gatti, A. Miranville, V. Pata, and S. Zelik. "Continuous families of exponential attractors for singularly perturbed equations with memory." Proc. Roy. Soc. Edinburgh Sect. A, 140:329—366, 2010
- Giambattista Giacomin and Joel L. Lebowitz. "Phase segregation dynamics in particle systems with long range interactions I. Macroscopic limits." J. Statist. Phys. , 87(1-2):37—61, 1997
- Maurizio Grasselli. "Finite-dimensional global attractor for a nonlocal phase-field system." Lombardo (Rend. Scienze) Mathematica, 146:113—132, 2012
- Maurizio Grasselli, Hana Petzeltová, and Giulio Schimperna. "Asymptotic behavior of a nonisothermal viscous Cahn—Hilliard equation with inertial term." J. Differential Equations, 239(1):38—60, 2007
- Murizio Grasselli and Giulio Schimperna. "Nonlocal phase-field systems with general potentials." Discrete Contin. Dyn. Syst. , 33(11-12):5089—5106, 2013
- J. Hale and G. Raugel. "Upper semicontinuity of the attractor for a singularly perturbed hyperbolic equation." J. Differential Equations, 73(2):197—214, 1988
- Jack K. Hale. Asymptotic Behavior of Dissipative Systems. Mathematical Surveys and Monographs - No. 25. American Mathematical Society, Providence, 1988
- L. Herrera and D. Pavó n. "Hyperbolic theories of dissipation: Why and when do we need them?" Phys. A, 307:121—130, 2002
- D. D. Joseph and Luigi Preziosi. "Heat waves." Rev. Modern Phys. , 61(1):41—73, 1989
- D. D. Joseph and Luigi Preziosi. "Addendum to the paper: ‘Heat waves’." Rev. Modern Phys. , 62(2):375—391, 1990
- I. N. Kostin. "Rate of attraction to a non-hyperbolic attractor." Asymptotic Anal. , 16(3):203—222, 1998
- J. L. Lions. Quelques mé thodes de ré solution des problè mes aux limites non liné aires. Dunod, Paris, 1969
- Albert J. Milani and Norbert J. Koksch. An Introduction to Semiflows. Monographs and Surveys in Pure and Applied Mathematics - Volume 134. Chapman & Hall/CRC, Boca Raton, 2005
- Alain Miranville and Sergey Zelik. "Robust exponential attractors for singularly perturbed phase-field type equations." Electron. J. Differential Equations, 2002(63):1—28, 2002
- Francesco Della Porta and Maurizio Grasselli. "Convective nonlocal Cahn—Hilliard equations with reaction terms." Discrete Contin. Dyn. Syst. Ser. B, 20(5):1529—1553, 2015
- James C. Robinson. Infinite-Dimensional Dynamical Systems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 2001
- Joseph L. Shomberg. "Well-posedness and global attractors for a non-isothermal viscous relaxation of nonlocal Cahn—Hilliard equations." AIMS Mathematics: Nonlinear Evolution PDEs, Interfaces and Applications, 1(2):102—136, 2016
- Roger Temam. Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Applied Mathematical Sciences - Volume 68. Springer-Verlag, New York, 1988
- Roger Temam. Navier—Stokes Equations - Theory and Numerical Analysis. AMS Chelsea Publishing, Providence, reprint edition, 2001
- Songmu Zheng. Nonlinear Evolution Equations. Monographs and Surveys in Pure and Applied Mathematics - Volume 133. Chapman & Hall/CRC, Boca Raton, 2004
- Songmu Zheng and Albert Milani. "Global attractors for singular perturbations of the Cahn—Hilliard equations." J. Differential Equations, 209(1):101—139, 2005