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Abstract. The question proposed in this paper is related to the study of the
preservation of uniform h-stability and uniform boundedness of time-varying non-
linear di�erential equations with a perturbation using Gronwall's inequalities and
Lyapunov's theory. Moreover, we show the linearization technique for the uniform
h-stability of a nonlinear system and give necessary and su�cient conditions for
the global boundedness of perturbed systems. The last part is devoted to the
study of the problem of h-stabilization for certain classes of nonlinear systems.
Some examples and simulations are given to illustrate the main results.
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1 Introduction

The stability theory plays an important role in the area of the �eld of control
systems and automation in engineering. There are di�erent types of stability
problems that arise in the study of dynamical systems, see [3, 9, 15] and has
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produced a vast body of important results. In this work, we will investigate the
concept of h-stability of time-varying nonlinear systems. This notion has been
presented by M. Pinto in [20, 21]. He introduced it for di�erential systems under
some perturbations and extended the study of exponential asymptotic stability to
a variety of reasonable systems called h-systems. This notion is an important de-
velopment of the exponential asymptotic stability within one common framework.
The various notions of h-stability include several kinds of known stability as uni-
form stability, uniform Lipschitz stability (see [8]) and polynomial stability whose
norm can increase not faster than exponentially. The most useful and general
approach for studying the nonlinear control systems is the theory of Lyapunov.
The relation between Lyapunov functions and various types of stability have been
discussed by many authors, see [1, 4, 6, 7, 10, 11, 14, 19]. The general problem of
motion stability includes two methods of stability analysis (the so-called lineariza-
tion method and direct method) was �rst published in 1892. The linearization
technique draws conclusions about a nonlinear system's local stability around an
equilibrium point from the stability properties of its linear approximation, this
result is proved in [14, 13] for the exponential stability. The direct method is
not restricted to local motion, it determines the stability properties of a nonlinear
system by constructing a scalar energy-like function for the system and examining
the function's time variation, see [12]. Together, the linearization method and the
direct method constitute the so-called Lyapunov stability theory.
Nevertheless, there are some systems that may be unstable and yet these sys-
tems may oscillate su�ciently near this state that its performance is acceptable.
To deal with this situation, we need a notion of stability that is more suitable
than Lyapunov stability such a concept is called uniform boundedness. For the
boundedness as well as the stability, the Lyapunov theory is very useful and the
relation between Lyapunov functions and various types of boundedness are very
similar to those between Lyapunov functions and various types of stability (see
[6, 14, 16, 17, 18, 24]). It is concerned with quantitative analysis as opposed to
Lyapunov analysis which is qualitative in nature.
The contribution of this paper is to construct a Lyapunov equation and use it to
show that an equilibrium point of a nonlinear system is uniformly h-stable if the
linearization of the system about that point has a uniform h-stable equilibrium
point at the origin. In addition, we use the Lyapunov theory to establish the
global uniform boundedness of nonlinear perturbed systems of di�erential equa-
tions. The topic of Laypunov stability of control systems described by a system
of di�erential equations was an interesting research area in the past decades (see
[2, 5]). Under appropriate growth conditions on the nonlinear perturbation, a
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state control feedback is established based on the global uniform h-stabilizability
of the nominal linear system to h-stabilize the perturbed control system using the
Riccati di�erential equation. The remainder of this work is organized as follows.
In Section 2, some preliminary results are summarized and the system descrip-
tion is given. The required assumptions and the statement of the main results are
provided in Section 3. Section 4 is devoted to control applications. Finally, some
numerical examples are given in Section 5 to demonstrate the e�ectiveness of the
method put forward. Our conclusion is given in Section 6.

2 General de�nitions

We will use the following notations throughout this paper: R+ = [0,+∞) and
Rn denotes the n-dimensional Euclidean space with appropriate norm ‖.‖. I and
AT (t) denote the identity matrix and the transpose of the matrix A(t), respec-
tively.
Consider the nonlinear system:

ẋ = f(t, x), x(t0) = x0, t ≥ t0 ≥ 0, (1)

where t ∈ R+ is the time, x ∈ Rn is the state, f : R+ × Rn → Rn is continuous
in (t, x) and locally Lipschitz in x.
Let x(t, t0, x0), or simply by x(t) the unique solution of (1) at time t0 starting
from the point x0.

Firstly, let us introduce some basic de�nitions which we need in the sequel.

De�nition 1 Assume that h : R+ → R∗+ is positive, continuous and bounded
function. The system (1) is said to be:

1. Uniformly h-stable if there exist constants c ≥ 1 and δ > 0, independent of
t0, such that for all t0 ∈ R+ and for all x0 ∈ Rn with ‖x0‖ ≤ δ, the solution
x(t) satis�es the estimation:

‖x(t)‖ ≤ c‖x0‖h(t)h(t0)−1, ∀ t ≥ t0. (2)

2. Globally uniformly h-stable if there exists constant c ≥ 1, such that for all
t0 ∈ R+ and all x0 ∈ Rn, the solution x(t) satis�es the estimation (2).

Here, h(t)−1 =
1

h(t)
·
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Remark 1 For some special cases of h, the h-stability coincides with known types
of stability:

i) If h(t) = a for a > 0, then the system (1) is stable.

ii) If h(t) = e−λt for λ > 0, then the system (1) is uniformly exponentially
stable.

iii) If h(t) =
1

(1 + t)γ
for γ ≥ 1, the system (1) is polynomially stable.

v) If h(t) is a strictly decreasing function, such that h(t) tends to 0 when t→
+∞, then the origin is uniformly asymptotically stable. More precisely, the
solutions of system (1) converge to the origin (i.e., lim sup

t→+∞
‖x(t)‖ = 0).

