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Abstract. The article deals with the problem of optimal measurement for a
semilinear descriptor system with a distinguished linear part and a nonlinear
term unsolved with respect to the derivative of the unknown vector function
with the Showalter–Sidorov initial condition. Basing on the methods of the
theory of optimal control we found sufficient conditions for the existence of
solutions of the optimal measurement problem – the problem of recovering a
dynamically distorted signal from a measuring device. An algorithm for finding
a numerical solution uses the methods of decomposition, penalty and the Ritz
method as well. The algorithm is based on the representation of the measure-
ment components by polynomials of a given degree, which allows reducing the
optimal control problem to a computer programming problem with respect to
the unknown coefficients of the polynomials. As an example of a sensor we
consider Fitz Hugh – Nagumo oscilloscope described by a nonlinear descrip-
tor system. Computational experiments for the considered sensor model are
presented.

Keywords: descriptor systems, optimal control problem, mathematical model
of the optimal measurement.
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1 Introduction

In the theory of dynamic measurements, an urgent problem is the problem of
reconstructing measurements from observation. The traditional approach [1]
to solving this problem is a method based on the theory of inverse problems
[2]. Another approach [3] is a research method based on the automatic control
theory [4]. In the meantime, the [5] approach has recently appeared, based on
the theory of optimal control of solutions of linear Sobolev-type equations [6, 7,
8]. Article [5] initiated a several researches on the study of optimal measurement
problems for linear deterministic and stochastic descriptor systems, also called
Leontief-type systems [10, 11]. The problem

J(y)→ min (1)

will be called the optimal measurement problem if it is based on the search for
the optimum of the target functional from the norm of the difference between
real (i.e., fixed on a measuring device) and virtual (i.e., found by means of a
computational algorithm) observations. Based on the ideas and approaches of
the theory of optimal measurement for linear descriptor systems and extend-
ing the methods of the theory of optimal control for semilinear Sobolev-type
equations, it will be possible to investigate optimal measurement problems for
semilinear descriptor systems. This approach allows one to take into account
nonlinear connections in sensors and expand the range of studied problems.

The main goal of our research is the numerical solution of the optimal
measurement problem (1) for semilinear descriptor systems

Lẋ(t) +Mx(t) +N(x(t)) = u(t), detL = 0, (2)

and
y(t) = Dx(t) (3)

with the Showalter–Sidorov initial condition

L(x(0)− x0) = 0. (4)

A numerical study of linear problems of optimal dynamic measurement with the
development of program algorithms was carried out in the works [12, 13, 14]. In
these works, algorithms of numerical methods for solving optimal control prob-
lems for linear Sobolev-type equations were adapted to the finite-dimensional
case. By modifying the algorithms of numerical methods developed for semilin-
ear equations of Sobolev type [15] for the case of semilinear descriptor systems,

Electronic Journal. http://diffjournal.spbu.ru/ 116



Differential Equations and Control Processes, N. 4, 2020

this article will build a numerical method algorithm for the problem (1) – (3).
The method obtained will be based on the methods of decomposition, penalty
and Ritz [15].

The research of the optimal measurement problem for semilinear descriptor
systems can be divided into three stages, each of which is one of the sections of
this article. At the first stage, a mathematical model of the investigated sen-
sor is created, the problem of finding the optimal measurement is set, and the
conditions are given under which there is a unique solution to this problem. At
the second stage, algorithms are constructed for approximate solutions to the
problem of finding the optimal measurement. And finally, at the third stage of
the optimal measurement problem research, on the basis of the algorithms of
the second stage, programs are created and computational experiments are per-
formed. In our case, we research the problem of optimal dynamic measurement
for the mathematical model of the Fitz Hugh – Nagumo oscilloscope [16, 17].

