A Semi-analytical Investigation into the Dynamics of the Abrasive Machining of Deep Cylindrical Holes Accounting for the Memory Effects in the Frictional Interaction
Author(s):
Aleksandra Viktorovna Grezina
N.Lobachevskii National State University of Nignii Novgorod
Nizhny Novgorod, Gagarina Prospect,23
candidate of physical and mathematical sciences
associate professor
aleksandra-grezina@yandex.ru
Vladimir Semenovith Metrikin
N.Lobachevskii National State University of Nignii Novgorod
Nizhny Novgorod, Gagarina Prospect,23
candidate of physical and mathematical sciences
associate professor
v.s.metrikin@mail.ru
Adolf Grigorevith Panasenko
N.Lobachevskii National State University of Nignii Novgorod
Nizhny Novgorod, Gagarina Prospect,23
candidate of physical and mathematical sciences
associate professor
a.g.panasenko@yandex.ru
Abstract:
In this paper we present a semi-analytical methodology of the mathematical
modelling of abrasive machining of deep cylindrical holes. The modelling accounts
for the memory effects in the frictional interaction which governs the process.
The mathematical model is presented in the form of a non-autonomous system of
differential-difference equations of variable structure. The model is investigated
using the mapping of the Poincare surface, boundaries of which vary in time
in accordance with the functional dependence of the coefficient of static friction.
To this end we developed an original semi-analytical approach to identify
the fixed points that correspond to periodic motions of an arbitrary complexity.
The obtained bifurcation diagrams enabled an in-depth analysis of the main
regimes of abrasive machining in the presence of memory effects in the
frictional interaction. These regimes are not present when the memory effects
are unaccounted for. The mechanism of the existence of not perfectly smooth
surfaces resulting from the honing of cylindrical surfaces (as observed
in physical experiments) is discovered.
Keywords
- abrasive machining
- bifurcation diagram
- chaos
- Dynamical systems of variable structure
- friction with memory
- honing of cylindrical holes
- mathematical model
- numerical modelling
- Poincare maps
- stability
References:
- Naerman M. S., Gorlov V. V. Active control during honing. - " Machine tools and tools", 1962, No. 7, pp. 21-22
- Yu. L. Nedelin (1971) Investigation of the process of diamond honing of steels. Abstract of dissertation for the degree of candidate of technical sciences, Kharkiv, Kharkiv Polytechnic Institute, 1971. - 23 p. Specialty 05. 17
- Orlov P. N. Technological assurance of the quality of parts by fine-tuning methods. - M . : mechanical engineering, 1988, - 384 p
- Ostrovsky V. I. Theoretical foundations of the grinding process. - L . : Publishing house Leningrad. University, 1981 . - 144 p
- Sokolov S. P. Fine grinding and lapping. M. -L. 6 Mashgiz, 1961 . - 88 p. (Grinder's Library, Issue 9)
- Voronov S. A., Fatalchuk A. V. Modeling of dynamic processes of vibroabrasive machining of deep holes // Izv. RAS MTT -2000 -No 6 - pp
- Voronov S. А., Gouskov А. М., Batzer S. A. Modeling vibratory drilling dynamics//Trans ASME Journal of Vibration and Acoustics. - 2001 - V. 123, N4 -P. 435-443
- Nonconservative Oscillations of a Tool for Deep Hole Honing /A. M. Gouskov, S. A. Voronov, E. A. Butcher et al. // Communications in Nonlinear Science and Numerical Simulation -2006. -Vol. 11, N6 - P. 685-708
- Voronov S. A., Bobrenkov O. A. The dynamics of the honing process and its influence on the shape errors when machining holes // Proceedings of higher educational institutions of mechanical engineering -2008 - №4 - pp. 10-29
- Voronov S. A. Influence of dynamics on the process of hole formation during honing // Problems of mechanical engineering and machine reliability - 2008- № 3 - P. 75-83
