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Abstract. A method for obtaining an explicit solution of matrix differential equations in second-

order ordinary derivatives with constant matrices is considered. The method allows one to reduce 

the initial system of interconnected differential equations to a system of independent differential 

equations that are easily solved analytically. The method developed in the article is based on the 

diagonalization of all matrices included in the equation, which is carried out using the spectral 

decomposition of the matrices and Kronecker matrix algebra. An example of the application of the 

developed method is given. 
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1. Introduction 
 

Mathematical modeling of processes of various physical nature [1, 2, 3, 4], such as, oscillations 

in mechanical, electrical, electronic and hydraulic systems, dynamics of mechanical systems, wave 

propagation in thermoelastic media, thermal stresses, aerodynamics of aircraft, control of 

engineering systems, etc., results in a system of differential equations in second-order ordinary 

derivatives, which takes the following form in matrix notation: 

 

𝐴
𝑑2𝑥(𝑡)

𝑑𝑡2
+ 𝐵

𝑑𝑥(𝑡)

𝑑𝑡
+ 𝐶𝑥(𝑡) = 𝑓(𝑡), 

 

(1) 
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𝑑𝑥(0)

𝑑𝑡
= 𝑥0

′ ,   𝑥(0) = 𝑥0, 

 

where 𝐴, 𝐵, 𝐶 – some time-independent  𝑚 ×𝑚-matrices; 𝑥(𝑡) = (𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑚(𝑡))
𝑇 – 𝑚-

vector of the required functions 𝑥𝑖(𝑡), 𝑖 = 1,2, … ,𝑚; 𝑓(𝑡) = (𝑓1(𝑡), 𝑓2(𝑡), … , 𝑓𝑚(𝑡))
𝑇 – 𝑚-vector 

of the specified functions; 𝑡 – time; 𝑥0 = (𝑥01, 𝑥02, … , 𝑥0𝑚)
𝑇 and 𝑥0

′ = (𝑥01
′ , 𝑥02

′ , … , 𝑥0𝑚
′ )𝑇 – 𝑚-

vectors of the initial conditions of the required functions 𝑥𝑖(𝑡) and their first-order derivatives  

𝑑𝑥𝑖(𝑡) 𝑑𝑡⁄  at the initial moment of time 𝑡 = 0; (∙)𝑇 – operation of transposition. 

Despite a fairly large number of methods for solving systems of various-order ordinary 

differential equations, including numerical ones [4, 5, 6, 7, 8], the importance of developing 

methods for explicit analytical solutions remains relevant and in demand when carrying out any 

substantial analysis of the investigated physical phenomena and processes, as well as mathematical 

models that describe them. 

To obtain analytical solutions of a system of ordinary differential equations, it is necessary to 

reduce the system of initially coupled equations to a system of independent decoupled equations or, 

at least, reduce the degree of interrelationship [9, 10, 11]. Obtaining decoupled equations is 

achieved by reducing all matrices of the system of ordinary differential equations to a completely 

diagonal form. At the same time, reducing the matrices of the system of equations to “almost 

diagonal form”, for instance, to the Jordan canonical form, although reduces the degree of 

interrelationship of the equations, does not eliminate it completely [11]. This article suggests a 

method for achieving a complete diagonalization of all matrices included in the system of ordinary 

differential equations (1). In the existing literature [9, 10], diagonalization of matrices in matrix 

ordinary differential equations is considered only in relation to the first-order equations, while 

methods for diagonalizing matrices included in matrix ordinary differential equations of the second 

and higher orders are not suggested at all. 

It's also worth noting that to reduce the solution of matrix ordinary differential equations of 

various orders, including with numerical methods, one strives, first of all, to get rid of the matrix A 

at the highest-order derivative, for instance, by multiplying both parts of original equation (1) by its 

inverse matrix 𝐴−1. However, the matrix A at the highest-order derivative of the equation does not 

always have an inverse matrix, which can be due to the matrix singularity, semidefiniteness, or the 

presence of the rank of matrix of the lesser dimension. The method developed in the article allows 

reducing the original system of coupled equations (1) to a system of uncoupled equations and 

obtaining their analytical solutions for both singular and semidefinite matrices at the highest 

derivative. 

One of the most powerful methods for obtaining analytical solutions of the systems of 

differential equations is to reduce the matrices included in the system of equations to a diagonal 

form. In this case, the system of coupled equations of differential equations is decomposed into 𝑚 

independent equations for each unknown 𝑥𝑖(𝑡), 𝑖 = 1,2, … ,𝑚, in the vector 𝑥(𝑡), the solutions of 

which are easily determined analytically. This approach is used to develop analytical solutions of 

matrix differential equations with one or two matrices, namely, such matrix equations as 𝑥̇(𝑡) +
𝐶𝑥(𝑡) = 0 [9] and 𝐴𝑥̈(𝑡) + 𝐶𝑥(𝑡) = 0 [10] (𝑥̇(𝑡), where 𝑥̈(𝑡) – shorthand notation for 𝑑𝑥(𝑡) 𝑑𝑡⁄  

and 𝑑2 𝑑𝑡2⁄ , respectively. 

