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Abstract. In this paper, we consider the discrete kinetic McKean system. The
McKean system is the Boltzmann kinetic equation, and for this model momen-
tum and energy are not conserved. For the first time, new traveling wave so-
lutions are found using the tanh-function method, the extended tanh-function
method and the (G′/G)-expansion method. These methods are a powerful,
reliable and effective tool for finding exact solutions to nonlinear partial differ-
ential equations in mathematical physics and engineering fields. With the help
of computerized symbolic computation, we obtain kink waves, singular kink
waves, periodic waves and rational solutions. Similarly, it is possible to find
exact solutions for other kinetic models.
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1 Introduction

We consider the one-dimensional McKean system [2, 13]:

∂tu+ ∂xu =
1

ε
(w2 − uw), x ∈ R, t > 0,

∂tw − ∂xw = −1

ε
(w2 − uw).

(1)

Here u = u(x, t), w = w(x, t) are the densities of two groups of particles
with velocities c = 1,−1, ε is the Knudsen parameter from the kinetic theory
of gases. This system describes a monatomic rarefied gas consisting of two
groups of particles. The McKean system is a non-integrable system, i.e. the
Painlevé test is not applicable. The interaction is as follows. The McKean
system describes particles of two groups, namely, the first group of particles
moves at a unit speed along the axis Ox, and the second group moves at a
unit speed in the opposite direction. Particles of the first and second groups
colliding cause a reaction that transfers into two particles of the second group.
In turn, two particles of the second group transfers into particles of the first
and second groups.

The main kinetic models are the Carleman, Godunov-Sultangazin, Broad-
well, McKean systems (see [1, 2, 13, 21, 22, 23]). These models arise in the
kinetic theory of gases, chemical kinetics, in various fields of science and tech-
nology [10, 11]. In particular, the Carleman system arises in autocatalysis
[12]. There are many methods for finding exact solutions to nonlinear partial
differential equations such as the homogeneous balance method [14], the Exp-
function method [15], the Jacobi Elliptic function expansion method [16], the
tanh-method and extended tanh-method [17, 18], the sine-cosine method [19]
and many others. For Broadwell-type models in [20], solutions were obtained
using the truncated Painlevé expansions. For the Carleman system in [3, 9], so-
lutions were obtained using the generalized Bernoulli sub-ODE method and the
(G′/G)-expansion method. The McKean system has been little studied. The
McKean system (1) was studied recently in [5, 13]. Here a self-similar solution
was found, as well as a solution by means of the truncated Painlevé expansion.
In [3, 4, 5, 9, 20], traveling wave solutions can take both positive and negative
values. This is some disadvantage from a physical point of view. Despite this, we
will obtain new exact solutions for (1) by using the tanh-function method, the
extended tanh-function method and the (G′/G)-expansion method. It should
be noted that the sine-cosine method is not applicable to our system.
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2 Our methods

Now we will describe the main steps of two well-known methods that allow us
to find exact solutions.

2.1 Review of the tanh-method

Consider a given nonlinear equation

E(u, ut, ux, utt, uxt, uxx, ...) = 0, (2)

where u = u(x, t) is an unknown function. To find the travelling wave solution
of Eq. (2), we introduce the wave variable ξ = x − ct, u = U(ξ). Then (2) is
reduced to the ordinary differential equation:

E(U,−cU ′, U ′, c2U ′′,−cU ′′, U ′′, ...) = 0. (3)

We introduce a new independent variable

Y = tanh(µξ),

leads to the change of derivative,

d

dξ
= µ(1− Y 2)

d

dY
,

where µ is a real parameter. We apply the following series expansion

U(ξ) = S(Y ) =
N∑
n=0

anY
n.

A balance procedure determines the degree N of the power series. The coeffi-
cients follow from solving a nonlinear algebraic system. For more details, see
[6, 17, 18]. The extended tanh-method is defined in a similar way.

2.2 Review of the (G′/G)-expansion method

We suppose that the solution of (3) can be expressed by a polynomial in the
form:

U(ξ) =
n∑
i=0

ai

(G′
G

)i
, (4)
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where G = G(ξ) satisfies

G′′ + λG′ + µG = 0, (5)

where an, an−1, ..., a0, λ and µ are constants to be determined later; an 6= 0.
Balancing between the highest order derivatives and nonlinear terms, we find
the positive integer n. Then substituting (4) into (3), collecting the coefficients
of G′/G and equating each coefficient to zero, we can find an, an−1, ..., a0. For
more details, see [7, 8].