Consider now the linear time-varying system:

ẋ = A(t)x, x(t0) = x0, t ≥ t0 ≥ 0, (3)

where A(·) is n×nmatrix whose entries values are continuous functions of t ∈ R+.
The general solution of system (3) is given by:

x(t) = φ(t, t0)x0, x0 ∈ Rn, t ≥ t ≥ 0,

where φ(t, t0) is the state transition matrix associated with A(·). We de�ne the
norm of matrices by: ‖A‖ = max

‖x‖≤1
‖Ax‖.

Lemma 1 (See [20]) The system (3) is globally uniformly h-stable if and only if
there exist c ≥ 1 and a positive continuous bounded function h on R+, such that

‖φ(t, t0)‖ ≤ ch(t)h(t0)
−1, ∀ t ≥ t0 ≥ 0.

Remark 2 In linear systems there is the notion of an upper function which is
related to upper Lyapunov exponent (see [3, 13, 16, 17, 18, 19, 22, 23]).

De�nition 2 (See [23]) A bounded function µ(t) is an upper function for system
(3) if there exists a constant λ, such that

‖φ(t, s)‖ ≤ λ exp
(∫ t

s

µ(τ)dτ
)
, ∀ t ≥ s,

where φ(t, s) is the fundamental matrix of the system.
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Remark 3 In the case where µ is an upper function and

h(t)h(t0)
−1 = exp

(∫ t

t0

µ(τ)dτ
)

the considered system is h-stable and vice versa.

Remark 4 There is no relationship between the concept of polynomial stability
and exponential stability as shown in the following example.

Example 1 Consider the scalar equation:

ẋ = − 1

1 + t
x, x ∈ R, t ≥ 0. (4)

The state transition matrix φ(t, t0) is given by

φ(t, t0) =
t0 + 1

t+ 1
, ∀ t ≥ t0.

Then, the system (4) is polynomially stable. On the contrary, if we suppose that
(4) is exponentially stable, then there exists α > 0, such that

(t0 + 1) ≤ e−α(t−t0)(t+ 1), ∀ t ≥ t0.

For t0 = 0 and t −→ ∞, we obtain a contradiction and hence the system (4) is
not exponentially stable.

We prove now the following lemma which will be used later.

Lemma 2 Consider the nonlinear system (1) with f(t, 0) ≡ 0, for all t ∈ R+.

Let φ(τ ; t, x) be a solution of the system that starts at (t, x), and let φx(τ ; t, x) =
∂

∂x
φ(τ ; t, x) and

∥∥∥∥∂f∂x(t, x)
∥∥∥∥ ≤ L, where L is a positive constant. Then,

‖φ(τ ; t, x)‖2 ≥ ‖x‖2e−2L(τ−t).

Proof. Let φx(τ ; t, x) be the solution of

∂

∂τ
φx(τ ; t, x) =

∂f

∂x
(τ, φ(τ ; t, x))φx, φx(t; t, x) = I.

We have, ∣∣∣∣ ∂∂τ φT (τ ; t, x)φ(τ ; t, x)
∣∣∣∣ =

∣∣∣2φT (τ ; t, x)f(τ, φ(τ ; t, x))∣∣∣
≤ 2‖φ(τ ; t, x)‖‖f

(
τ, φ(τ ; t, x)

)
‖

≤ 2L‖φ(τ ; t, x)‖2.
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Then,
∂

∂τ
φT (τ ; t, x)φ(τ ; t, x) ≥ −2L‖φ(τ ; t, x)‖2. (5)

Setting ψ(τ) = −‖φ(τ ; t, x)‖ and using (5), we conclude (as in [14], Example 3.9,
pp. 103-104) that D+ψ(τ) ≤ ′Lψ(τ), with

D+ψ(t) = lim sup
h→0+

1

h

(
ψ
(
t+ h

)
− ψ(t)

)
.

By the comparison lemma (see [14], pp. 102-103), we deduce that

‖φ(τ ; t, x)‖2 ≥ ‖x‖2e−2L(τ−t).

�
In this work, it is worth to notice the origin is not necessarily an equilibrium point
for system (1). This brings us to the notion of global uniform boundedness.

De�nition 3 A solution of system (1) is said to be globally uniformly bounded
if for every η > 0 there exists θ = θ(η) > 0, such that

‖x0‖ ≤ η =⇒ ‖x(t)‖ ≤ θ, ∀ t ≥ t0 ≥ 0.

In order to solve the problem of such perturbed systems, we introduce the follow-
ing technical lemma, that will be crucial in studying the global uniform bound-
edness of solutions.

Lemma 3 Let $, ρ : R+ → R be continuous functions and ϕ : R+ → R+ is a
function, such that

ϕ̇(t) ≤ $(t)ϕ(t) + ρ(t), ∀ t ≥ t0. (6)

Then, for any t ≥ t0 ≥ 0, we have the following inequality

ϕ(t) ≤ ϕ(t0) exp
(∫ t

t0

$(v)dv
)
+

∫ t

t0

exp
(∫ t

s

$(v)dv
)
ρ(s)ds.

3 Basic results

3.1 Su�cient conditions for uniform boundedness

Lyapunov's direct method allows us to determine the stability of a system without
explicitly integrating the di�erential equation. This method is a generalization of
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the idea that if there is an appropriate function of a system that satis�es certain
conditions, then we can deduce the stability of this system. The following theorem
discuss su�cient conditions on the global uniform boundedness of solutions of
system (1) by using the Lyapunov's direct method.