For instance, in the equation 𝑥̇(𝑡) + 𝐶𝑥(𝑡) = 0, 𝑥(0) = 𝑥0 with one matrix, the matrix 𝐶 is 

subjected to the spectral decomposition 𝑈𝑇𝐶𝑈 = Λ𝐶 with the diagonal matrix 

Λ𝐶 = 𝑑𝑖𝑎𝑔{λ𝐶1, λ𝐶2, … , λ𝐶𝑚}, consisting of the eigenvalues λ𝐶𝑖, 𝑖 = 1,2, … ,𝑚, and the orthonormal 

matrix 𝑈, composed of the eigenvectors of the matrix 𝐶. The spectral decomposition of the matrix 𝐶 

allows reducing the matrix equation 𝑥̇(𝑡) + 𝐶𝑥(𝑡) = 0 to a system of 𝑚 independent equations  

𝑦̇𝑖(𝑡) + λ𝐶𝑖𝑦𝑖(𝑡) = 0, 𝑦0𝑖(0) = 𝑦0𝑖, 𝑖 = 1,2, … ,𝑚, with respect to the new transformed vector 
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𝑦(𝑡) = (𝑦1(𝑡), 𝑦2(𝑡), … , 𝑦𝑚(𝑡))
𝑇, the solutions of which are easily found analytically and are 

𝑦𝑖(𝑡) = exp (−λ𝐶𝑖𝑡)𝑦0𝑖 [9]. 

As for the equation 𝐴𝑥̈(𝑡) + 𝐶𝑥(𝑡) = 0 with two matrices, the application of the method under 

consideration is significantly complicated by the fact that in this case it is necessary to 

simultaneously diagonalize the matrices 𝐴 and 𝐶. This complexity can be overcome using the 

theorem [9, 10] on the reduction of two real non-singular symmetric matrices 𝐴 and 𝐶 (moreover, 

the matrix 𝐴 is a positive definite one) with one non-singular transformation of the similarity 𝑇, 

which transforms the matrix 𝐴 to a diagonal identity matrix, and the matrix 𝐶 -  to a diagonal 

matrix, consisting of eigenvalues of some specially defined matrix [9, 10]. As a result of the 

simultaneous diagonalization of the matrices 𝐴 and 𝐶, the matrix equation 𝑥̈(𝑡) + 𝐶𝑥(𝑡) = 0 is 

decomposed into a system of 𝑚 independent equations 𝑦𝑖̈(𝑡) + λ𝑖𝑦𝑖(𝑡) = 0, 𝑖 = 1,2, … ,𝑚, with 

respect to the transformed vector 𝑦(𝑡). The solutions of these equations are easily found  

analytically: 𝑦𝑖(𝑡) = 𝛼𝑖cos(λ𝑖𝑡 + 𝜀𝑖), where 𝛼𝑖 and 𝜀𝑖 – constants, determined from the initial 

conditions [10].  

At the same time, there are no methods that allow ontaining explicit solutions of matrix 

differential equations, which include more than two matrices and require simultaneous reduction to 

the diagonal form of more than two matrices. 

This article suggests a method that allows reducing matrix differential equations (1) to a system of 

independent equations, each of which is easily solved analytically. The method is based on the spectral 

decomposition of matrices included in the equation and the use of Kronecker matrix algebra. Therewith, 

simultaneous diagonalization is applied to two of the three matrices from the equation, in which one of the 

matrices is reduced to a diagonal identity matrix, and the other to a diagonal form of some specially 

constructed matrix. The diagonalization of the third remaining matrix is carried out by moving from the 

usual matrix space to the Kronecker matrix space, in which the rules of Kronecker matrix algebra are 

applied. To apply the method, it is sufficient that only one of the matrices in the equation is a positive 

definite one, while the other two matrices can be nonsymmetric and positive semidefinite. The application 

of the developed method is considered in a specific context. 

 

2. Diagonalizing the matrix differential equation with three matrices 
 

Let’s consider the matrix differential equation in second-order ordinary derivatives (1) and bring 

all three matrices of the equation 𝐴, 𝐵 and 𝐶 to a diagonal form. It is assumed that 𝐴, 𝐵, 𝐶 are 

square, real, time-independent and not necessarily symmetric 𝑚 ×𝑚 matrices. One of the matrices 

is positive definite, the other two can be positive semidefinite. In equation (1), first, the positive 

definite matrix that can be reduced with some non-singular similarity transformation to a diagonal 

identity matrix is diagonalized, and then another matrix of the equation is diagonalized. To 

diagonalize the third matrix, the entire equation with two previously diagonalized matrices is 

transformed, whereby the transition is made from the space with ordinary matrix algebra to the 

Kronecker space, in which Kronecker matrix algebra is applied. 

For definiteness, let’s further assume that the matrix 𝐴 at the second derivative in equation (1) is 

a real positive definite (and symmetric)  𝑚 × 𝑚-matrix, and the other two   𝑚 ×𝑚-matrices  𝐵, 𝐶 

can be positive and semidefinite. 

 

2.1. Diagonalizing the matrix A in matrix equation (1) 
 

Let the spectral decomposition of the symmetric positive definite matrix 𝐴 have the form 

𝑈−1𝐴𝑈 = Λ𝐴, where 𝑈 is the transforming 𝑚×𝑚 -similarity matrix [10, 11], consisting of the 

eigenvectors of the matrix 𝐴; Λ𝐴 = 𝑑𝑖𝑎𝑔{λ𝐴1, λ𝐴2, … , λ𝐴𝑚} is the diagonal matrix of the eigenvalues 

λ𝐴𝑖, 𝑖 = 1,2, … ,𝑚, of the matrix 𝐴, where all its eigenvalues λ𝐴1, λ𝐴2, … , λ𝐴𝑚  are positive due to the 

positive definiteness of the matrix 𝐴. 
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Let’s introduce into equation (1) and the initial conditions a new vector variable 𝑥∗ according to 

the equation 𝑥 = 𝑈Λ𝐴
−
1

2𝑥∗ and multiply the resulting equation and the initial conditions on the left by 

the matrix Λ𝐴
−
1

2𝑈−1. The following will be obtained: 