3 The tanh-method for the McKean system

We seek the solution in the following transformation

u = U(ξ), w = W (ξ), ξ = x− ct.

In this case we have

U ′(1− c) =
1

ε
(W 2 − UW ),

−W ′(1 + c) = −1

ε
(W 2 − UW ).

(6)

The tanh method admits the use of finite series

U(ξ) = S(Y ) =
M∑
m=0

amY
m,W (ξ) = S̄(Y ) =

M1∑
m=0

bmY
m, (7)

where Y = tanh(µξ), M and M1 are positive integers, µ is a parameter. Sub-
stituting (7) into (6) yields

µ(1− c)(1− Y 2)
dS

dY
=

1

ε
(S̄2 − SS̄),

− µ(1 + c)(1− Y 2)
dS̄

dY
= −1

ε
(S̄2 − SS̄).

(8)

After substitution of (7) into (8), we balance the highest powers of Y . Then we
have

2 +M − 1 = 2M1 = M +M1,

2 +M1 − 1 = 2M1 = M +M1,
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so that M = M1 = 1. We get the truncated expansion

S(Y ) = a0 + a1Y,

S̄(Y ) = b0 + b1Y.
(9)

Substituting (9) into (8) and collecting the coefficients of Y , we have

−µa1 + µca1 +
a1b1

ε
− b2

1

ε
= 0,

a1b0 + a0b1 − 2b0b1 = 0, (10)

µa1 − µca1 +
a0b0

ε
− b2

0

ε
= 0

and

µb1 + µcb1 −
a1b1

ε
+
b2

1

ε
= 0,

−a1b0 − a0b1 + 2b0b1 = 0, (11)

−µb1 − µcb1 −
a0b0

ε
+
b2

0

ε
= 0.

Solving algebraic equations system with the aid of the Mathematica Package,
we have the following solutions:

Case 1.

a0 =
(1− 3c)

√
(c−1)2(c+1)3

c2 µε

2(c− 1)
√
c+ 1

, b0 = −

√
(c−1)2(c+1)3

c2 µε

2
√
c+ 1

,

a1 =
1

2
(2 +

1

c
+ c)µε, b1 = −(c2 − 1)µε

2c
, µ ∈ R.

Case 2.

a0 = −
(1− 3c)

√
(c−1)2(c+1)3

c2 µε

2(c− 1)
√
c+ 1

, b0 =

√
(c−1)2(c+1)3

c2 µε

2
√
c+ 1

,

a1 =
1

2
(2 +

1

c
+ c)µε, b1 = −(c2 − 1)µε

2c
, µ ∈ R.

For case 1, the kink soliton solution has the form

u(x, t) =
(1− 3c)

√
(c−1)2(c+1)3

c2 µε

2(c− 1)
√
c+ 1

+
1

2
(2 +

1

c
+ c)µε tanh

(
µ(x− ct)

)
,

w(x, t) = −

√
(c−1)2(c+1)3

c2 µε

2
√
c+ 1

− (c2 − 1)µε

2c
tanh

(
µ(x− ct)

)
.

(12)
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For case 2, we have the solution

u(x, t) = −
(1− 3c)

√
(c−1)2(c+1)3

c2 µε

2(c− 1)
√
c+ 1

+
1

2
(2 +

1

c
+ c)µε tanh

(
µ(x− ct)

)
,

w(x, t) =

√
(c−1)2(c+1)3

c2 µε

2
√
c+ 1

− (c2 − 1)µε

2c
tanh

(
µ(x− ct)

)
.

4 The extended tanh-function method

The extended tanh method admits the use of finite series

U(ξ) = S(Y ) =
M∑
m=0

amY
m +

L∑
l=1

blY
−l,

W (ξ) = S̄(Y ) =
P∑
p=0

cpY
p +

D∑
d=1

fdY
−d,

(13)

where M,L,N,D are nonnegative integers. Substituting (13) into (8) and bal-
ancing the highest, lowest powers of Y , we obtain

2 +M − 1 = 2P = M + P,

2 + P − 1 = 2P = M + P

and
−L− 1 = −2D = −L−D,
−D − 1 = −2D = −L−D,

so that M = P = N = D = 1. Then we seek the solution of (6) in the form

U(ξ) = S(Y ) = a0 + a1Y + b1Y
−1,

W (ξ) = S̄(Y ) = c0 + c1Y + f1Y
−1.

