ISSN 1817-2172, рег. Эл. № ФС77-39410, ВАК

Differential Equations and Control Processes
(Differencialnie Uravnenia i Protsesy Upravlenia)

Chaotic Rossler Oscillator with Controlled Stimulus Phase

Author(s):

Alexander Petrovich Kuznetsov

Leading Researcher,Doctor of Physical and Mathematical Sciences, Professor
Kotelnikov Institute of Radio-Engineering and Electronics of RAS, Saratov Branch

apkuz@rambler.ru

Yuliya Viktorovna Sedova

Senior Researcher,Candidate of Physical and Mathematical Sciences
Kotelnikov Institute of Radio-Engineering and Electronics of RAS, Saratov Branch

sedovayv@yandex.ru

Nataliya Vladimirovna Stankevich

Senior Researcher,Candidate of Physical and Mathematical Sciences, Docent
Kotelnikov Institute of Radio-Engineering and Electronics of RAS, Saratov Branch

stankevichnv@mail.ru

Abstract:

The dynamics of the chaotic Rossler with external force the phase of which depends on the state of the system is investigated. The study was carried out with the method of charts of Lyapunov exponents that identify areas of different types of dynamics on the plane frequency - amplitude of the external force. Their transformation is discussed with an increase in the parameter responsible for the dependence of the phase on the dynamical variable. The possibility of quasi-periodic dynamics with the set of Arnold tongues was demonstrated. It is shown that with a strong dependence of the phase on the variable of the oscillator, a picture of regular tongues of periodic regimes embedded into the region of chaotic dynamics is formed. Tongues have a threshold in the value of the amplitude of external force. Inside the tongues there are several period-doubling bifurcations of the limit cycles and quasi-periodic dynamics are possible.

Keywords

References:

  1. Best R. Phase-Lock Loops: Design, Simulation and Application. 6th ed. McGraw-Hill, 2007. 489 p
  2. Shalfeev V. D., Matrosov V. V. Nelineynaya dinamika system fazovoy sinkhronizatcii [Nonlinear dynamics of the phase synchronization systems]. Nizhny Novgorod: Publishing of NNSU, 2013. 336 p. (in Russia)
  3. Kuznetsov N. V., Leonov G. A. Nonlinear Mathematical Models of Phase-Locked Loops. Cambridge Scientific Publisher, 2014. 218 p
  4. Kuznetsov N. V., Belyaev Y. V., Styazhkina A. V., Yuldashev M. V., Yuldashev R. V. Effect of PLL architecture on MEMS gyroscope performance. Gyroscopy and Navigation, 2022; 1(13): 44-52
  5. Seleznev E. P., Stankevich N. V. Complex dynamics of a non-autonomous oscillator with a controlled phase of an external force. Technical Physics Letters, 2019; (45): 57-60
  6. Krylosova D. A., Seleznev E. P., Stankevich N. V. Dynamics of non-autonomous oscillator with a controlled phase and frequency of external forcing. Chaos, Solitons & Fractals, 2020; (134): 109716
  7. Krylosova D., Seleznev E., Stankevich N. The simplest oscillators with adaptive properties. 2020. 4th Scientific School on Dynamics of Complex Networks and their Application in Intellectual Robotics (DCNAIR). IEEE, 2020: 140-143
  8. Belyustina L. N., Belykh V. N. O neavtonomnoy fazovoy sisteme uravneniy s malym parametrom, soderzhshchey invariantnye tory i grubye gomoklinicheskie krivye [On a non-autonomous phase system of equations with a small parameter containing invariant tori and rough homoclinic curves]. Izvestiya vuzov. Radiofizika, 1972; 7(15): 1039-1048. (in Russia)
  9. Belyustina L. N., Belykh V. N. O rezhymah raboty Sistema FAP s maloy inirtsionnostyu v tsepi upravleniya pri deystvii additivnoy garmonicheskoy pomehi [On the operating modes of the PLL system with low inertia in the control circuit under the action of additive harmonic interference]. Izvestiya vuzov. Radiofizika, 1972; 11(15): 1637-1643. (in Russia)
  10. Polczynski K, Bednarek M, Awrejcewicz J. Magnetic oscillator under excitation with controlled initial phase. Awrejcewicz J. (Ed. ), Kaź mierczak M. (Ed. ), Olejnik P. (Ed. ), Mrozowski J. (Ed. ). DSTA-2021. Conference Books-Abstracts. 2021; 400-401
  11. Krylosova D. A., Kuznetsov A. P., Sedova Y. V., Stankevich N. V. Avtokolebatelnye sistemy s upravlyaemoj fazoj vneshnego signala [Self-oscillating systems with controlled phase of external force]. Izvestiya vuzov. Prikladnaya nelineynaya dinamika. 2023; 5(31): 549-565. (in Russia)
  12. Rossler O. E. An equation for continuous chaos. Physics Letters A. 1976; 5(57): 397-398
  13. Kuznetsov N. V., Mokaev T. N., Vasilyev P. A. Numerical justification of Leonov conjecture on Lyapunov dimension of Rossler attractor. Communications in Nonlinear Science and Numerical Simulation. 2014; 4(19): 1027-1034
  14. Leonov G. A., Alexeeva T. A. Estimates of the Lyapunov dimension of attractors for generalized Rossler systems. Vestnik St. Petersburg University: Mathematics. 2014; 4(47): 154-158
  15. Kuznetsov N. V., Mokaev T. N., Kudryashova E. V., Kuznetsova O. A., Danca M. F. On lower-bound estimates of the Lyapunov dimension and topological entropy for the Rossler systems. IFAC-PapersOnLine. 2019; 18(52): 97-102
  16. Pikovsky A., Zaks M., Rosenblum M., Osipov G., Kurths J. Phase synchronization of chaotic oscillations in terms of periodic orbits. Chaos. 1997; 4(7): 680-687
  17. Rosa Jr E., Ott E., Hess M. H. Transition to phase synchronization of chaos. Physical review letters. 1998; 8(80): 1642
  18. Tereshko V., Shchekinova E. Resonant control of the Rossler system. Physical Review E. 1998; 1(58): 423
  19. Vadivasova T. E., Balanov A. G., Sosnovtseva O. V., Postnov D. E., Mosekilde, E. Synchronization in driven chaotic systems: Diagnostics and bifurcations. Physics Letters A. 1999; 1(253): 66-74
  20. Pikovsky A, Rosenblum M, Kurths J. Synchronization: a universal concept in nonlinear science. Cambridge University Press. 2001. 412 p
  21. Anishchenko V. S., Astakhov V., Neiman A., Vadivasova T., Schimansky-Geier L Nonlinear dynamics of chaotic and stochastic systems: tutorial and modern developments. Springer Berlin Heidelberg. 2007
  22. Balanov A. G, Janson N. B, Postnov D. E, Sosnovtseva O. Synchronization: from simple to complex. Springer. 2009. 426 p
  23. Zhusubaliyev Z. T., Laugesen J. L., Mosekilde E. From multi-layered resonance tori to period-doubled ergodic tori. Physics Letters A. 2010; 25(374): 2534-2538
  24. Mosekilde E., Laugesen J. L., Zhusubaliyev Z. T. The transition to chaotic phase synchronization. AIP Conference Proceedings. American Institute of Physics. 2012; 1(1468): 276-296
  25. Mosekilde E., Zhusubaliyev Z. T., Laugesen, J. L., Yanochkina O. O. On the structure of phase synchronized chaos. Chaos, Solitons & Fractals. 2013; (46): 28-37
  26. Kuznetsov A. P., Stankevich N. V., Chernyshov N. Yu. Stabilizatsiya haosa v sisteme Resslera impul’snym I garmonicheskim signalom [Stabilization pf chaos in the Rossler system by pulsed or harmonic signal]. Izvestiya vuzov. Prikladnaya nelineynaya dinamika. 2010; 4(18): 3-16. (in Russia)
  27. Stankevich N. Stabilization and complex dynamics initiated by pulsed force in the Rossler system near saddle-node bifurcation. Nonlinear Dynamics. 2024; 4(112): 2949-2967
  28. Benettin G., Galgani L., Giorgilli A., Strelcyn J. M. Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. Part 1: Theory. Meccanica. 1980; (15): 9-20
  29. Kuznetsov N., Leonov G., Mokaev T. et al. Finite-time Lyapunov dimension and hidden attractor of the Rabinovich system. Nonlinear dynamics. 2018; 2(92): 267-285
  30. Vitolo R., Broer H., Simó C. Quasi-periodic bifurcations of invariant circles in low-dimensional dissipative dynamical systems. Regular and Chaotic Dynamics. 2011; 1(16): 154-184

Full text (pdf)