 

Λ𝐴
−
1

2𝑈−1𝐴𝑈Λ𝐴
−
1

2  
𝑑2𝑥∗(𝑡)

𝑑𝑡2
+ Λ𝐴

−
1

2𝑈−1𝐵𝑈Λ𝐴
−
1

2  
𝑑𝑥∗(𝑡)

𝑑𝑡
+ Λ𝐴

−
1

2𝑈−1𝐶𝑈Λ𝐴
−
1

2𝑥∗(𝑡) = Λ𝐴
−
1

2𝑈−1𝑓(𝑡), 

𝑑𝑥∗(0)

𝑑𝑡
= Λ𝐴

1

2𝑈−1𝑥0
′ ,   𝑥∗(0) = Λ𝐴

1

2𝑈−1𝑥0 . 

 

 

Taking into account that the matrix at the second-order derivative in the resulting equation is 

Λ𝐴
−
1

2𝑈−1𝐴𝑈Λ𝐴
−
1

2 = Λ𝐴
−
1

2Λ𝐴Λ𝐴
−
1

2 = 𝐼 and introducing notation for the matrices 𝐷 = Λ𝐴
−
1

2𝑈−1𝐵𝑈Λ𝐴
−
1

2 and 

𝐸 = Λ𝐴
−
1

2𝑈−1𝐶𝑈Λ𝐴
−
1

2, the following will be obtained: 

 

 

𝑑2𝑥∗(𝑡)

𝑑𝑡2
+ 𝐷

𝑑𝑥∗(𝑡)

𝑑𝑡
+ 𝐸𝑥∗(𝑡) = Λ𝐴

−
1

2𝑈−1𝑓(𝑡), 

𝑑𝑥∗(0)

𝑑𝑡
= Λ𝐴

1

2𝑈−1𝑥0
′ ,   𝑥∗(0) = Λ𝐴

1

2𝑈−1𝑥0 . 

 

(2) 

 

2.2. Diagonalizing the matrix D in transformed equation (2) 
 

Let’s diagonalize the matrix 𝐷 = Λ𝐴
−
1

2𝑈−1𝐵𝑈Λ𝐴
−
1

2  at the first-order derivative in equation (2). If 

the spectral decomposition of the matrix D has the form 𝑉−1𝐷𝑉 = Λ𝐷, then 𝑉 – transforming  

𝑚 ×𝑚 − similarity matrix, the columns of which are eigenvectors of the matrix 𝐷, and Λ𝐷 =
𝑑𝑖𝑎𝑔{λ𝐷1, λ𝐷2, … , λ𝐷𝑚} – diagonal 𝑚×𝑚-matrix of eigenvalues of the matrix 𝐷. 

 

Let’s implement a new change of variables in equation (2), namely, introduce 𝑚 𝑦(𝑡)-vector 

using equation 𝑥∗(𝑡) = 𝑉𝑦(𝑡) and multiply the resulting equation on the left by the matrix  𝑉−1. 

Then indicating in equation (2)  𝑚 ×𝑚-matrices 𝐹 = 𝑉−1𝐸𝑉 = 𝑉−1Λ𝐴
−
1

2𝑈−1𝐶𝑈Λ𝐴
−
1

2𝑉, 𝐺 =

𝑉−1Λ𝐴

1

2𝑈−1, 𝐻 = 𝑉−1Λ𝐴
−
1

2𝑈−1, the following vector equation will be obtained: 

 

 

𝑑2𝑦(𝑡)

𝑑𝑡2
+ Λ𝐷

𝑑𝑦(𝑡)

𝑑𝑡
+ 𝐹𝑦(𝑡) = 𝐻𝑓(𝑡), 

𝑑𝑦(0)

𝑑𝑡
= 𝐺𝑥0

′ ,   𝑦(0) = 𝐺𝑥0 . 

(3) 

 

Thus, equation (1) with three matrices is reduced to equation (3) with two diagonal matrices - a 

diagonal identity matrix at the second derivative and a diagonal matrix Λ𝐷 at the first-order  

derivative in the equation. 

Let’s diagonalize matrix 𝐹. 
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3. Diagonalizing the matrix F in transformed equation (3)  

Let’s diagonalize 𝑚 ×𝑚-matrix 𝐹 = 𝑉−1Λ𝐴
−
1

2𝑈−1𝐶𝑈Λ𝐴
−
1

2𝑉 in equation (3). For this, it is 

necessary to make the transition from the matrix space with the usual rules for operations with 

matrices to the Kronecker matrix space in which Kronecker matrix algebra, which is significantly 

different from the usual one. Below is the brief information from Kronecker matrix algebra [6, 9, 

10, 12, 13], which is of interest for the future: 

 

3.1. Some facts from Kronecker matrix algebra 
 

In Kronecker matrix algebra, the Kronecker product of two rectangular matrices 𝑘 × 𝑙 𝐴 =

‖𝑎𝑖𝑗‖ ∈ ℱ𝑘×𝑙 (𝑖 = 1,2, … , 𝑘;  𝑗 = 1,2, … , 𝑙) and 𝑚 × 𝑛 𝐵 = ‖𝑏𝑖𝑗‖ ∈ ℱ𝑚×𝑛 (𝑖 = 1,2, … ,𝑚;  𝑗 =

1,2, … , 𝑛) is defined as the block matrix 𝐶 = 𝐴⊗ 𝐵 in the matrix space ℱ𝑘𝑚×𝑙𝑛, which is 

composed according to the following rule: 

 

𝐶 = 𝐴⊗ 𝐵 = (

𝑎11𝐵 𝑎12𝐵 … 𝑎1𝑙𝐵

𝑎21𝐵 𝑎22𝐵 … 𝑎2𝑙𝐵
⋮

𝑎𝑘1𝐵
⋮

𝑎𝑘2𝐵
⋱
…

⋮
𝑎𝑘𝑙𝐵

) ∈ ℱ𝑘𝑚×𝑙𝑛.  