- Influence of honing dynamics on surface formation / S A. Voronov, A M Gouskov, E A Butcher et al // Proceedings of DETC'03 ASME Design Engineering Technical Conference - Chicago (Illinois), 2003. -P. 1-7
- Simulation of machined surface formation while honing / S. A. Voronov, A M Gouskov, E A Butcher et al // Proceedings of IMECE 2004 The Influence of Process Dynamics on Traditionally Machined Surface - Anaheim (California), 2004. - P. l-8
- Voronov S. A., Guskov A. M. Investigation of nonlinear spatial vibrations of a deep drilling tool // Problems of Applied Mechanics, Dynamics and Strength of Machines - Moscow: Izd-vo MGTU im. N. E. Bauman-2005. - S. 88-111
- Voronov S. А., Gouskov А. М., Batzer S. A. Dynamic Stability of Rotating Abrasive Tool for Deep Hole Honing // Proceedings of DETC'01 ASME Design Engineering Technical Conference - Pittsburgh, 2001. - P. 1-8
- Voronov S. A., Gouskov A. M. Dynamic Models Generalization of Manufacturing Systems with Single-Point Cutting Considering Equations of New Surface Formation // Proceedings of 2nd Workshop on Nonlinear Dynamics and Control of Mechanical Processing - Budapest (Hungary), 2001. - P. 1-10
- L. A. Igumnov, V. S. Metrikin, A. V. Grezina, A. G. Panasenko The effect of dry friction forces on the process of dielectric wafer grinding. J. Vibroengineering PROCEDIA. V. 8, 2016. C. 501-505
- Ishlinsky A. Yu., Kragelsky I. V. On jumps under friction, Zh. tech. physics. 1944. E. 14. Issue 4/5. S. 276-282
- Kashchenevsky L. Ya. Stochastic Self-Oscillations in Dry Friction // Inzh. -Fiz. 1984. Vol. 47. N 1. S. 143-147
- Vetyukov M. M., Dobroslavsky S. V., Nagaev R. F. Self-oscillations in a system with a dry friction characteristic of hereditary type // Izv. Academy of Sciences of the USSR. MTT. 1990. No. 1. C. 23-28
- Metrikin V. S., Nagaev R. F., Stepanova V. V. Periodic and stochastic self-oscillations in a system with dry friction of hereditary type // PMM, 1996. V. 60. Issue 5. S. 859-864
- Zaitsev M. V., Metrikin V. S. On the theory of a non-autonomous dynamical system with friction of hereditary type // Bulletin of the Nizhny Novgorod University. N. I. Lobachevsky, 2014, No. 4 (1), pp. 470-475
- LEINE R. I., VAN CAMPEN D. H. and DE KRAKERA. Stick-Slip Vibrations Induced by Alternate Friction Models // Nonlinear Dynamics 16: 41-54, 1998
- LEINE R. I., VAN CAMPEN D. H. and DE KRAKER Approximate Analysis of Dry-Friction-Induced Stick-Slip Vibrations by a Smoothing Procedure // Nonlinear Dynamics 19: 1999, С. 157-169
- Leine R. I., van Campen D. H. Discontinuous fold bifurcations in mechanical systems // Archive of Applied Mechanics 72 (2002). Р. 138-146
- Yang Liu, Ekaterina Pavlovskaia, Marian Wiercigroch, Zhike Peng. Forward and backward motion control of a vibro-impact capsule system// International Journal of Non-Linear Mechanics 70 (2015), p. 30-46
- LeineR. I., ∗, van Campenb D. H. Bifurcation phenomena in non-smooth dynamical systems European Journal of Mechanics A/Solids 25 (2006) p. 595-616
- Luo G. W. ∗, Lv X. H., Ma L. Periodic-impact motions and bifurcations in dynamics of a plastic impact oscillator with a frictional slider. European Journal of Mechanics A/Solids 27 (2008). p. 1088-1107
- Feigin M. I. Forced oscillations of systems with discontinuous nonlinearities. - M . : Nauka, 1994 . - 285 p
- Shuster G. Deterministic chaos: Introduction: Per. from English - M . : Mir, 1988 . - 237 p
- Voronov S. A. Development of mathematical models and methods for analyzing the dynamics of processes of abrasive machining of holes / Abstract of the thesis for the degree of Doctor of Technical Sciences. Moscow. 2008. 35 p
- Neimark Yu. I. The method of point mappings in the theory of nonlinear oscillations. M . : LIBROKOM, 2010 . - 472 p
- Ed. Orlov P. N. A quick guide to the metalworker. - M . : Mashinostroenie, 1986 . - 960 p
- Novikov N. V., Klimenko S. A. Honing. Superhard materials tools. - M . : Mashinostroenie, 2014 . - 608 p