Theorem 1 Suppose that h is a positive, bounded, continuous, decreasing on R+

with h′ exists and continuous on R+. Moreover, suppose that there exist constants
a1, a2, b > 0, k ≥ 0 and a function V (t, x) satisfying the following properties:

(i) a1‖x‖b ≤ V (t, x) ≤ a2‖x‖b, (t, x) ∈ R+ × Rn,

(ii) V̇ (t, x) ≤ h′(t)h(t)−1V (t, x)− kh′(t)h(t)−1, (t, x) ∈ R+ × Rn.

Then, the system (1) is globally uniformly bounded.

Proof. Let x(t) = x(t, t0, x0) be the solution of system (1) through (t0, x0) ∈
R+ × Rn. Then, it follows from condition (ii) that

V̇ (t, x) ≤ h′(t)h(t)−1V (t, x)− kh′(t)h(t)−1.

By using Lemma 3 and the decreasing of h, we get for all t ≥ t0 and x0 ∈ Rn the
following estimation

V (t, x) ≤ V (t0, x0)h(t)h(t0)
−1 − k

∫ t

t0

exp

(∫ t

s

h′(τ)h(τ)dτ

)
h′(s)h(s)−1ds

≤ V (t0, x0)h(t)h(t0)
−1 + k.

We deduce for all t ≥ t0 and all x0 ∈ Rn that

‖x(t)‖ ≤
(
a2

a1
‖x0‖bh(t)h(t0)−1 +

k

a1

) 1
b

. (7)

1. If b > 1, by using the fact that (λ1 + λ2)
ε ≤ λε1 + λε2, for all λ1, λ2 ≥ 0 and

ε ∈]0, 1[, one obtains from the decreasing of h,

‖x(t)‖ ≤
(
a2

a1

) 1
b

‖x0‖+
(
k

a1

) 1
b

. (8)

2. If b ≤ 1. Since (λ1 + λ2)
p ≤ 2p−1(λp1 + λp2), for all λ1, λ2 ≥ 0 and p ≥ 1, one

can get from the decreasing of h,

‖x(t)‖ ≤ 2
1−b
b

(
a2

a1

) 1
b

‖x0‖+ 2
1−b
b

(
k

a1

) 1
b

. (9)
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This yields that the solutions of system (1) are globally uniformly bounded.
Note that, if b > 1, the inequality (8) implies that

‖x(t)‖ −
(
k

a1

) 1
b

≤
(
a2

a1

) 1
b

‖x0‖.

Thus, for all t ∈ R+, if we take ‖x0‖ ≥
(
k

a1

) 1
b

, such that ‖x(t)‖ ≥
(
k

a1

) 1
b

, we

get that the solutions of system (1) approach to a compact set S, when t → ∞,
given by

S =

{
x ∈ Rn, ‖x‖ ≤

(
k

a1

) 1
b

}
.

If b ≤ 1 and by using a similar reasoning as above on (9), we can deduce that the
solutions of system (1) approach to a compact set S ′, when t→∞, given by

S ′ =

{
x ∈ Rn, ‖x‖ ≤ 2

1−b
b

(
k

a1

) 1
b

}
.

This completed the proof. �

3.2 Converse Theorem

Although Lemma 1 may not be very helpful as a stability test, we will see that it
guarantees the existence of a Lyapunov function for the linear system (3). That
is, if we can �nd a continuously di�erentiable, positive, bounded and symmetric
matrix P (t), which is a solution of a di�erential equation for some continuous
positive de�nite symmetric matrix Q(t), then V (t, x) is a Lyapunov function for
the system. If the matrix Q(t) is chosen to be bounded in addition to being sym-
metric, continuous, positive de�nite and if A(t) is continuous and bounded, then
it can be shown that when the origin is uniformly h-stable, there is a solution of
system (3) that possesses the desired properties.
In this section, we state a converse theorem when the origin is a globally uniformly
h-stable equilibrium point of the linear system (3), by de�ning a Lyapunov func-
tion that satis�es certain properties.

In what follows, we will denote by H the set of the functions h : R+ → [1,+∞)
with the property that:

H : ∃ M > 0,

∫ ∞
t

h(τ)2dτ ≤Mh(t), ∀ t ≥ 0.
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Theorem 2 Let the origin be globally uniformly h-stable equilibrium point of sys-
tem (3). Assume that h ∈ H with h′ exists and continuous on R+. Suppose that
A(t) is continuous and bounded on Rn. Let Q(t) be a continuous, bounded, posi-
tive de�nite and symmetric matrix. Then, there is a continuously di�erentiable,
bounded, positive and symmetric matrix P (t), which is the solution of the Riccati
equation:

Ṗ (t) = h′(t)h(t)−1P (t)− AT (t)P (t)− P (t)A(t)−Q(t). (10)

Proof. Assume that the system (3) is globally uniformly h-stable. Let φ(τ ; t, x)
be the solution of system (3) that starts at (t, x). Due to linearity, φ(τ ; t, x) =
φ(τ, t)x. Let the matrix P (t) de�ned by

P (t) = h(t)

∫ ∞
t

φT (τ, t)Q(τ)φ(τ, t)dτ. (11)

Since Q(t) is positive de�nite and bounded matrix, then there exist positive con-
stants k1 and k2, such that

k1I ≤ Q(t) ≤ k2I, ∀ t ≥ 0. (12)

On the one hand, we have

xTP (t)x ≤ k2h(t)

∫ ∞
t

‖φ(τ ; t, x)‖2dτ

≤ c2k2h(t)
−1

∫ ∞
t

h(τ)2dτ‖x‖2.

Thus,
xTP (t)x ≤ c2k2M = c1‖x‖2.

On the other hand, since A(t) is bounded, then there exists a positive constant
L, such that

‖A(t)‖ ≤ L, ∀ t ∈ R+.