 

Let’s introduce some useful statements from Kronecker matrix algebra: 

(1) In the Kronecker space, multiple solutions of the matrix equation 𝐴𝑋𝐵 = 𝐶  with respect to 

the unknown required matrix X and square real  𝑚 ×𝑚 −matrices  𝐴, 𝑋, 𝐵, 𝐶 ∈ ℱ𝑚×𝑚 coincides 

with multiple solutions of the equation 𝒢𝑥 = 𝑐, in which the matrix 𝒢 ∈ ℱ𝑚2×𝑚2   is 𝒢 = 𝐴⊗ 𝐵𝑇, 

and the vectors 𝑥 ∈ ℱ𝑚2  and 𝑐 ∈ ℱ𝑚2  are defined using the expressions:  
 

 

𝑥 = (

𝑋1∗
𝑇

𝑋2∗
𝑇

⋮
𝑋𝑚∗
𝑇

),   𝑐 = (

𝐶1∗
𝑇

𝐶2∗
𝑇

⋮
𝐶𝑚∗
𝑇

), (4) 

 

where 𝑋𝑖∗, 𝑋∗𝑗 и 𝐶𝑖∗, 𝐶∗𝑗 – the 𝑖-th row (𝑖 = 1,2, … ,𝑚) and 𝑗-th column  (𝑗 = 1,2, … ,𝑚) of the 

matrices  𝑋 and 𝐶, respectively, * – notation of a set of elements in the 𝑖-th row 𝑋𝑖∗ и 𝐶𝑖∗ and a set 

of elements in the 𝑗-th column  𝑋∗𝑗 and 𝐶∗𝑗 of the matrices 𝑋 and 𝐶.  

(2) The general linear matrix equation 𝐴1𝑋𝐵1 + 𝐴2𝑋𝐵2 +⋯+ 𝐴𝑘𝑋𝐵𝑘 = 𝐶, with respect to the 

unknown matrix 𝑋 ∈ ℱ𝑚×𝑚, with the matrices 𝐴𝑘, 𝑋, 𝐵𝑘, 𝐶 ∈ ℱ𝑚×𝑚 and vectors 𝑥 and 𝑐 defined 

with expressions (4), is equivalent to the equation 𝒢 ∈ ℱ𝑚2×𝑚2, in which the matrix 𝒢 ∈ ℱ𝑚2×𝑚2 
(2) looks like 𝒢 = 𝐴1⊗𝐵1

𝑇 + 𝐴2⊗𝐵2
𝑇 +⋯+ 𝐴𝑘⊗𝐵𝑘

𝑇 . 
(3) If 𝐴 ∈ ℱ𝑚×𝑚 and 𝐵 ∈ ℱ𝑛×𝑛, with λ1, λ2, … , λ𝑚 ad μ1, μ2, … , μ𝑛 are the eigenvalues of the 

matrices A and B, respectively, then the eigenvalues of the matrix function in ℱ𝑚𝑛×𝑚𝑛 in the form 

of 𝜑(𝐴, 𝐵) = ∑ 𝑐𝑖𝑗
𝑝
𝑖,𝑗=0 (𝐴𝑖⊗𝐵𝑗), will be 𝑚𝑛 of the values 𝜑(λ𝑟 , μ𝑠), where 𝑟 = 1,2, … ,𝑚 and 

𝑠 = 1,2, … , 𝑛. 

 

(4) Basic rules of matrix Kronecker algebra: 

 

(a) (𝜇𝐴) ⊗ 𝐵 = 𝐴⊗ (𝜇𝐵) = 𝜇(𝐴 ⊗𝐵), where 𝜇 is an arbitrary number, 𝐴 ∈ ℱ𝑚×𝑚, 𝐵 ∈ ℱ𝑛×𝑛; 
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(b) (𝐴 + 𝐶)⊗ 𝐵 = 𝐴⊗𝐵 + 𝐶 ⊗𝐵, where 𝐴, 𝐶 ∈ ℱ𝑚×𝑚, 𝐵 ∈ ℱ𝑛×𝑛; 

(c) 𝐴⊗ (𝐵 + 𝐶) = 𝐴⊗ 𝐵 + 𝐴⊗ 𝐶, where 𝐴 ∈ ℱ𝑚×𝑚, 𝐵, 𝐶 ∈ ℱ𝑛×𝑛; 

(d) (𝐴⊗ 𝐵)𝑇 = 𝐴𝑇⊗𝐵𝑇, где (∙)𝑇 – operation of transposition; 

(e) (𝐴⊗ 𝐵)(𝐶 ⊗𝐷) = 𝐴𝐶 ⊗ 𝐵𝐷, where 𝐴, 𝐶 ∈ ℱ𝑚×𝑚, 𝐵,𝐷 ∈ ℱ𝑛×𝑛, (∙)(∙) – normal matrix 

multiplication; 

(f) (𝐴1⊗𝐵1)(𝐴2⊗𝐵2)… (𝐴𝑘⊗𝐵𝑘) = (𝐴1𝐴2…𝐴𝑘) ⊗ (𝐵1𝐵2…𝐵𝑘), where 𝐴1, 𝐴2, … , 𝐴𝑘 ∈ ℱ𝑚×𝑚 

and 𝐵1, 𝐵2, … , 𝐵𝑘 ∈ ℱ𝑛×𝑛. 

