Remote Synchronization in a Small Star-like Network of Spin-torque
Author(s):
Pavel V. Kuptsov
Chief Researcher
Doctor of Sciences, Doce
Kotelnikov Institute of Radio-Engineering and Electronics of RAS,
Saratov Branch
Zelenaya 38, Saratov, 410019, Russia
p.kuptsov@rambler.ru
Vyacheslav P. Kruglov
Researcher
Candidate of Sciences
Kotelnikov Institute of Radio-Engineering and Electronics of RAS,
Saratov Branch
Zelenaya 38, Saratov, 410019, Russia
kruglovyacheslav@gmail.com
Abstract:
We consider a mathematical model of field coupled spin-torque
oscillators network. The model is described by a set of the
Landau–Lifshitz–Gilbert–Slonczewski magnetization equations, which are coupled
via an additional term to the effective field. For this model a generic
form of the Jacobi matrix is explicitly derived. The network of four
oscillators coupled as a star is considered: the central oscillator is
coupled with three others and they do not have direct couplings with
each other. For this network the Lyapunov's exponent chart is computed
and the area in the parameter space is found where the network
demonstrates remote synchronization. In this regime the peripheral
oscillators are synchronized with each other but not synchronized with
the central one.
Keywords
- exponents chart
- Jacobian matrix
- Lyapunov
- Lyapunov exponents
- remote synchronization
- Spin-torque oscillator
References:
- Prokopenko O., Bankowski E., Meitzler T. et al. Spin-Torque Nano-Oscillator as a Microwave Signal Source. IEEE Magnetics Letters. 2011. Vol. 2. P. 3000104
- Zeng Z., Finocchio G., Zhang B. и др. Ultralow-current-density and bias-field-free spin-transfer nano-oscillator. Scientific Reports. 2013. Vol. 3. No 1. P. 1426
- Slonczewski J. Current-driven excitation of magnetic multilayers. Journal of Magnetism and Magnetic Materials. 1996. Vol. 159. No 1. P. L1-L7
- Zaks M., Pikovsky A. Chimeras and complex cluster states in arrays of spin-torque oscillators. Scientific Reports. 2017. Vol. 7. No 1. P. 4648
- Zaks M. A., Pikovsky A. Synchrony breakdown and noise-induced oscillation death in ensembles of serially connected spin-torque oscillators. The European Physical Journal B. 2019. Vol. 92. No 7. P. 160
- Turkin Y. V., Kuptsov P. V. [Dynamics of two field-coupled spin-transfer oscillators] Izvestiya VUZ. Applied Nonlinear Dynamics. 2014. Vol. 22. No 6. P. 69-78. (In Russ. )
- Pikovsky A., Rosenblum M., Kurths J. Synchronization: A universal concept in nonlinear sciences. Cambridge: Cambridge University Press, 2003. P. 433
- Kuznetsov N. V., Blagov M. V., Alexandrov K. D. et al. [Lock-in range of classical PLL with piecewise-linear phase detector characteristic] Differencialnie Uravnenia i Protsesy Upravlenia. 2019. Vol. 3. P. 74-89
- Raznoglazova J. V., Plotnikov S. A. [Bifurcation and Synchronization Control of Two Coupled Two-dimensional Hindmarsh-Rose Systems] Differencialnie Uravnenia i Protsesy Upravlenia. 2020. Vol. 4. P. 127-140
- Bergner A., Frasca M., Sciuto G. et al. Remote synchronization in star networks. Phys. Rev. E. 2012. Vol. 85. P. 026208
- Kuptsov P. V., Kuptsova A. V. Radial and circular synchronization clusters in extended starlike network of van der Pol oscillators. Communications in Nonlinear Science and Numerical Simulation. 2017. Vol. 50. P. 115-127
- Kuptsov P. V., Kuptsova A. V. Indirect synchronization control in a starlike network of phase oscillators. Proc. of SPIE. 2018. Vol. 10717. P. 107172G-1
- Burkin I. M. [The Method of Transfer to the Derivative Space: 40 Years of Evolution] Differencialnie Uravnenia i Protsesy Upravlenia. 2015. Vol. 3. P. 51-93. 14 . Oseledets V. I. A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems, Trans. Moscow Math. Soc. 19, 1968, 197-231. Moscov. Mat. Obsch. 19, 1968, 179-210
- Pikovsky A., Politi A. Lyapunov exponents: a tool to explore complex dynamics. Cambridge University Press, 2016. P. 295
- Kuznetsov N. V., Leonov G. A., Mokaev T. N. et al. Finite-time Lyapunov dimension and hidden attractor of the Rabinovich system. Nonlinear Dynamics. 2018. Vol. 92. No 2. P. 267-285
- Golub G. H., van Loan C. F. Matrix computations. The Johns Hopkins University Press, Baltimore, MD, 1996. P. 694