From Lemma 2, we have

‖φ(τ ; t, x)‖2 ≥ ‖x‖2e−2L(τ−t).

xTP (t)x ≥ k1h(t)

∫ ∞
t

e−2L(τ−t)dτ‖x‖2

=
k1h(t)

2L
‖x‖2 ≥ 0, ∀ t ≥ 0.
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Therefore, P (t) is positive and bounded. In addition, the de�nition of P (t) shows
that it is symmetric and continuously di�erentiable. To calculate the di�erentiable
of P (t), we use the following property

∂

∂t
φ(τ, t) = −φ(τ, t)A(t).

Hence,

Ṗ (t) = h′(t)h(t)−1P (t) + h(t)

∫ ∞
t

[
∂

∂t
φT (τ, t)

]
Q(τ)φ(τ, t)dτ

+ h(t)

∫ ∞
t

φT (τ, t)Q(τ)

[
∂

∂t
φ(τ, t)

]
dτ −Q(t)

= h′(t)h(t)−1P (t)− AT (t)P (t)− P (t)A(t)−Q(t).

�

Theorem 3 Let the solutions of system (3) be globally uniformly h-stable with
h ∈ H and h′ exists continuous on R+. Suppose that A(t) is continuous and
bounded on Rn. Thus, there exists a function V (t, x) satisfying the following prop-
erties:

(i) ‖x‖2 ≤ V (t, x) ≤ (c1 + 1)‖x‖2, (t, x) ∈ R+ × Rn,

(ii) V̇ (t, x) ≤ h′(t)h(t)−1V (t, x), (t, x) ∈ R+ × Rn,

where c1 is a positive constant.

Proof. We choose a matrix Q(t) continuous, bounded, positive de�nite, symmet-
ric on R+, and there exists c2 > 0, such that

xT
(
Q(t) + h′(t)h(t)−1I − A(t)− AT (t)

)
x ≥ c2‖x‖2. (13)

The linear system is globally uniformly h-stable, then by Theorem 2 we can �nd
a matrix P (t) which is a solution of the Riccati equation (10). We de�ne the
Lyapunov function V : R+ × Rn → R+ by

V (t, x) = xTP (t)x+ ‖x‖2.

It is easy to verify that,
V (t, x) ≤ (c1 + 1)‖x‖2.
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Another,

V (t, x) ≥ k1h(t)

∫ ∞
t

e−2L(τ−t)dτ‖x‖2 + ‖x‖2

=
k1h(t)

2L
‖x‖2 + ‖x‖2 ≥ ‖x‖2.

Hence, the �rst inequality of the theorem is hold.
Now, we shall show (ii). By taking the derivative of V (t, x) along the trajectories
of the linear system (3), we get

V̇ (t, x) = ẋTP (t)x+ xT Ṗ (t)x+ xTP (t)ẋ+ xTAT (t)x+ xTA(t)x

= h′(t)h(t)−1V (t, x)−Q(t)‖x‖2 + A(t)‖x‖2 + xTAT (t)x

+ xTA(t)x− h′(t)h(t)−1xTx.

It follows from (13) that

V̇ (t, x) ≤ h′(t)h(t)−1V (t, x),

which prove (ii). This ends the proof. �

Remark 5 The above theorem is an extension of the global uniform exponential
stability in [14], for h(t) = e−βt with β > 0 and the polynomial stability, for

h(t) =
1

(1 + t)γ
with γ ≥ 1.

Corollary 1 Let the origin be globally uniformly h-stable equilibrium point of
system (3). Assume that h ∈ H and h′ exists continuous on R+. Suppose that
A(t) is continuous and bounded on Rn. If Q(t) = CT (t)C(t), where C(t) is a
continuous matrix in t ∈ R+, then the Riccati equation is given by

Ṗ (t) = h′(t)h(t)−1P (t)− AT (t)P (t)− P (t)A(t)− C(t)TC(t).

3.3 h-Linearized stability of nonlinear systems

The existence of Lyapunov functions for linear systems per Theorem 2 will now be
used to prove a linearization result and to determine the uniform h-stability of the
nonlinear system. In this section, the result of the preceding section is combined
to obtain one of the most useful results in Lyapunov stability theory namely:
linearization method. The advantage of this method lies in the fact that,
under certain conditions, it enables one to draw conclusions about a nonlinear
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system by studying the behavior of a linear system.
Consider the nonlinear non-autonomous system (1), where f : R+ ×D → Rn is
continuously di�erentiable and D is a domain that contains the origin. Suppose
that the origin is an equilibrium point of the system, with f(t, 0) = 0 and assume

that the Jacobian matrix

[
∂f

∂x

]
is uniformly bounded and Lipschitz on D, that

is, there exist positive constants L1 and L2, such that∥∥∥∥∂f∂x(t, x)
∥∥∥∥ ≤ L1, ∀ x ∈ D, ∀ t ≥ 0,∥∥∥∥∂f∂x(t, x1)−

∂f

∂x
(t, x2)

∥∥∥∥ ≤ L2‖x1 − x2‖, ∀ x1, x2 ∈ D, ∀ t ≥ 0.

We can write f(t, x) in the form

f(t, x) = f(t, 0) +
∂f

∂x
(t, z)x,

where z ∈]0, x[. Since f(t, 0) = 0, then we have

f(t, x) =
∂f

∂x
(t, z)x

=
∂f

∂x
(t, 0)x+

[
∂f

∂x
(t, z)− ∂f

∂x
(t, 0)

]
x

= A(t)x+ χ(t, x),

where A(t) =
∂f

∂x
(t, 0) and χ(t, x) =

[
∂f

∂x
(t, z)− ∂f

∂x
(t, 0)

]
x.