(14)

Substituting (14) into (8) and collecting the coefficients of Y , we have

− µa1 + µca1 +
a1c1

ε
− c2

1

ε
= 0,

a1c0 + a0c1 − 2c0c1 = 0,

b1c0 + a0f1 − 2c0f1 = 0,

− µb1 + µcb1 +
b1f1

ε
− f 2

1

ε
= 0,

a0c0

ε
− c2

0

ε
+
b1c1

ε
+
a1f1

ε
− 2c1f1

ε
+ µa1 + µb1 − µca1 − µcb1 = 0
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and

µc1 + µcc1 −
a1c1

ε
+
c2

1

ε
= 0,

− a1c0 − a0c1 + 2c0c1 = 0,

− b1c0 − a0f1 + 2c0f1 = 0,

µf1 + µcf1 −
b1f1

ε
+
f 2

1

ε
= 0,

− a0c0

ε
+
c2

0

ε
− b1c1

ε
− a1f1

ε
+

2c1f1

ε
− µc1 − µf1 − µcc1 − µcf1 = 0.

We obtain solutions:

Case 1.

a0 = −(1− 3c)f1

c− 1
, a1 = 0, b1 = −(c+ 1)

c− 1
f1,

c0 = f1, c1 = 0, µ =
2cf1

(1− c2)ε
.

Case 2.

a0 =
(1− 3c)f1

c− 1
, a1 = 0, b1 = −(c+ 1)

c− 1
f1,

c0 = −f1, c1 = 0, µ =
2cf1

(1− c2)ε
.

Case 3.

a0 =
2(1− 3c)

√
(c+ 1)f 2

1

(c− 1)
√
c+ 1

, a1 = −(c+ 1)f1

c− 1
, b1 = −(c+ 1)f1

c− 1
,

c0 = −2
√

(c+ 1)f 2
1√

c+ 1
, c1 = f1, µ =

2cf1

(1− c2)ε
.

Case 4.

a0 = −2(1− 3c)
√

(c+ 1)f 2
1

(c− 1)
√
c+ 1

, a1 = −(c+ 1)f1

c− 1
, b1 = −(c+ 1)f1

c− 1
,

c0 =
2
√

(c+ 1)f 2
1√

c+ 1
, c1 = f1, µ =

2cf1

(1− c2)ε
.

Here f1 is any real number for cases 1-4. For case 1, we have

u(x, t) = −(1− 3c)f1

c− 1
− (c+ 1)

c− 1
f1 coth

( 2cf1

(1− c2)ε
(x− ct)

)
,

w(x, t) = f1 + f1 coth
( 2cf1

(1− c2)ε
(x− ct)

)
.

(15)

Electronic Journal. http://diffjournal.spbu.ru/ 93



Differential Equations and Control Processes, N. 2, 2021

For case 3, we have

u(x, t) =
2(1− 3c)

√
(c+ 1)f 2

1

(c− 1)
√
c+ 1

− (c+ 1)f1

c− 1
tanh

( 2cf1

(1− c2)ε
(x− ct)

)
−(c+ 1)f1

c− 1
coth

( 2cf1

(1− c2)ε
(x− ct)

)
, (16)

w(x, t) = −2
√

(c+ 1)f 2
1√

c+ 1
+ f1 tanh

( 2cf1

(1− c2)ε
(x− ct)

)
+f1 coth

( 2cf1

(1− c2)ε
(x− ct)

)
.

5 The (G′/G)-expansion method

We suppose that

U(ξ) =
n∑
i=0

ai

(G′
G

)i
,

W (ξ) =
m∑
i=0

bi

(G′
G

)i
,

(17)

where G = G(ξ) satisfies (5). Balancing between U ′ and UW yields

n+ 1 = n+m,m = 1.

Similarly
m+ 1 = n+m,n = 1.

Then

U(ξ) = a0 + a1

(G′
G

)
,

W (ξ) = b0 + b1

(G′
G

)
.