2 Optimal Measurement Dynamic Problem

Consider a semilinear descriptor system of the form (2) and (3) with
the Showalter–Sidorov initial condition (4). Here L,M are matrices of or-
der n (〈Lx, x〉 ≥ 0, CM‖x‖2 ≤ 〈Mx, x〉 ≤ CM‖x‖2, ‖ · ‖ is the norm in
Rn) representing the mutual influence of the state and state velocities of
the measuring sensor, respectively, and dim kerL = dim coker L; D is a
square matrix of order n, N is a nonlinear operator defined by the formula
〈N(x(t)), x(t)〉 = a1x

4
1 + a2x

4
2 + ... + anx

4
n, ai ≥ 0, where 〈·, ·〉 is the Eu-

clidean scalar product in Rn, x(t) = (x1(t), x2(t), ..., xn(t)) is vector functions
of the state; u(t) = (u1(t), u2(t), ..., un(t)) and y(t) = (y1(t), y2(t), ..., yn(t)) are
measurement vector functions and observations of the measuring sensor, respec-
tively.

Consider

coimL = {x ∈ X : [x, ϕ] = 0 ∀ϕ ∈ kerL\{0}},

where [·, ·] is a scalar product in L2(Rn). Let X = {x ∈ L4((0, T ),Rn) : ẋ ∈
coim L} is the state space, N = D[X ] is the observation space for some fixed
T ∈ R+, U = {u ∈ L 4

3
((0, T ),Rn} is the measurement space. Let us single out

in U is a closed, convex subset Uad is the set of admissible measurements.
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The main goal of this work is to minimize the values of the target functional

J(y) =

T∫
0

‖y(t)− y0(t)‖4
L4(Rn)dt, (5)

where y0(t) = (y01(t), y02(t), ..., y0n(t)) is an observation obtained during a full-
scale experiment. Note that, by virtue of (2), (3), the vector function y depends
on the functions x, u; therefore, we can assume that J(y) = J(x, u).

Consider the set

M = {x ∈ X : (I −Q)(Mx+N(x)) = (I −Q)u}. (6)

By virtue of the properties of the matrix L, there exists a projector Q along
coker L onto im L. Note that if x = x(t) is a solution to equation (2), then it
necessarily lies in the set M. The set M will be called the phase manifold of
equation (2).

Definition 1 A weak solution to equation (2) is a vector function x ∈ X sat-
isfying the condition

T∫
0

ϕ(t)

[
d

dt
Lẋ+Mx+N(x), w

]
dt =

T∫
0

ϕ(t)[u,w]dt, (7)

for any w ∈ X and any ϕ ∈ L2(0, T ). A solution to equation (2) is called a
solution to the Showalter–Sidorov problem if it satisfies (4).

It is required to find the optimal measurement ũ ∈ Uad that satisfies system
(2), (3), the Showalter–Sidorov initial condition (4), and

J(ũ) = min J(u), u ∈ Uad. (8)

Definition 2 A pair (x̃, ũ) ∈ X × Uad is called a solution to the optimal mea-
surement problem (1) – (4), if

J(x̃, ũ) = min
(x,u)

J(x, u),

where the pairs (x, u) ∈ X × Uad satisfy (2) – (4) in the sense of Definition 1.

Theorem 1 If M is a simple Banach C∞-manifold, then for any x0 ∈ X and
y0 ∈ N there is a unique solution x̃ ∈ Uad for which (8) holds.
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Proof. The main ideas of the proof are based on the reduction of the problem
we are investigating to the general problem of optimal control for semilinear
Sobolev-type equations. The conceptual proof of this Theorem is similar to the
proof of Theorem 2 in [15] into account the transition to the finite-dimensional
case.

�

The vector-function ũ = ũ(t) existing by Theorem 1 will, in what follows, be
called the exact optimal measurement. Note that the vector functions ũ = ũ(t)
and y = y(t) obtained as a result of applying Theorem 1 are virtual exact
optimal measurement and virtual exact optimal observation.

3 Algorithm for Numerical Method

Based on the theoretical results, an algorithm was developed for the approx-
imate solution of the optimal control problem (1) – (4), where the objective
functional has the form (5), based on modified decomposition and Ritz meth-
ods. Applying the decomposition method described in [15], we linearize system
(2), by introducing the function v = v(t), and obtain the equivalent Showalter–
Sidorov problem (2) – (4) for the system of equations:

Lẋ(t) +Mx(t) +N(v(t)) = u(t), detL = 0,

x(t) = v(t),

y(t) = Dx(t).