Therefore, we may approximate the nonlinear system (1) by its linearization in a
small neighborhood of the origin.
The next theorem states Lyapunov's indirect method for showing the uniform h-
stability of the origin in the non-autonomous case. We will see that, the uniform
h-stability of the linearized system re�ects the uniform h-stability of the nonlinear
system.

Theorem 4 Let the origin be an equilibrium point for the nonlinear system

ẋ = f(t, x), x(t0) = x0, t ≥ t0 ≥ 0, (14)

where f : R+ ×D → Rn is continuously di�erentiable with D = {x ∈ Rn/‖x‖ <

%}. Suppose that the Jacobian matrix

[
∂f

∂x

]
is bounded and Lipschitz on D, uni-

formly in t. Let

A(t) =
∂f

∂x
(t, x)

∣∣∣∣
x=0

.
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Then, the origin is uniformly h
1
2 -stable for system (14) if it is uniformly h-stable

for the linear system ẋ = A(t)x, with h ∈ H.

Proof. We can write the nonlinear system (14) as:

ẋ = A(t)x+ χ(t, x), (15)

such that χ de�ned on R+ ×D is continuous in (t, x), locally Lipschitz in x and
veri�es the following condition:

‖χ(t, x)‖ ≤ λ‖x‖2, ∀ x ∈ D, ∀ t ≥ 0, (16)

with λ is a positive constant. In addition, we assume that the linear system (3)
has a uniform h-stable equilibrium point at the origin, h ∈ H with h′ exists and
continuous on R+, and A(t) is continuous and bounded on Rn. Then, Theorem 2
ensures the existence of a continuously di�erentiable, bounded, positive and sym-
metric matrix P (t) that satis�es (10), where Q(t) is continuous, bounded, positive
de�nite and symmetric matrix that veri�es (13). By Theorem 3, there exists a
Lyapunov function V (t, x) having the properties (i) and (ii). The derivative of
V (t, x) along the trajectories of system (15) is given by:

V̇ (t, x) = ẋTP (t)x+ xT Ṗ (t)x+ xTP (t)ẋ+ ẋTx+ xT ẋ

≤ h′(t)h(t)−1V (t, x)− xTQ(t)x+ 2
(
‖P (t)‖+ 1

)
χ(t, x)‖x‖

+ AT (t)‖x‖2 + A(t)‖x‖2 − h′(t)h(t)−1‖x‖2.

By using the inequality (13), we get

V̇ (t, x) ≤ h′(t)h(t)−1V (t, x)− c2‖x‖2 + 2
(
‖P (t)‖+ 1

)
χ(t, x)‖x‖.

From condition (16) and the property on P (t), we obtain

V̇ (t, x) ≤ h′(t)h(t)−1V (t, x)−
(
c2 − 2ρλ

(
c1 + 1

))
‖x‖2, ∀ ‖x‖ < ρ.

By choosing ρ < min

{
%,

c2

2λ
(
c1 + 1

)} , we obtain
V (t, x) ≤ V (t0, x0)h(t)

1
2h(t)−

1
2 .

Therefore, for all t ≥ t0 and all x0 ∈ D the solution x(t) of system (15) is as
follows:

‖x(t)‖ ≤
√

(c1 + 1)‖x0‖h(t)
1
2h(t0)

− 1
2 ,

which ensures that V̇ (t, x) is negative de�nite in ‖x‖ < ρ. Hence, we conclude
that the origin of the nonlinear system (14) is uniformly h

1
2 -stable. �
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Remark 6

- The previous theorem is a generalization of uniform exponential stability,
that is, the nonlinear system is uniformly exponentially stable if the linearized
system is uniformly exponentially stable (see [14], Theorem 4.13).

- The linearization result is hold for polynomial stability: h(t) =
1

(1 + t)γ
with

γ ≥ 1.

Corollary 2 If the nonlinear system is autonomous, that is, ẋ = f(x), we can
draw conditions about the stability of the origin as an equilibrium point for the
system by investigating the stability for the linearization of the system, where

A =
∂f

∂x

∣∣∣∣
x=0

, such that h(t) = e−βt, for all t ∈ R+ and β > 0.

3.4 Boundedness of solutions of perturbed systems

We can use Lyapunov's indirect method to show the global uniform boundedness
of the solutions. We consider a nonlinear perturbed system and we give su�-
cient conditions on the perturbed term. Our conditions are expressed as relations
between the Lyapunov function and the interconnection term.

Theorem 5 Consider the perturbed system:

ẋ = A(t)x+ χ(t, x), x(t0) = x0, t ≥ t0 ≥ 0, (17)

where A(t) is continuous and bounded on Rn, χ : R+ × Rn → Rn is continuous
in (t, x), locally Lipschitz in x and satis�es the following assumption:

‖χ(t, x)‖ ≤ ϕ(t)‖x‖+ µ(t), ∀ x ∈ Rn, ∀ t ≥ 0,

with ϕ and µ are non-negative continuous integrable functions on R+. Assume
that the system (3) is globally uniformly h-stable with h ∈ H is decreasing and h′

exists continuous on R+, then the solutions of system (17) are globally uniformly
bounded.

Proof. We have the system (3) is globally uniformly h-stable, A(t) is continuous
and bounded on Rn. Let Q(t) be a continuous, bounded, positive de�nite and
symmetric matrix, such that (13) is hold. Then, Theorem 3 ensures that there
exists a Lyapunov function candidate

V (t, x) = xTP (t)x+ ‖x‖2
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that satis�es the certain properties. The derivative of V (t, x) along the trajecto-
ries of system (17) is as follows:

V̇ (t, x) = h′(t)h(t)−1V (t, x)− xTQ(t)x+ h′(t)h(t)−1xTx+ 2xT
(
‖P (t)‖+ 1

)
χ(t, x)

+ xTA(t)x+ xTAT (t)x.