 

3.2. Transformation of equations (3) from the matrix space with ordinary matrix 

algebra to the matrix space with Kronecker matrix algebra 
 

To apply Kronecker matrix algebra, it is necessary to reduce matrix equation (3) with respect to 

the vector of unknowns to a matrix equation with respect to the matrix of unknowns. For this, let’s 

apply the following approach. 

Let’s introduce  the  𝑚-vector  𝑦(𝑡) = (𝑦1(𝑡), 𝑦2(𝑡), … , 𝑦𝑚(𝑡))
𝑇 in equation (3)  as the product 

of 𝑦(𝑡) = 𝑌(𝑡)ℐ of the diagonal  𝑚 ×𝑚-matrix of variables 𝑌(𝑡) and the unit 𝑚-vector ℐ, namely, 

 

 

𝑌(𝑡) = (

𝑦1(𝑡) 0 … 0

0 𝑦2(𝑡) … 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝑦𝑚(𝑡)

),   ℐ = (

1
1
⋮
1

). 

 

 

Similarly, let’s represent the 𝑚-vector 𝑓(𝑡) = (𝑓1(𝑡), 𝑓2(𝑡), … , 𝑓𝑚(𝑡))
𝑇 on the right side of 

equation (3) as the product of 𝑓(𝑡) = Φ(𝑡)ℐ of the diagonal 𝑚 ×𝑚-matrix Φ(𝑡) and the unit 𝑚-

vector ℐ  
 

Φ(𝑡) = (

𝑓1(𝑡) 0 … 0

0 𝑓2(𝑡) … 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝑓𝑚(𝑡)

). 

 

 

Similarly, let’s represent the m-vectors in the initial conditions 𝑥0 = (𝑥01, 𝑥02, … , 𝑥0𝑚)
𝑇 and 

𝑥0
′ = (𝑥01

′ , 𝑥02
′ , … , 𝑥0𝑚

′ )𝑇 of equation (3) in the form of products of  𝑥0 = 𝑋0ℐ and 𝑥0
′ = 𝑋0

′ℐ of 

diagonal 𝑚 ×𝑚-matrices 𝑋0 and 𝑋0
′  and the 𝑚-vector ℐ = (11…1)𝑇: 

 

𝑋0 = (

𝑥01 0 … 0
0 𝑥02 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝑥0𝑚

),   𝑋0
′ = (

𝑥01
′ 0 … 0

0 𝑥02
′ … 0

⋮ ⋮ ⋱ ⋮
0 0 … 𝑥0𝑚

′

). 

 

 

Equation (3) may be written as follows: 

 

 

𝑑2𝑌(𝑡)

𝑑𝑡2
ℐ + Λ𝐷

𝑑𝑌(𝑡)

𝑑𝑡
ℐ + 𝐹𝑌(𝑡)ℐ = 𝐻Φ(𝑡)ℐ, (5) 
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𝑑𝑌(0)

𝑑𝑡
ℐ = 𝐺𝑋0

′ℐ,   𝑌(0)ℐ = 𝐺𝑋0ℐ , 

 

 

wherein vector equation (3) with respect to the vector of unknowns 𝑦(𝑡) is reduced to matrix 

equation (5) with respect to the matrix of unknowns 𝑌(𝑡). 
To move to the Kronecker space with Kronecker matrix algebra, let’s transform the matrices 

𝑌(𝑡),Φ(𝑡), 𝑋0
′ , 𝑋0 ∈ ℱ𝑚×𝑚 in equation (5) into the corresponding Kronecker vectors 𝓎, 𝜙, 𝓍0, 𝓍0

′ ∈
ℱ𝑚2   according to expressions of the form (4), namely, 

 

 

𝓎(𝑡) =

(

 

𝑌1∗
𝑇 (𝑡)

𝑌2∗
𝑇 (𝑡)
⋮

𝑌𝑚∗
𝑇 (𝑡))

 ,   𝜙(𝑡) =

(

 

Φ1∗
𝑇 (𝑡)

Φ2∗
𝑇 (𝑡)
⋮

Φ𝑚∗
𝑇 (𝑡))

 ,   𝓍0 =

(

 

𝑋01∗
𝑇

𝑋02∗
𝑇

⋮
𝑋0𝑚∗
𝑇 )

 ,   𝓍0
′ =

(

 

𝑋01∗
′𝑇

𝑋02∗
′𝑇

⋮
𝑋0𝑚∗
′𝑇 )

 , (6) 

 

where 𝑌𝑖∗(𝑡), Φ𝑖∗(𝑡), 𝑋0𝑖∗, 𝑋0𝑖∗
′  – 𝑖-th rows (𝑖 = 1,2, … ,𝑚) of the matrices 𝑌(𝑡),Φ(𝑡), 𝑋0, 𝑋0

′ ∈
ℱ𝑚×𝑚, respectively. Therewith, in the vectors 𝜙(𝑡), 𝓍, 𝓍0

′  (9) the respective columns are equal to  

Φ𝑖∗
𝑇 (𝑡) = (0,… ,0, 𝑓𝑖(𝑡), 0, … ,0)

𝑇, 𝑋0𝑖∗ = (0,… ,0, 𝑥0𝑖, 0, … ,0)
𝑇, 𝑋0𝑖∗

′ = (0,… ,0, 𝑥0𝑖
′ , 0, … ,0)𝑇. 

