Lock-in range of classical PLL with piecewise-linear phase detector characteristic
Author(s):
Nikolay Vladimirovich Kuznetsov
Department of Applied Cybernetics,
Saint Petersburg State University, 199034, Saint Petersburg, Russia
Institute of Problems in Mechanical Engineering,
Russian Academy of Sciences, 199178, Saint Petersburg, Russia
nkuznetsov239@gmail.com
Mikhail Valeryevich Blagov
Department of Applied Cybernetics,
Saint Petersburg State University, 199034, Saint Petersburg, Russia
mikhail.blagov@gmail.com
Konstantin Dmitrievich Alexandrov
Department of Applied Cybernetics,
Saint Petersburg State University, 199034, Saint Petersburg, Russia
Marat Vladimirovich Yuldashev
Department of Applied Cybernetics,
Saint Petersburg State University, 199034, Saint Petersburg, Russia
Renat Vladimirovich Yuldashev
Department of Applied Cybernetics,
Saint Petersburg State University, 199034, Saint Petersburg, Russia
Abstract:
Phase-locked loops (PLL) are classical nonlinear control systems that are used to tune frequency and phase in electrical circuits. In this article a problem of the lock-in range estimation for classical PLLs with piecewise-linear phase detector characteristic and first-order filters is studied. A new analytical-numerical method of the lock-in range estimation is discussed. Estimations obtained using this method are compared with previously known ones.
Keywords
- lock-in range
- nonlinear analysis
- Phase-locked loops
- PLL
References:
- Viterbi A. Principles of coherent communications. New York: McGraw-Hill, 1966. P. 321
- Leonov G. A. Phase-locked loops. Theory and application // Automation and Remote Control. 2006. Vol. 10. P. 1573-1609
- Shalfeev V. D., Matrosov V. V. Nonlinear dynamics of phase synchronization systems (in Russian). Nizhni Novgorod University Press, 2013
- Shakhtarin B. I., Sizykh V. V., Sidorkina Yu. A. Sinkhronizatsiya v radiosvyazi i radionavigatsii [Synchronization in radio communication and navigation] // Moscow, Goryachaya Liniya-Telekom Publ. 2011
- Best R. E. Phase-Locked Loops: Design, Simulation and Application. 6th edition. McGraw-Hill, 2007. P. 490
- Kolumban G. Software Defined Electronics: A Revolutionary Change in De- sign and Teaching Paradigm of RF Radio Communications Systems // ICT Express. 2015. Vol. 1, no. 1. P. 44 - 54
- Best R. E. Costas Loops: Theory, Design, and Simulation. Springer International Publishing, 2018
- Ladvanszky J. A Costas loop variant for large noise // Journal of Asian Scientific Research. 2018. Vol. 8, no. 3. P. 144 - 151
- Alexandrov K. D., Kuznetsov N. V., Leonov G. A. et al. Pull-in range of the classical PLL with impulse signals // IFAC-PapersOnLine. 2015. Vol. 48, no. 1. P. 562-567
- Best R. E. Phase-locked Loops: Design, Simulation, and Applications. Mc- Graw Hill, 1984
- Kihara M., Ono S., Eskelinen P. Digital Clocks for Synchronization and Communications. Artech House, 2002. P. 269
- Abramovitch D. Phase-Locked Loops: A control Centric Tutorial // American Control Conf. Proc. Vol. 1. IEEE, 2002. P. 1-15
- De Muer B., Steyaert M. CMOS Fractional-N Synthesizers: Design for High Spectral Purity and Monolithic Integration. Springer, 2003
- Dyer S. A. Wiley Survey of Instrumentation and Measurement. Wiley, 2004
- Shu K., Sanchez-Sinencio E. CMOS PLL synthesizers: analysis and design. Springer, 2005
- Goldman S. J. Phase-Locked Loops Engineering Handbook for Integrated Circuits. Artech House, 2007