(18)

Note that

U ′ = a1

(
− λ
(G′
G

)
− µ−

(G′
G

)2)
,

W 2 = b2
0 + 2b0b1

(G′
G

)
+ b2

1

(G′
G

)2

,

UW = a0b0 + a0b1

(G′
G

)
+ b0a1

(G′
G

)
+ a1b1

(G′
G

)2

.
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Substituting (18) into (6) and collecting the coefficients of G′/G, we have

a0b0

ε
− b2

0

ε
− µa1 + µca1 = 0,

a1b0

ε
+
a0b1

ε
− 2b0b1

ε
− λa1 + λca1 = 0, (19)

a1b1

ε
− b2

1

ε
− a1 + ca1 = 0

and

−a0b0

ε
+
b2

0

ε
+ µb1 + µcb1 = 0,

−a1b0

ε
− a0b1

ε
+

2b0b1

ε
+ λb1 + λcb1 = 0, (20)

−a1b1

ε
+
b2

1

ε
+ b1 + cb1 = 0.

Solving (19) and (20) by the Wolfram Mathematica gives

Case 1.

a0 =
−ελ(c+ 1)2(c− 1)c+

√
(c3 − c)2ε2(λ2 − 4µ)(1− 3c)

4c2(1− c)
,

b0 =
ελc(1− c2) +

√
(c3 − c)2ε2(λ2 − 4µ)

4c2
,

a1 =
(c+ 1)2ε

2c
, b1 =

ε(1− c2)

2c
.

Case 2.

a0 =
ελ(c+ 1)2(c− 1)c+

√
(c3 − c)2ε2(λ2 − 4µ)(1− 3c)

4c2(c− 1)
,

b0 = −
ελc(c2 − 1) +

√
(c3 − c)2ε2(λ2 − 4µ)

4c2
,

a1 =
(c+ 1)2ε

2c
, b1 =

ε(1− c2)

2c
.

Solving (5), we have for λ2 − 4µ > 0

G′

G
=

1

2

√
λ2 − 4µ

(
C1 cosh

(
1
2

√
λ2 − 4µξ

)
+ C2 sinh

(
1
2

√
λ2 − 4µξ

)
C1 sinh

(
1
2

√
λ2 − 4µξ

)
+ C2 cosh

(
1
2

√
λ2 − 4µξ

))− λ

2
,

(21)
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where C1, C2 are arbitrary constants. When λ2 − 4µ < 0, we have

G′

G
=

1

2

√
4µ− λ2

(
C1 cos

(
1
2

√
4µ− λ2ξ

)
− C2 sin

(
1
2

√
4µ− λ2ξ

)
C1 sin

(
1
2

√
4µ− λ2ξ

)
+ C2 cos

(
1
2

√
4µ− λ2ξ

))− λ

2
, (22)

When λ2 − 4µ = 0, we have

G′

G
=

C2

C1 + C2ξ
− λ

2
. (23)

Case 1. When λ2 − 4µ > 0, we have

u(ξ) =
−ελ(c+ 1)2(c− 1)c+

√
(c3 − c)2ε2(λ2 − 4µ)(1− 3c)

4c2(1− c)
+

(c+ 1)2ε

2c
A,

(24)

w(ξ) =
ελc(1− c2) +

√
(c3 − c)2ε2(λ2 − 4µ)

4c2
+

(1− c2)ε

2c
A, (25)

where A = G′

G is determined by (21), ξ = x− ct.
When λ2 − 4µ < 0, we have

u(ξ) =
−ελ(c+ 1)2(c− 1)c+

√
(c3 − c)2ε2(λ2 − 4µ)(1− 3c)

4c2(1− c)
+

(c+ 1)2ε

2c
B,

w(ξ) =
ελc(1− c2) +

√
(c3 − c)2ε2(λ2 − 4µ)

4c2
+

(1− c2)ε

2c
B,

where B = G′

G is determined by (22), ξ = x− ct.
When λ2 − 4µ = 0, we have

u(ξ) =
−ελ(c+ 1)2(c− 1)c

4c2(1− c)
+

(c+ 1)2ε

2c

( C2

C1 + C2ξ
− λ

2

)
,

w(ξ) =
ελc(1− c2)

4c2
+

(1− c2)ε

2c

( C2

C1 + C2ξ
− λ

2

)
,

where ξ = x− ct, C1, C2 are arbitrary constants.