Then, in accordance with statement (1) (Section 3.1), the set of solutions of equation (5) with 

respect to the required matrix 𝑌(𝑡) ∈ ℱ𝑚×𝑚 in equation (5) coincides with the set of solutions of the 

following equation in the Kronecker space with respect to the 𝑚2-vector  𝓎(𝑡) (see (6)):  

 

(𝐼 ⊗ ℐ𝑇)
𝑑2𝓎(𝑡)

𝑑𝑡2
+ (Λ𝐷⊗ ℐ𝑇)

𝑑𝓎(𝑡)

𝑑𝑡
+ (𝐹 ⊗ ℐ𝑇)𝓎(𝑡) = (𝐻 ⊗ ℐ𝑇)𝜙(𝑡), 

(𝐼 ⊗ ℐ𝑇)
𝑑𝓎(0)

𝑑𝑡
= (𝐺 ⊗ ℐ𝑇)𝓍0

′ , (𝐼 ⊗ ℐ𝑇)𝓎(0) = (𝐺 ⊗ ℐ𝑇)𝓍0 . 

(7) 

 

By introducing in the last equation a new vector variable 𝓅(𝑡) ∈ ℱ𝑚 according to the equation 

𝓎(𝑡) = (𝐼 ⊗ ℐ)𝓅(𝑡) and taking into consideration that ℐ𝑇ℐ = 𝑚, the following equation will be 

obtained: 

 

 

 (𝐼 ⊗𝑚)
𝑑2𝓅(𝑡)

𝑑𝑡2
+ (Λ𝐷⊗𝑚)

𝑑𝓅(𝑡)

𝑑𝑡
+ (𝐹 ⊗𝑚)𝓅(𝑡) = (𝐻 ⊗ ℐ𝑇)𝜙(𝑡), 

(𝐼 ⊗𝑚)
𝑑𝓅(0)

𝑑𝑡
= (𝐺 ⊗ ℐ𝑇)𝓍0

′ , (𝐼 ⊗𝑚)𝓅(0) = (𝐺 ⊗ ℐ𝑇)𝓍0 . 

(8) 

 

Note. Let’s consider in more detail the question of the sets of solutions of the matrix vector 

equation 𝐴𝑥 = 𝑏 with respect to the unknown vector 𝑥 and the transformed matrix equation 

𝐴𝑋ℐ = 𝐵ℐ  with respect to the unknown diagonal matrix 𝑋 (𝐵 - is the diagonal matrix on the right 

side), and the matrix equation 𝒢𝓍 = 𝒷, to which the equation 𝐴𝑋ℐ = 𝐵ℐ  is reduced in the transition 

from the ordinary matrix space to the Kronecker space. 

Let’s show that the set of solutions of the matrix algebraic equation 𝐴𝑥 = 𝑏 (or 𝐴𝑋ℐ = 𝐵ℐ) with 

the non-singular matrix 𝐴 ∈ ℱ𝑚×𝑚 coincides with the set of solutions of the equation 𝐴 ∈
ℱ𝑚×𝑚𝒫𝓍 = 𝒬𝒷 with the matrices  𝒫 = (𝐴⊗ ℐ𝑇) ∈ ℱ𝑚×𝑚2 and 𝒬 = (𝐼 ⊗ ℐ𝑇) ∈ ℱ𝑚×𝑚2 ) and 

vectors 𝓍 ∈ ℱ𝑚2  и 𝒷 ∈ ℱ𝑚2 that are defined by equations: 
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𝓍 = (

𝑋1∗
𝑇

𝑋2∗
𝑇

⋮
𝑋𝑚∗
𝑇

),   𝒷 = (

𝐵1∗
𝑇

𝐵2∗
𝑇

⋮
𝐵𝑚∗
𝑇

) 

 

 

where 𝑋𝑖∗ = (0,… ,0, 𝑥𝑖 , 0, … ,0)
𝑇 and 𝐵𝑖∗ = (0,… ,0, 𝑏𝑖, 0, … ,0)

𝑇.  

In other words, the equation 𝐴𝑥 = 𝑏 (or the same equation, but written as 𝐴𝑋ℐ = 𝐵ℐ) is the 

equation 𝒫𝓍 = 𝒬𝒷, that is, the equation (𝐴⊗ ℐ𝑇)𝓍 = (𝐼 ⊗ ℐ𝑇)𝒷. 

Let’s express in the original equation 𝐴𝑥 = 𝑏 the required vector of unknowns 𝑥 =
(𝑥1, 𝑥2… , 𝑥𝑚)

𝑇 ∈ ℱ𝑚  and the vector on the right side 𝑏 = (𝑏1, 𝑏2… , 𝑏𝑚)
𝑇 ∈ ℱ𝑚 in terms of the 

diagonal matrices 𝑋 ∈ ℱ𝑚×𝑚 and 𝐵 ∈ ℱ𝑚×𝑚 in the form 𝑥 = 𝑋ℐ and 𝑏 = 𝐵ℐ, where the matrices 𝑋, 

𝐵 and the vector ℐ ∈ ℱ𝑚  are equal 

 

 

𝑋 = (

𝑥1 0 … 0
0 𝑥2 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝑥𝑚

),   𝐵 = (

𝑏1 0 … 0
0 𝑏2 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝑏𝑚

),   ℐ = (

1
1
⋮
1

). 

