ISSN 1817-2172, рег. Эл. № ФС77-39410, ВАК

Differential Equations and Control Processes
(Differencialnie Uravnenia i Protsesy Upravlenia)

Computer-oriented Tests for Hyperbolicity and Structural Stability of Dynamical System

Author(s):

George Osipenko

Professor of Department of Applied Mathematics
Sevastopol Branch of Lomonosov Moscow State University, Crimea, Russia.

george.osipenko@mail.ru

Abstract:

A diffeomorphism f is hyperbolic on a chain-recurrent set if the Morse spectrum does not contain zero. The symbolic image is a directed graph approximating a dynamical system. The chain-recurrent set is localized using this graph. The symbolic image of the differential allows us to estimate the Morse spectrum. A diffeomorphism f is structurally stable if the dual differential has only trivial bounded trajectories. The symbolic image of the dual differential makes it possible to check the absence of bounded trajectories of the dual differential.

Keywords

References:

  1. V. M. Alekseev. Symbolic Dynamics. 11th Mathematical School. Kiev, 1976 (in Russian)
  2. A. A. Andronov, L. S. Pontryagin. Rough Systems. Reports of the USSR Academy of Sciences. v. 14, no. 4 (1937), 247-250 (in Russian)
  3. V. Avrutin, P. Levi, V. Schanz, D. Fundinger, and G. Osipenko. Investigation of dynamical systems using symbolic images: efficient implementation and applications. International J. of Bifurcation and Chaos, v. 16 (2006), no. 12, 3451-3496
  4. I. U. Bronshtein. Nonautonomous dynamical system. Kishinev, Shtinitsa, 1984 (in Russian)
  5. J. Cochet-Terrason, G. Cohen, S. Gaubert, M. McGettrick, J. -P. Quadrat. Numerical computation of spectral elements in max-plus algebra. IFAC Conference on System Structure and Control, July 8-10 1998
  6. M. Karp. A characterization of the minimum mean-cycle in a digraph. Discrete Mathematics, 23 (1978), 309-311
  7. F. Colonius, and W. Kliemann. The Dynamics of Control. Birkhauser, 2000
  8. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein. Introduction to Algorithms, MIT Press, Cambridge, 2002
  9. D. Fundinger. Investigating Dynamics by Multilevel Phase Space Discretization. PhD thesis, Stuttgart University, 2006
  10. L. Georgiadis, A. V. Goldberg, R. E. Tarjan, R. F. Werneck. An experimental study of minimum mean cycle algorithms. Proc. 6th International Workshop on Algorithm Engineering and Experiments, ALENEX 2009, 1-13
  11. K. Ikeda, H. Daido, O. Akimoto. Optical turbulence: chaotic behavior of transmitted light from a ring cavity. Phys. Rev. Lett., 1980, v. 45, 709-712
  12. S. P. Kuznetsov. Dynamic chaos. Moscow, 2006 (in Russian)
  13. S. Lefschetz. Differential Equations: Geometric Theory. Interscience Publishers, N. Y., 1957
  14. R. Mane. Characterization of AS diffeomorphisms. Lect. Notes in Math. v. 597 (1977), 389-394
  15. R. Mane. A proof of the C1 stability conjecture. Publ. Math. Inst. Hautes Etud. Sci., v. 66 (1988), 161-610
  16. V. V. Nemytskii and V. V. Stepanov. Qualitative Theory of Dynamical Systems. Princeton University Press, 1960. Russian original 1949
  17. G. S. Osipenko. On the symbolic image of a dynamical system. Boundary Value Problems. Interuniv. Collect. Sci. Works, Perm State Technical University, Perm, 1983, 101-105 (in Russian)
  18. George Osipenko. Symbolic Image, Hyperbolicity, and Structural Stability. Journal of Dynamics and Differential Equations, Vol. 15 (2003), Nos. 2/3, 427-450
  19. G. S. Osipenko, J. V. Romanovsky, N. B. Ampilova, and E. I. Petrenko. Computation of the Morse Spectrum. Journal of Mathematical Sciences, v. 120:2 (2004), 1155 - 1166
  20. George Osipenko. Dynamical Systems, Graphs, and Algorithms. Lectures Notes in Mathematics, 1889, Springer, Berlin, 2007
  21. G. S. Osipenko. The spectrum of the averaging of a function over pseudotrajectories of a dynamical system. Sbornik: Mathematics, 209:8 (2018), 1211-1233. London Mathematical Society, 2020
  22. E. I. Petrenko. Computer research of dynamic systems based on the symbolic image method. Ph. D. dissertation, St. Petersburg University, 2009
  23. J. Robbin. A structural stability theorem, Ann. Math. v. 94 (1971), no. 3, 447-493
  24. C. Robinson. Structural stability of C1-diffeomorphism. J. Differential Equations, v. 22 (1976), no. 1, 28-73
  25. I. V. Romanovskii (J. V. Romanovsky). Optimization and stationary control of discrete deterministic process in dynamic programming. Kibernetika, 2 (1967), 66-78 (in Russian); Engl. transl. : Cybernetics, 3 (1967)
  26. R. Sacker and G. Sell. Existence of dichotomies and invariant splitting for linear differential systems I-III. J. Diff. Eq. v. 15, no. 3 (1974), 429-458; v. 22, no. 2 (1976), 476-522
  27. D. Salamon, E. Zehnder. Flows on vector bundles and hyperbolic sets. Trans. AMS, v. 306 (1988), no. 2, 623-649
  28. G. Sell. Nonautonomous differential equations and topological dynamics. Trans. AMS, v. 127 (1967), 241-283
  29. J. Selgrade. Isolated invariant sets for flows on vector bundles. Trans. Amer. Math. Soc., v. 203 (1975), 359-390
  30. M. Shub. Stabilite globale de systems dynamiques. Asterisque, v. 56 (1978), 1-21
  31. J. G. Siek, Lie-Quan Lee, A. Lumsdaine. C++ Boost Graph Library. Addison-Wesley, Boston - San Francisco - New York, 2001
  32. R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing, 1972, 1, 146-160

Full text (pdf)