Case 2. When λ2 − 4µ > 0, we have

u(ξ) =
ελ(c+ 1)2(c− 1)c+

√
(c3 − c)2ε2(λ2 − 4µ)(1− 3c)

4c2(c− 1)
+

(c+ 1)2ε

2c
A,
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w(ξ) = −
ελc(c2 − 1) +

√
(c3 − c)2ε2(λ2 − 4µ)

4c2
+
ε(1− c2)

2c
A,

where A = G′

G is determined by (21), ξ = x− ct.
When λ2 − 4µ < 0, we have

u(ξ) =
ελ(c+ 1)2(c− 1)c+

√
(c3 − c)2ε2(λ2 − 4µ)(1− 3c)

4c2(c− 1)
+

(c+ 1)2ε

2c
B,

w(ξ) = −
ελc(c2 − 1) +

√
(c3 − c)2ε2(λ2 − 4µ)

4c2
+
ε(1− c2)

2c
B,

where B = G′

G is determined by (22), ξ = x− ct.
When λ2 − 4µ = 0, we have

u(ξ) =
ελ(c+ 1)2c

4c2
+

(c+ 1)2ε

2c

( C2

C1 + C2ξ
− λ

2

)
,

w(ξ) = −ελc(c
2 − 1)

4c2
+
ε(1− c2)

2c

( C2

C1 + C2ξ
− λ

2

)
,

where ξ = x − ct, C1, C2 are arbitrary constants. Thus, we obtain three types
of solutions by the (G′/G)-expansion method.

Remark. Note that the solutions are related. Consider c > 1. The solu-
tions (12), (15) can be written in the form

u(x, t) =
(1− 3c)(c+ 1)µε

2c
+

(c+ 1)2

2c
µε tanh

(
µξ − ξ0

)
, ξ = x− ct,

w(x, t) = −(c− 1)(c+ 1)µε

2c
− (c2 − 1)µε

2c
tanh

(
µξ − ξ0

)
.

(26)

Assuming ξ0 = 0 in (26), we obtain the solution (12). If ξ0 = iπ
2 , µ = 2cf1

(1−c2)ε ,

we have the solution (15). Similarly, one can show the relationship of the
formulas (15) and (16) using tanh(kξ)+coth(kξ) = 2 coth(2kξ). Also note that
if C1 = 0, C2 = 1, we can reduce (24) to (12)

u(ξ) =
−ελ(c+ 1)2(c− 1)c+

√
(c3 − c)2ε2(λ2 − 4µ)(1− 3c)

4c2(1− c)
+

+
(c+ 1)2ε

2c

(1

2

√
λ2 − 4µ tanh(

1

2

√
λ2 − 4µξ)− λ

2

)
=

= b0 + b1 tanh(µ∗ξ),
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where

b0 =
−ελ(c+ 1)2(c− 1)c+

√
(c3 − c)2ε2(λ2 − 4µ)(1− 3c)

4c2(1− c)
− (c+ 1)2ε

2c

λ

2
,

b1 =
(c+ 1)2ε

2c

√
λ2 − 4µ

2
, µ∗ =

1

2

√
λ2 − 4µ.

Similarly, we can get for w(x, t).

Example. Consider the McKean system

∂tu+ ∂xu = w2 − uw, x ∈ R, t > 0,

∂tw − ∂xw = uw − w2,
(27)

with the boundary conditions

u(+∞, t) = −2, w(+∞, t) = 0.

The system (27) has the following analytical solution

u(x, t) = −7

4
− 1

4
tanh (2t+ x),

w(x, t) = −3

4
+

3

4
tanh (2t+ x).

Conclusion

In this work, we have found the exact travelling wave solutions of the ki-
netic McKean system by using the tanh–function method, the extended tanh–
function method and the (G′/G) method. All of the above solutions have been
verified using the Mathematica package. In the future the solutions of the
remaining kinetic models will be found.

References

[1] Godunov S. K., Sultangazin U. M. On discrete models of the kinetic Boltz-
mann equation. Russian Mathematical Surveys, 1971; 26(3): 1–56.
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