ISSN 1817-2172, рег. Эл. № ФС77-39410, ВАК

Differential Equations and Control Processes
(Differencialnie Uravnenia i Protsesy Upravlenia)

Nonlinear Effects in the Theory of Impurity Diffusion in Solids

Author(s):

Alekcandra Viktorovna Grezina

Lobachevsky State University of Nizhny Novgorod
candidate of physical and mathematical sciences
associate professor

aleksandra-grezina@yandex.ru

Vladimir Semenovith Metrikin

Lobachevsky State University of Nizhny Novgorod
candidate of physical and mathematical sciences
associate professor

v.s.metrikin@mail.ru

Adolf Grigoiyevith Panasenko

Lobachevsky State University of Nizhny Novgorod
candidate of physical and mathematical sciences
associate professor

a.g.panasenko@yandex.ru

Abstract:

We analyze the limit of applicability of the macroscopic theory of impurity diffusion in solids based on Fick's first law, with an additional assumption that the diffusion coefficient does not depend on the impurity concentration. It is shown that this assumption contradicts the law of conservation of impurity particles and is approximate and may be used for the studies in the region of small concentration changes. A non-contradictory new form of the diffusion law is found, which leads to non-linear non-autonomous differential equations. New results of numerical and analytical study of the differential equation with fixed concentration at the boundary and with zero initial conditions are presented for a one-dimensional problem (semi-infinite region). An exact finite limit is found for the distance over which diffusing particles travel in a given time. In classical macroscopic theory the distance is infinite. An analytical solution for the non-autonomous nonlinear differential equation with an additional simplification is obtained, which differs greatly in its form from the classical one, but gives qualitatively similar results. The presented results of numerical calculations of impurity concentration which replace the known solutions obtained in the classical theory make it possible to obtain the area of applicability and improve the accuracy of calculations according to the classical theory.

Keywords

References:

  1. Gottstein G. Physical and chemical bases of material science. Per. with English. / Mr. Gottstein. — Moscow: BINOM, Laboratory of knowledge, 2011. - 400 p
  2. Mehrer, H. Diffusion in solids. Per. with English. / H. Merer. - Moscow: Intellect, 2011. - 536 p
  3. A. V. Zemskov, D. V. Tartakovskii Polar-symmetric problem of the elastic diffusion for multi-component environment. Problems of strength and plasticity. 2018. T. 80. № 1
  4. Theory and technology of nitriding / Yu. M. Lakhtin, Ya. d. Kogan, G. I. shpis, and Z. Bemer. — Moscow: Metallurgy, 1991. 320 p
  5. Lakhtin Yu. M. Chemical-heat treatment of metals /Yu. M. Lakhtin and B. N. Arzamasov. - Moscow: Metallurgy, 1985. - 256 p
  6. The process of mutual diffusion in alloys / I. B. Borovskii, K. P. Gurov, I. D. Marchukova, J. E. Ugaste. - Moscow: Nauka, 1973. - 360 p
  7. Gurov K. P. Mutual diffusion in multiphase metallic systems: a tutorial / K. P. Gurov, B. A. Kartashkin, and Yu. e. Ugaste. - Moscow: Nauka, 1981. - 350 p
  8. Popov A. A. Theoretical bases of chemical and thermal treatment of steel / A. A. Popov. - Moscow: Metallurgizdat, 1962. -120 p
  9. Cobble R. //J. Appl. Phys. 1963. V. 34. P. 1679
  10. Geguzin Y. E. Physics of sintering. - M. : Nauka. 1976
  11. Gorelik S. S. recrystallization of metals and alloys. - M.; Metallurgy. 1978
  12. Bokshtein S. Z., S. S. Ginzburg, S. T. Kishkin, Razumovskiy I. M., Stroganov, B. Autoradiography of interfaces and structural stability of the alloys. -M. : Metallurgy. 1987. 272 S
  13. J. Pout. Tu K., Meyer J. Thin film. Mutual diffusion and reactions.; Per. with English. - M.; Mir. 1982. 338 S
  14. Glickman, E. E., Nathan M. //J. Appl. Phys. 1999. V. 85. P. 3185
  15. Gleiter H. //Progress In Mater. Sci. 1989. V33 (4). P. 223
  16. Grain boundary diffusion and properties of nanostructured materials. / Ed. Yu. R. Kolobov, R. Z. Valieva. -Novosibirsk: Nauka. 2001. 232 S
  17. Baltex B. I. Diffusion in semiconductors. M. GOS. Izd-vo Fiz. -Mat. lit., 1961. 462 s
  18. Waxman, Y. F., Nizuc Y. A., V. V. Yatsun, A. S. Nasibov, P. V. Shapkin Optical absorption and diffusion of iron in ZnSe monocrystals // Physics and technics of semiconductors. 2010. Vol. 44. issue. 4. P. 463-466
  19. Umit Demirbas, Alphan Sennaroglu. Mehmet Somer. Synthesis and characterization of diffusion-doped Cr2+: ZnSe and Fe2+: ZnSe // Optical Materials. 2006. V28. P. 231-240
  20. Il'ichev N. N., Shapkin P. V., Gulyamova, E. S., Kulevi L. A., Nasibov A. S. Determination of the diffusion coefficient of Fe2+ in single-crystal ZnSe // Inorganic materials. 2010. Vol. 46. No. 2. P. 149-153
  21. Rusakov G. M., Lobanov M. L., Larionov, K. V. Calculation of impurity diffusion coefficients by decomposition of the concentration profile in the Fourier series//Physics of metals and metallography. 2001. volume 91. p. 14-16
  22. Tikhonov A. N., Samarskiy A. A. equations of mathematical physics. M. " Nauka ". Chapters'. ed. Fiz. -Mat. lit., 1966. 724 p
  23. Igumnov L. A., Grezina A. V., Metrikin V. S., Panasenko A. G. Numerical - analytical modeling of diffusion processes in limited multicomponent solids. Problems of strength and plasticity. Publishing house of the Nizhny Novgorod University. T. 80, No. 3, 2018. S. 336-348
  24. Kucheruk I. M., Gorbachuk I. T., Lutsik P. P. General course of physics. - Kiev: Tekhnika, 2006. - T. 2
  25. Kamke E. Handbook of ordinary differential equations - M. : Nauka, 1963. - 703 p
  26. Landau L. D., Lifshitz E. M. Hydrodynamics. - M. : Nauka, 1986. - 736 p
  27. Hartman F. Ordinary differential equations. - M. : Mir, 1970. - 720 p

Full text (pdf)