- Egan W. F. Phase-Lock Basics. Wiley-IEEE Press, 2007
- Baker R. J. CMOS: Circuit Design, Layout, and Simulation. IEEE Press Series on Microelectronic Systems. Wiley-IEEE Press, 2011
- Ndjountche T. CMOS Analog Integrated Circuits: High-Speed and Power- Efficient Design. CRC Press, 2017
- Kroupa V. F. Frequency Stability: Introduction and Applications. IEEE Series on Digital & Mobile Communication. Wiley-IEEE Press, 2012. P. 328
- Rouphael T. J. Wireless Receiver Architectures and Design: Antennas, RF, Synthesizers, Mixed Signal, and Digital Signal Processing. Elsevier Science, 2014
- Purkayastha B. B., Sarma K. K. A Digital Phase Locked Loop based Signal and Symbol Recovery System for Wireless Channel. Springer, 2015
- Middlestead R. W. Digital Communications with Emphasis on Data Modems: Theory, Analysis, Design, Simulation, Testing, and Applications. Wiley, 2017
- Aleksandrov K. D., Kuznetsov N. V., Leonov G. A. et al. Lock-in range of classical PLL with impulse signals and proportionally-integrating filter // arXiv preprint arXiv:1603. 09363. 2016
- Leonov G. A., Kuznetsov N. V., Yuldashev M. V., Yuldashev R. V. Hold-in, pull-in, and lock-in ranges of PLL circuits: rigorous mathematical definitions and limitations of classical theory // IEEE Transactions on Circuits and Systems_I: Regular Papers. 2015. Vol. 62, no. 10. P. 2454-2464
- Kuznetsov N. V. Analytical-numerical methods for the study of hidden oscillations (Habilitation thesis, in Russian). Saint-Petersburg State University, 2016
- Aleksandrov K. D., Kuznetsov N. V., Leonov G. A. et al. Lock-in range of classical PLL with impulse signals and proportionally-integrating filter // arXiv preprint arXiv:1603. 09363. 2016
- Gardner F. M. Phaselock techniques. New York: John Wiley & Sons, 1966. P. 182
- Shakhgil'dyan V. V., Lyakhovkin A. A. Fazovaya avtopodstroika chastoty (in Russian). Moscow: Svyaz', 1966
- Leonov G. A., Kuznetsov N. V., Yuldashev M. V., Yuldashev R. V. Analytical method for computation of phase-detector characteristic // IEEE Transactions on Circuits and Systems - II: Express Briefs. 2012. Vol. 59, no. 10. P. 633_647
- Ladvanszky J. A Costas loop with di? erential coding // IJCRR. 2017. P. 20305- 20310
- Kuznetsov N. V., Kuznetsova O. A., Leonov G. A. et al. Simulation of nonlinear models of QPSK Costas loop in MatLab Simulink // 2014 6th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT). Vol. 2015-January. IEEE, 2014. P. 66-71
- Leonov G. A., Aleksandrov K. D. Frequency-Domain Criteria for the Global Stability of Phase Synchronization Systems // Doklady Mathematics. 2015. Vol. 92, no. 3. P. 764-768
- Alexandrov K. D., Kuznetsov N. V., Leonov G. A. et al. Pull-in range of the PLL-based circuits with proportionally-integrating filter // IFACPapersOnLine. 2015. Vol. 48, no. 11. P. 720-724
- Best R. E., Kuznetsov N. V., Leonov G. A. et al. Tutorial on dynamic analysis of the Costas loop // IFAC Annual Reviews in Control. 2016. Vol. 42. P. 27-49
- Huque A. S., Stensby J. L. An exact formula for the pull-out frequency of a 2nd-order type II phase lock loop // IEEE Communications Letters. 2011
- Vol. 15, no. 12. P. 1384 - 1387. Shakhtarin B. I. Study of a piecewise-linear system of phase-locked frequency control // Radiotechnica and electronika (in Russian). 1969. no. 8. P. 1415-1424
- Blagov M. V. Analytical-numerical methods of lock-in range estimation for two-dimensional PLL (thesis) (scientific supervisor - N. V. Kuznetsov). (in preparation), 2019