ISSN 1817-2172, рег. Эл. № ФС77-39410, ВАК

Differential Equations and Control Processes
(Differencialnie Uravnenia i Protsesy Upravlenia)

Numerical - Analytical Study of the Turbulent Flow of Lubricoolant When Interacting with a Part and a Tool in the Process of Machining Deep Holes


Leonid Alexandrovich Igumnov

Institute of Mechanics, NNSU N.I. Lobachevsky
Prof., Ph.D.

Aleksandra Viktorovna Grezina

NNGU N.I. Lobachevsky
Associate Professor, Ph.D.

Vladimir Semenovich Metrikin

Institute of Mechanics, NNSU N.I. Lobachevsky
Associate Professor, Ph.D.

Adolf Grigoryevich Panasenko

NNGU N.I. Lobachevsky
Associate Professor, Ph.D.


The paper presents an approach to modeling of the interaction of lubricoolant with the workpiece and the tool in the process of deep hole boring. The modeling is based on the numerical solving of the system of nonlinear partial differential equations describing the turbulent flow of the lubricoolant and the transfer of thermal energy in the channels of the part and tool. The fluid is assumed to be incompressible, and the standard turbulence k-epsilon model is used to close the system of differential equations. SolidWorks is used to model the geometry of the flow volume. The distribution of pressure, velocities, the temperature of the lubricoolant flow as well as the temperature of the workpiece and the cutting tool is numerically simulated by using FlowVision HPC. The dynamics of the temperature balance between the lubricoolant, tool and workpiece is analyzed. The integral hydrodynamic characteristics of the flow are given in the analytical form. The developed numerical models allow us to carry out numerical experiments for various combinations of in- and out- flow of the lubricoolant. The comparison between numerical results and experimental data testifies to their good convergence. The proposed approach can be applied to the optimization of technological processes of machining deep holes on lathes.



  1. Bobrov, V. F. Osnovi teorii resaniya metallov [Fundamentals of the theory of metal cutting]]. Moscow. Mashinostroenie Publ., 1975. 344p. (in Russ. )
  2. Kisel, A. G.; Purtov E. D.; Deylova A. V.; Koñ hura N. N. Evaluation of cooling properties of cutting fluids. Omsky nautchny vestnik, 2017; 151(1): 27-29. (in Russ. )
  3. Kisel, A. G.; Rechenko D. S.; Titov Yu. V.; Purtov E. D.; Petrov I. V. Selection of coolant-cutting fluid for final machining. Systemi. Metodi. Technologii , 2015; 3(7): 39-43. (in Russ. )
  4. Kisel, A. G.; Razhkovskij, A. A.; Rechenko, D. S.; Popov A. Yu. Improving the accuracy of turning through the use of cutting fluids. Tekhnologiya mashinostroeniya., 2014; 2: 18-20. (in Russ. )
  5. Nemcev, B. A.; Yakovlev, P. D.; Yakovlev, S. P. Technology for deep hole drilling of small diameters with external coolant supply. Metalloobrabotka , 2015; 4(88): 19-24. (in Russ. )
  6. Biermann, D.; Sacharow, A; Wohlgemuth, K. Simulation of the BTA deep-hole drilling process. Prod. Eng. Res. Devel, 2009; 339-346
  7. Weinert, K.; Weihs, C.; Webber, O.; Raabe, N. Varying bending eigenfrequencies in BTA deep hole drilling: mechanical modeling using statistical parameter estimation. Prod. Eng. Res. Devel., 2007; 127-134
  8. Gorelova, A. Yu.; Pleshakov, A. A.; Kristal', M. G. Methods for improving the accuracy of deep hole machining. Izvestiya Tul'skogo gosudarstvennogo universiteta, 2013; 7(2): 363-370. (in Russ. )
  9. Novakov, T.; Jackson, M. J. Chatter problems in micro- and macrocutting operations, existing models, and influential parameters—a review. Int. J Adv. Manuf. Technol., 2010; 47: 597-620
  10. Utkin, N. F.; Obrabotka glubokikh otverstiy [ Deep hole machining] Leningrad. Mashinostroenie Publ., 1988. 269p. (in Russ. )
  11. Kozhevnikov, D. V.; Grechishnikov, V. A.; Kirsanov, S. V.; Kokarev, V. I.; Skhirtladze, A. G. Rezhuschy instrument [Cutting tool]. Moscow. Mashinostroenie Publ., 2007. 528p. (in Russ. )
  12. Komarov, V. N.; Grezina, A. V.; Artem'eva, S. A. Simulation of heat exchange process at boring deep holes. Vestnik Nizhegorodskogo universiteta im. N. I. Lobachevskogo , 2014; 3(2): 87-91. (in Russ. )
  13. FlowVision HPC. Rukovodstvo polzovateliya [User’s manual. Version 3. 08. 04. ] Moscow. OOO TESIS Publ. 1999-2013. 348p. (in Russ. )
  14. Betchelor, Dzh Vvedenie v dinamiku zhidkosti [Introduction to fluid dynamics]. : Moscow. Mir Publ. 1973. 760p. (in Russ. )
  15. Mazo, A.B. Model turbulentnykh techeniy neszhimaemoy ghidkosti - KGU, 2007, 106p (in Russ. )
  16. Miheev, M. A.; Miheeva, I. M . Osnovi teploperedatchi. [ Fundamentals of Heat Transfer]. Moscow, Energiya Publ., 1977. 344p. (in Russ. )
  17. Murray, D. Inside SolidWorks; Cengage Learning, 2005
  18. Routsh, P Vitshislitelnaya gidrodinamika.. [Computational fluid dynamics]. Moscow. Mir Publ. 1980. 616p. . (in Russ. )

Full text (pdf)