Using the inequality (13), we get

V (t, x) ≤ h′(t)h(t)−1V (t, x) + 2
(
c1 + 1

)
ϕ(t)‖x‖2 + 2

(
c1 + 1

)
µ(t)‖x‖

≤
(
h′(t)h(t)−1 + 2

(
c1 + 1

)
ϕ(t)

)
V (t, x) + 2

(
c1 + 1

)
µ(t)

√
V (t, x).

Put, $(t) =
√
V (t, x), then

$̇(t) =
V̇ (t, x)

2
√
V (t, x)

·

This yields,

$̇(t) ≤
(1
2
h′(t)h(t)−1 + 2

(
c1 + 1

)
ϕ(t)

)
$(t) + 2

(
c1 + 1

)
µ(t).

By Lemma 3 and the decreasing of h, we have for all t ≥ t0

$(t) ≤ $(t0) exp
(
2
(
c1 +1

)
M2

)
h(t)

1
2h(t0)

− 1
2 +2

(
c1 +1

)
exp

(
2
(
c1 +1

)
M2

)
M1,

where M1 =

∫ ∞
0

µ(s)ds and M2 =

∫ ∞
0

ϕ(s)ds. Therefore,

‖x(t)‖ ≤
√
(c1 + 1) exp

(
2
(
c1 + 1

)
M2

)
‖x0‖h(t)

1
2h(t0)

− 1
2

+ 2
(
c1 + 1

)
exp

(
2
(
c1 + 1

)
M2

)
M1.

Consequently, the solutions of system (17) are globally uniformly bounded.
From the decreasing of h, we obtain

‖x(t)‖ − 2
(
c1 + 1

)
exp

(
2
(
c1 + 1

)
M2

)
M1 ≤

√
(c1 + 1) exp

(
2
(
c1 + 1

)
M2

)
‖x0‖.

Hence, for all t ∈ R+, if we take ‖x0‖ ≥ 2
(
c1 + 1

)
exp

(
2
(
c1 + 1

)
M2

)
M1, such

that ‖x(t)‖ ≥ 2
(
c1 +1

)
exp

(
2
(
c1 +1

)
M2

)
M1, then the solutions of system (17)

approach, when t goes to in�nity, to the compact set S de�ned by

S =
{
x ∈ Rn, ‖x‖ ≤ 2

(
c1 + 1

)
exp

(
2
(
c1 + 1

)
M2

)
M1

}
.
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�
As a particular case of the forgoing theorem, when ϕ(t) = 0 we obtain the fol-
lowing corollary.

Corollary 3 Consider the perturbed system (17) where A(t) is continuous and
bounded on Rn, χ is de�ned on R+×Rn continuous in (t, x) and locally Lipschitz
in x. Suppose that χ satis�es the following assumption:

‖χ(t, x)‖ ≤ µ(t), ∀ t ≥ 0, (18)

where µ is a non-negative continuous integrable function on R+. If the system (3)
is globally uniformly h-stable with h ∈ H is decreasing and h′ exists continuous
on R+, then the solutions of the perturbed system (17) are globally uniformly
bounded.

3.5 h-stabilization

Let us go to present the h-stabilizability problem of a nonlinear control system of
the form: {

ẋ = A(t)x+B(t)u(t) + F (t, x, u),

x(t0) = x0,
(19)

where x ∈ Rn is the state vector, u(t) ∈ Rm is the control input, A(t) ∈
Rn×n, B(t) ∈ Rn×m are matrices whose elements are continuous bounded func-
tions on R+. The function F : R+×Rn×Rm → Rn is continuous in (t, x, u) and
satisfying the following inequality:

‖F (t, x, u)‖ ≤ λ(t)‖x‖+ γ(t)‖u‖, ∀ x ∈ Rn, ∀ u ∈ Rm, ∀ t ∈ R+, (20)

with λ and γ are non-negative continuous integrable functions on R+. The cor-
responding system without perturbation called the nominal system is described
by {

ẋ = A(t)x+B(t)u(t),

x(t0) = x0,
(21)

De�nition 4 we say that the system (19) is stabilizable, if there exists at least a
continuous function u(t), such that the origin of the closed loop system (19) by
u(t) is asymptotically stable. u(t) is called a feedback.

De�nition 5 Let h : R+ → R∗+ be a continuous bounded function. The linear
control system (21) is globally uniformly h-stabilizable if there exist a feedback
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control system u(t) ∈ Rm and a constant c ≥ 1, such that for all t ≥ t0 and all
x0 ∈ Rn the solution x(t) of the closed-loop system satis�es the estimation:

‖x(t)‖ ≤ c‖x0‖h(t)h(t0)−1.

The goal of this section is to found a state feedback controller u(t), such that the
system (19) is globally uniformly h-stabilizable.