(9)

Then the solution (x, u) of problem (1) – (4) reduces to finding the triple
(x, v, u). Using the Ritz method, we represent the unknown functions v(t),

u(t), by the expansion v(t,H) =
H∑
h=0

aht
h, u(t,H) =

H∑
h=0

bht
h. Next, we seek

an approximate solution of the control problem (1), (4), (9) by the penalty
method described in [15]. We consider the equivalent control problem, where
the relation x → v is obtained for an approximate solution by introducing a
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new functional in the form

Jεθ (x, u) = θ

T∫
0

‖y(t)− y0(t)‖4
L4(Rn) dt+ (1− θ)

T∫
0

‖Dv(t)− y0(t)‖4
L4(Rn) dt+

+rε

T∫
0

‖x(t)− v(t)‖2
L2(Rn) dt, θ ∈ (0, 1),

(10)
where the penalty parameter rε = 1

ε → +∞ for ε→ +0.

The basic ideas of the algorithm were developed for the infinite-dimensional
case, based on the methods of penalty, Ritz and decomposition. In this arti-
cle, it is proposed to modify the already constructed algorithms for the finite-

dimensional case, for this we represent the space U as U =
H⊕
h=1

Uh, where

Uh = {uh ∈ L2((0, T );R)}. Denote by {ϕi} an orthonormal sequence of ba-
sis vectors. It is clear that this sequence can be chosen the same in every Uh.
We construct a finite-dimensional lineal Ukh = span{ϕi : i = 1, 2, . . . , k} and the

subspace Uk =
H⊕
h=1

Ukh . Being that L2(R) ⊂ L 4
3
(R) densely condtruct the subset

Ukad = Uk ∩ Uad. The subset Ukad ⊂ Uad may turn out to be empty, but in any
case it is closed and convex. It is clear that all members of the sequence {Ukad}
cannot be empty sets because of the obvious monotonicity of this sequence and
the fact that letting k go to infinity we obtain in the limiting case the set Uad.
The main stages of the algorithm after the transition to the finite-dimensional
case are presented in Fig. 1.

The program is designed to find a solution to the optimal measurement
problem, written in the Maple language using the Maple 2017 compiler. The
choice of the programming environment was due to the presence of a built-in
analytical computing apparatus and built-in tools for solving systems of ordi-
nary differential equations. The program is based on methods for solving opti-
mal control problems for semilinear Sobolev type equations by the Showalter–
Sidorov initial condition.

Data entry is carried out from the keyboard and is saved in a text file that
sets the calculation parameters in the rest of the program. Also, functions and
calculation coefficients are saved in separate files, from which the necessary data
arrays are loaded. The following data is used as input:

� the type of quality functional that will be accepted for calculation;
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Fig 1. Generalized scheme of the algorithm for calculating the solution of the optimal
measurement problem

� matrices L,M,D, size n× n, matrix of coefficients of polynomials u(t);

� array of observation data Y0, array X0 of initial values of the system state;

� the right boundary of the segment T on which the problem is considered.

When creating the program, methods of code optimization and calculations
were used. To simplify the writing of program code, we used such an oppor-
tunity of the Maple programming language as built-in and specified structures
for calculating results. Thus, the calculation formulas in the program text are
always visible to the user, which affects the understanding of the program code
and the ease of its modification. The program was also subjected to optimiza-
tion of the computation speed. Due to the fact that when calculating many
program procedures, the values of the function must be obtained not for an in-
finite number of values of variables, but mainly only for the integration nodes,
then, taking into account the maximum of the double integral in the formula
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of the quality functional, it is sufficient to save the number of values for m2,
where m+ 1 is the number integration nodes.

4 Computational Experiment

For illustration, consider the Fitz Hugh–Nagumo oscillator, a simplified diagram
of which is shown in Fig. 2. It represents an oscillatory RLC circuit with
a nonlinear connected to it (in the classical version is a tunnel diode), the
sum of the voltages acts on: a constant voltage supply of the circuit Vc and
an alternating external signal ξ(t). The current-voltage characteristic of the
element (3) can be approximated by a cubic polynomial: I = F (U) = aU 3−gU ,
where g is the negative differential conductivity, which allows “pumping energy”
in the oscillatory circuit.