 

 

 

Then the equation 𝐴𝑥 = 𝑏  can be represented as 𝐴𝑋ℐ = 𝐵ℐ. Note that the transformation of the 

equation 𝐴𝑥 = 𝑏 for the vector of unknowns 𝑥 to the equation 𝐴𝑋ℐ = 𝐵ℐ  for the matrix of 

unknowns 𝑋, is necessary to move from the usual matrix space to the Kronecker space and apply  

Kronecker matrix algebra (Section 3.1). 

When describing in detail the Kronecker multiplication of the  matrices, it is easy to see that 

 

 

(𝐴⊗ ℐ𝑇)𝓍 = (

𝑎11ℐ
𝑇 𝑎12ℐ

𝑇 … 𝑎1𝑚ℐ
𝑇

𝑎21ℐ
𝑇 𝑎22ℐ

𝑇 … 𝑎2𝑚ℐ
𝑇

⋮ ⋮ ⋱ ⋮
𝑎𝑚1ℐ

𝑇 𝑎𝑚2ℐ
𝑇 ⋯ 𝑎𝑚𝑚ℐ

𝑇

)(

𝑋1∗
𝑇

𝑋2∗
𝑇

⋮
𝑋𝑚∗
𝑇

) = 𝐴𝑥, 

 

(𝐼 ⊗ ℐ𝑇)𝒷 = (

ℐ𝑇 𝑂𝑇 … 𝑂𝑇

𝑂𝑇 ℐ𝑇 … 𝑂𝑇

⋮ ⋮ ⋱ ⋮
𝑂𝑇 𝑂𝑇 ⋯ ℐ𝑇

)(

𝑋1∗
𝑇

𝑋2∗
𝑇

⋮
𝑋𝑚∗
𝑇

) = 𝑏, 

 

 

where ℐ𝑇 = (1 1…1) ∈ ℱ𝑚, 𝑂𝑇 = (0 0…0) ∈ ℱ𝑚. 

  

In this way,  the equations 𝐴𝑥 = 𝑏 и 𝒫𝓍 = 𝒬𝒷 are equivalent, where 𝒫 = (𝐴⊗ ℐ𝑇) ∈ ℱ𝑚×𝑚2 
and 𝒬 = (𝐼 ⊗ ℐ𝑇) ∈ ℱ𝑚×𝑚2.  

Let’s consider the equation  𝒫𝓍 = 𝒬𝒷, or in the expansion the equation (𝐴⊗ ℐ𝑇)𝓍 = (𝐼 ⊗
ℐ𝑇)𝒷, and show that it has the same solutions as 𝐴𝑥 = 𝑏.  

Let’s introduce the change of variables 𝓍 = (𝐴−1⊗ ℐ)𝑧 in the equation 𝒫𝓍 = 𝒬𝒷. Then 

(𝐴⊗ ℐ𝑇)(𝐴−1⊗ ℐ)𝑧 = (𝐼 ⊗ ℐ𝑇)𝒷, i.e. (𝐼 ⊗𝑚)𝑧 = (𝐼 ⊗ ℐ𝑇)𝒷 or 𝑚𝑧 = (𝐼 ⊗ ℐ𝑇)𝒷. Whence, 

taking into account that (𝐼 ⊗ ℐ𝑇)𝒷 = 𝑏 (see above), 𝓍 =
1

𝑚
(𝐴−1⊗ ℐ)(𝐼 ⊗ ℐ𝑇)𝒷 =

1

𝑚
(𝐴−1⊗

ℐ)𝑏. 
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By multiplying both parts of the last equation on the left by (𝐼 ⊗ ℐ𝑇), one can find that (𝐼 ⊗

ℐ𝑇)𝓍 =
1

𝑚
(𝐼 ⊗ ℐ𝑇)(𝐴−1⊗ ℐ)𝑏, and, taking into account that (𝐼 ⊗ ℐ𝑇)𝓍 = 𝑥, this results in the 

equation  𝑥 =
1

𝑚
(𝐴−1⊗𝑚)𝑏 = 𝐴−1𝑏.  

 

From the above, it follows that the set of solutions of the matrix equation 𝐴𝑥 = 𝑏 in the ordinary 

matrix space coincides with the set of solutions of the equation 𝒫𝓍 = 𝒬𝒷, where 𝒫 = (𝐴⊗ ℐ𝑇) 
and 𝒬 = (𝐼 ⊗ ℐ𝑇) in the Kronecker matrix space. ◄ 

 

3.3. Diagonalizing the matrix F in equation (8) 
 

Let’s represent equation (8) in the following operator form 𝒢(𝑡)𝓅(𝑡) = (𝐻 ⊗ ℐ𝑇)𝜙(𝑡) 
(𝒟 = 𝑑 𝑑𝑡⁄ , 𝒟2 = 𝑑2 𝑑𝑡2⁄  [4]) or in the expanded form: 

 

((𝐼 ⊗𝑚)𝒟2 + (Λ𝐷⊗𝑚)𝒟 + (𝐹 ⊗𝑚))𝓅(𝑡) = (𝐻 ⊗ ℐ𝑇)𝜙(𝑡). (9) 

 

Let’s determine the eigenvalues 𝜆(𝑡) and eigenvectors 𝑣 ∈ ℱ𝑚 of the operator matrix 𝒢(𝑡) that 

satisfy the equation 𝒢(𝑡)𝑣 = 𝜆(𝑡)𝑣. It’s worth noting that from the below it will become clear that  

the eigenvectors 𝑣 are time-independent. 