Theorem 6 Assume that the linear system ẋ(t) = A(t)x(t) is globally uniformly
h-stable with h ∈ H and h′ exists continuous on R+. We choose Q(t) continu-
ous, bounded, positive de�nite and symmetric matrix that veri�es (13), then the
Riccati di�erential equation (10) has a solution P (t) bounded, positive, symmet-
ric continuously di�erentiable matrix, and the nonlinear control system (19) is
h

1
2 -stabilizable by the feedback control

u(t) = −BT (t)P (t)x(t), t ≥ t0. (22)

Proof. Suppose that the linear system ẋ(t) = A(t)x(t) is globally uniformly h-
stable where A(t) is continuous and bounded on Rn. Then, Theorem 2 ensures the
existence of a continuously di�erentiable, bounded, positive and symmetric matrix
P (t) that satis�es the Riccati di�erential equation (10). Indeed, the derivative of
V (t, x) along the solutions x(t) of system (19) using the chosen feedback control
(22) is given by

V̇ (t, x) = ẋTP (t)x+ xT Ṗ (t)x+ xTP (t)ẋ+ ẋTx+ xT ẋ

= h′(t)h(t)−1V (t, x) + 2F (t, x, u)xTP (t) + uT (t)BT (t)P (t)x

+ xTP (t)B(t)u(t)− xTQ(t)x− h′(t)h(t)−1xTx+ xTAT (t)x+ xTA(t)x

+ uT (t)BT (t)x+ xTB(t)u(t) + 2F (t, x, u)xT

≤
(
h′(t)h(t)−1 + 2

(
c1 + 1

)(
λ(t) + c1γ(t)‖B‖∞

))
V (t, x),

where ‖B‖∞ = sup
t≥0
‖B(t)‖. Hence,

V (t, x) ≤ V (t0, x0)h(t)h(t0)
−1 exp

(
2
(
c1 + 1

) ∫ t

t0

(
λ(s) + c1γ(s)‖B‖∞

)
ds

)
≤ V (t0, x0)h(t)h(t0)

−1 exp
(
2
(
c1 + 1

)(
M1 + c1‖B‖∞

))
,

with M1 =

∫ ∞
0

λ(s)ds and M2 =

∫ ∞
0

γ(s)ds. Therefore,

‖x(t)‖ ≤ c‖x0‖h(t)
1
2h(t0)

− 1
2 ,
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where c =
√
(c1 + 1) exp

((
c1+1

)(
M1+ c1‖B‖∞

))
. This yields that the system

(19) is h
1
2 -stabilizable. The proof is completed. �

Next, we state another su�cient condition for the h-stabilizability of system (19)
in the case when the linear system ẋ = A(t)x is not globally uniformly h-stable,
but the associated linear control system (21) is globally uniformly h-stable.

Theorem 7 Assume that the linear control system (21) is h-stabilizable with
h ∈ H and h′ exists continuous on R+. Then the nonlinear system (19) is h

1
2 -

stabilizable.

Proof. Assume that the system (21) is h-stabilizable, then there exists K(t) ∈
Rm×n, such that

ẋ =
(
A(t) +B(t)K(t)

)
x = Â(t)x, ∀t ≥ t0 (23)

is globally uniformly h-stable. We choose Q(t) a positive, continuous, bounded
and symmetric matrix that satis�es (13), then we consider the Lyapunov function
V (t, x) = xTP (t)x + ‖x‖2 from Theorem 3. Hence, by taking the derivative of
V (t, x) along the solutions x(t) of system (19) using the chosen feedback u(t) =
K(t)x(t), we obtain

V̇ (t, x) = ẋTP (t)x+ xT Ṗ (t)x+ xTP (t)ẋ+ ẋTx+ xT ẋ

≤ h′(t)h(t)−1V (t, x) + 2F (t, x, u)‖P (t)‖‖x‖+ 2Â(t)‖x‖2 + 2F (t, x, u)‖x‖
≤
(
h′(t)h(t)−1 + 2

(
c1 + 1

)(
λ(t) + γ(t)‖K‖∞

))
V (t, x),

with ‖K‖∞ = sup
t≥0
‖K(t)‖. Thus,

V (t, x) ≤ V (t0, x0)h(t)h(t0)
−1 exp

(
2
(
c1 + 1

) ∫ t

t0

(
λ(s) + γ(s)‖K‖∞

)
ds

)
≤ V (t0, x0)h(t)h(t0)

−1 exp
(
2
(
c1 + 1

)(
M1 +M2‖K‖∞

))
with M1 =

∫ ∞
0

λ(s)ds and M2 =

∫ ∞
0

γ(s)ds. Therefore, for all t ≥ t0 and all

x0 ∈ Rn the solution of system (19) is given by:

‖x(t)‖ ≤ c‖x0‖h
1
2 (t)h(t0)

− 1
2 ,

where c =
√
(c1 + 1) exp

((
c1 + 1

)(
M1 +M2‖K‖∞

))
. This ends the proof. �
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Example 2 Consider the second order problem:
ẋ1 =

( −1
1 + t

− 1
)
x1 +

e−t

1 + t
u(t) +

x1e
−t

(1 + t2)
√
1 + x2

1

u(t)

ẋ2 =
( −1
1 + t

− 1
)
x2 +

1

1 + t2
x2 +

x1e
−t√

1 + x2
1

u(t), t ≥ 0
(24)

The above system is exactly the system (19), where

A(t) =

 − 1

1 + t
− 1 0

0 − 1

1 + t
− 1

 , B(t) =

 e−t

1 + t
0

 , x(t) =

(
x1(t)

x2(t)

)

and

F (t, x, u) =
1

1 + t2

(
x1

x2

)
+

x1√
1 + x2

1

 e−t

1 + t2

e−t

u(t).

The nominal system ẋ(t) = A(t)x(t) is globally uniformly h-stable with h(t) =
1

1 + t
· Then, for a matrix

Q(t) =


1

2(1 + t)
+ 1 0

0
1

2(1 + t)
+ 1

 ,

which solves the hypothesis (13), there exists a matrix P (t),

P (t) =

 1

2
0

0
1

2


satis�es the Riccati equation (10). Moreover, the function F satis�es the assump-

tion (20) with λ(t) =
1

1 + t2
and γ(t) =

√
2e−t.