Fig 2. Oscillator circuit Fitz
Hugh–Nagumo

If we add Krichter’s law, then we
get the circuit equations:

L
dI

dt
= Vc + ε(t)−RI − U,

C
dU

dt
= I − F (U).

Let us introduce the dynamic vari-
ables x1 = −U and x2 = I

g . For new
variables, the equations will be writ-
ten in the following form:

ε1ẋ1 = x1 − ax3
1 − x2,

ε2ẋ2 = γx1 − δx2 + β + η(t).
(11)

The system of equations (11) was in-
vestigated in various aspects, and in
many researches, along with the case ε1 > 0 or ε2 > 0, the case ε1 = 0 or ε2 = 0
is also discussed [18, 19]. The need to study cases when one of these parameters
is equal to zero is associated with the fact that the rate of change of one of the
components significantly exceeds the other.

It is required to find a solution to the problem (11), (3), (4), (8) under the
following conditions: ε1 = 2, ε2 = 0, α = 2, β = 0, δ = 1, H = 3, T = 1, θ =
1
2 , ε =

1

100
, x01 = 0, x02 = 0, y01(t) = t3 + 3t2 + 4t, y02(t) = 0, D = I. Let us
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write the system of equations (11) under the formulated conditions:{
dx1
dt = x1 − x2 − x3

1 + u1,

0 = 3x1 − x2 + u2.
(12)

We linearize system (11) by introducing the function v = v(t) and we obtain
the equivalent of problem (3), (4), (11), for the system of equations:

dx1
dt = x1 − x2 − v3 + u1,

0 = 3x1 − x2 + u2,

x1 = v.

(13)

Then the solution of problem (3), (4), (13), (8) reduces to finding a triple
(x, v, u), where x = (x1, x2), u = (u1, u2). Based on the Ritz method, we will
search v(t), u1(t), u2(t) in the form

ṽ(t) =
H∑
h=0

aht
n, ũ1(t) =

H∑
h=0

bht
h, ũ2(t) =

H∑
h=0

cht
h, (14)

considering that
ṽ(0) = 0. (15)

The condition (15) is introduced because v(t) and x1(t) must coincide at the
initial moment of time.

Let us solve problem (3), (4), (13), (8) with respect to unknowns ah,
bh, ch. Thus, the optimal control problem is reduced to finding the min-
imum of a function (10) of several variables with respect to ah, bh, ch.
As a result of calculations, an approximate solution of problem (3), (4),
(13), (8) was found (see Figs. 3 – 5), while the value of the functional
J = 2.20209929769759327. Note that a1 = 0.986982999441828, a2 =
0.583924671603152, a3 = 0.661978825001881, b0 = 1.40814481467641, b1 =
1.61882377202430, b2 = 3.59308220022607, b3 = 12.9361477673245, c0 =
−0.208877351370390, c1 = 1.25085783597124, c2 = 2.48199342550767, c3 =
−1.90233883350030.

In the problem of optimal measurement, we are not interested in the found
x̃(t), because the primary task is to restore the signal ũ(t) (Fig. 3), but since
we use the decomposition method due to the nonlinearity of the investigated
descriptor system, it is necessary in computational experiments to control the
sufficient proximity of x̃(t), ṽ(t), which is guaranteed by the smallness of the
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Fig 3. Proximity plot of virtual accurate optimal measurement and virtual accurate optimal
observation at t = 1

Fig 4. Graph of approaching the input signal Fig 5. Graphs of the approximation

of the model (virtual measurement) of the virtual exact optimal

to the input signal of the sensor observation to the incoming sensor signal

at t = 1 at t = 1

parameter ε, in connection with the fact that in computational experiments
this parameter can be adjusted. In our problem, for the given parameters, x̃(t),
ṽ(t) are close enough (Fig. 4), moreover, since D = I, then ỹ(t) should be close
to ṽ(t) (Fig. 5).
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