We conclude that the conditions of Theorem 6 are hold. Therefore, the system
(24) is globally uniformly h

1
2 -stabilizable under the closed-loop linear feedback

u(t) = −BT (t)P (t)x(t) = − e−t

2(1 + t)
(x1(t) + x2(t)).

For simulation of system (24) we select the initial state
(
x1(0), x2(0)

)
= (1, 1).

The result of simulation is depicted in Figure 1.
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Figure 1: The trajectory of the state x(t) = (x1(t), x2(t)) of system (24).

3.6 Examples

In this section, we give some numerical examples and simulations to prove the
applicability of the theoretical results.

Example 3 Consider the scalar equation:

ẋ = − x

t+ sinx
+

2

1 + t
, x ∈ R, t ∈ R+. (25)

Setting, V (t, x) = x2 and h(t) =
1

(1 + t)2
, which is positive, bounded, continuous

and decreasing on R+ with h′ exists and is continuous on R+. Then, Theorem 1
holds with a1 = a2 = 1 and b = k = 2. This yields the global uniform boundedness
of system (25), that is, the solutions of system (25) approach to a compact set
S ′, when t→ +∞, given by:

S ′ =
{
x ∈ R, |x| ≤

√
2
}
.

For simulation of system (25) we select the initial state x(0) = 1. The result is
depicted in Figure 2

Example 4 We consider the second order problem: ẋ1 = −x3
1 + x2

1x
2
2 −

a

1 + t
x1

ẋ2 = −x3
2 + x1 sinx2 −

a

1 + t
x2, a ≥ 1,

(26)
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Figure 2: The trajectory of the state x(t) of system (25).

where x = (x1, x2)
T ∈ D ⊂ R2 and t ∈ R+. The Jacobian matrix of the nonlinear

system (26) is given by:

∂f

∂x
(x1, x2)

∣∣∣∣
(0,0)

=

 − a

1 + t
0

0 − a

1 + t

 = A(t).

The linear system ẋ(t) = A(t)x(t) is uniformly h-stable with c = 1 and h(t) =
1

(1 + t)a
∈ H. By applying Theorem 4, the system (26) is uniformly 1

(1+t)
a
2
-stable.

For simulation of system (26) we select the initial state
(
x1(0), x2(0)

)
= (1, 2)

and a = 3. The result of simulation is depicted in Figure 3
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Figure 3: The trajectory of the state x(t) = (x1, x2) of system (26).
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Example 5 We consider the �rst order problem:

ẋ = −
(

2

1 + t
+ 1

)
x+

√
t

1 + t3
x+

sin t

1 + t2
, x ∈ R, t ∈ R+. (27)

The previous system can be written as:

ẋ(t) = A(t)x(t) + χ(t, x), t ≥ 0.

The linear system ẋ(t) = A(t)x(t) is globally uniformly h-stable and h(t) =
1

(1 + t)2
∈ H is positive, bounded and decreasing where h′ exists and is continuous

on R+. Then, for a function Q(t) =
1

1 + t
+1 veri�es (13), there exists P (t) =

1

2
satis�es the Riccati equation (10). Furthermore,

|χ(t, x)| ≤
√
t

1 + t3
|x|+ 1

1 + t2
, ∀ x ∈ R, ∀ t ∈ R+.

Put, ϕ(t) =

√
t

1 + t3
and µ(t) =

1

1 + t2
which are non-negative continuous and in-

tegrable functions on R+. From Theorem 5, we deduce the global uniform bound-
edness of system (27).
Likewise, solutions of system (27) approximate, when t goes to in�nity, to the
compact set S given by:

S = {x ∈ R, |x| ≤ 3π

2
eπ}.

For simulation of system (27) we select the initial state x(0) = 1. The result of
simulation is depicted in Figure 4

4 Conclusion

We have introduced some new conditions for global uniform boundedness of non-
linear systems of di�erential equations. A converse theorem has been established
to guarantee the global uniform h-stability of a nonlinear system when its lin-
earization has a global uniform h-stability equilibrium point. One of the main
interests of this paper is that it serves to establish that property for nonlinear
perturbed systems when global uniform h-stability of the nominal system has
been showed with Lyapunov theory. We have illustrated this use in the global
uniform h-stabilization for control systems. To guarantee that the closed-loop
system is globally uniformly h-stable, a continuous linear controller has been pro-
vided and su�cient conditions has been given. The e�ectiveness of the conditions
obtained in this paper has been veri�ed in some numerical examples.
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Figure 4: The trajectory of the state x(t) of system (27).

Annex

Proof of Lemma 3. We write (6) as

ϕ̇(t)−$(t)ϕ(t) ≤ ρ(t), ∀ t ≥ t0.

On the other hand,

d

ds

(
ϕ(s) exp

(
−
∫ s

t0

$(τ)dτ

))
≤ ρ(s) exp

(
−
∫ s

t0

$(τ)dτ

)
, s ≥ t0.

Thus, for all t0 ∈ R+∫ t

t0

d

ds

(
ϕ(s) exp

(
−
∫ s

t0

$(τ)dτ

))
≤
∫ t

t0

ρ(s) exp

(
−
∫ s

t0

$(τ)dτ

)
ds, ∀ t ≥ t0,

which implies

ϕ(t) exp

(
−
∫ t

t0

$(τ)dτ

)
− ϕ(t0) ≤

∫ t

t0

ρ(s) exp

(
−
∫ s

t0

$(τ)dτ

)
ds.

Then,

ϕ(t) ≤ ϕ(t0) exp

(∫ t

t0

$(τ)dτ

)
+

∫ t

t0

ρ(s) exp

(∫ t

s

$(τ)dτ

)
ds, ∀ t ≥ t0.
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