Let 𝜆𝐹,𝑘 and 𝑤𝐹,𝑘, 𝑘 = 1,2, … ,𝑚 be the eigenvalues and the corresponding eigenvectors of the 

non-singular  𝑚 ×𝑚-matrix 𝐹 that satisfy the equation 𝐹𝑤𝐹,𝑘 = 𝜆𝐹,𝑘𝑤𝐹,𝑘, and since the elements of 

the matrix 𝐹 are time-independent, its eigenvalues and eigenvectors 𝜆𝐹,𝑘 and 𝑤𝐹,𝑘 are time-

independent as well. 

The eigenvalues 𝜆𝑘(𝑡)  and the eigenvectors 𝑣𝑘 of the matrix 𝒢(𝑡) ∈ ℱ𝑚 are obtained in the 

matrix Kronecker space (Section 3.1) as follows. Assuming 𝑣𝑘 = (𝑤𝐹,𝑘⊗1)  and taking into 

account the commutativity of the independent variables and the differential operator 𝒟, the 

following is obtained: 

 

𝒢(𝑡)𝑣𝑘 = 𝒢(𝑡)(𝑤𝐹,𝑘⊗1) = ((𝐼 ⊗𝑚)𝒟2 + (Λ𝐷⊗𝑚)𝒟 + (𝐹 ⊗𝑚))(𝑤𝐹,𝑘⊗1) = 

= (𝐼 ⊗𝑚)(𝑤𝐹,𝑘⊗1)𝒟2 + (Λ𝐷⊗𝑚)(𝑤𝐹,𝑘⊗1)𝒟 + (𝐹 ⊗𝑚)(𝑤𝐹,𝑘⊗1). 

 

 

As (𝐹 ⊗𝑚)(𝑤𝐹,𝑘⊗1) = (𝐹𝑤𝐹,𝑘⊗𝑚) = (𝜆𝐹,𝑘𝑤𝐹,𝑘⊗𝑚) = 𝜆𝐹,𝑘𝑚(𝑤𝐹,𝑘⊗1), 
the following is written:   

 

 

𝒢(𝑡)𝑣𝑘 = (𝐼 ⊗𝑚)(𝑤𝐹,𝑘⊗1)𝒟2 + (Λ𝐷⊗𝑚)(𝑤𝐹,𝑘⊗1)𝒟 + 𝜆𝐹,𝑘𝑚(𝑤𝐹,𝑘⊗1) = 

= ((𝐼 ⊗𝑚)𝒟2 + (Λ𝐷⊗𝑚)𝒟 + 𝜆𝐹,𝑘(𝐼 ⊗𝑚))(𝑤𝐹,𝑘⊗1)). 

 

 

For each value 𝑘 (𝑘 = 1,2, … ,𝑚), the eigenvalue𝜆𝑘(𝑡) and the corresponding eigenvector 𝑣𝑘 of 

the matrix 𝒢(𝑡) ∈ ℱ𝑚 is 𝜆𝑘(𝑡) = 𝑚𝒟
2 + 𝜆𝐷,𝑘𝑚𝒟 + 𝜆𝐹,𝑘𝑚 and 𝑣𝑘 = (𝑤𝐹,𝑘⊗1), respectively.  

With the found eigenvalues 𝜆𝑘(𝑡) and the eigenvectors 𝑣𝑘 = (𝑤𝐹,𝑘⊗1) of the matrix 𝒢(𝑡) ∈
ℱ𝑚, the spectral decomposition of the matrix 𝒢(𝑡) ∈ ℱ𝑚 is done, namely:  

 𝒢(𝑡) =  𝑊Λ(𝑡)𝑊−1, (10) 

 

where Λ(𝑡) = 𝑑𝑖𝑎𝑔{𝜆1(𝑡), 𝜆2, (𝑡)… , 𝜆𝑚(𝑡)}, 𝜆𝑘(𝑡) = 𝑚𝒟
2 + 𝜆𝐷,𝑘𝑚𝒟 + 𝜆𝐹,𝑘𝑚, 𝑘 = 1,2, … ,𝑚; 

Λ𝐹 = 𝑑𝑖𝑎𝑔{λ𝐹1, λ𝐹2, … , λ𝐹𝑚} – diagonal 𝑚 ×𝑚-matrix that consists of the eigenvalues 𝜆𝐹,𝑘, 

𝑘 = 1,2, … ,𝑚, of the matrix 𝐹; 𝑊 – transforming 𝑚 ×𝑚-similarity matrix that consists of the 

http://www.math.spbu.ru/diffjournal


Differential Equations and Control Processes, N. 3, 2021 

 

Electronic Journal. http://diffjournal.spbu.ru/19 

eigencolumns of the matrix  𝒢(𝑡) ∈ ℱ𝑚 and is 𝑊 = (𝑤𝐹,1, 𝑤𝐹,2, … , 𝑤𝐹,𝑚) ∈ ℱ𝑚. In the matrix form, 

the diagonal 𝑚×𝑚-matrix of eigenvalues of the matrix 𝒢(𝑡) ∈ ℱ𝑚 is 

 Λ(𝑡) = 𝑚𝐼𝒟2 +𝑚Λ𝐷𝒟 +𝑚Λ𝐹. 

 

 

It's worth noting that the eigenvectors of the matrix 𝒢(𝑡)  and the transforming similarity matrix 

𝑊 are time-independent, and the eigenvalues 𝜆𝑘(𝑡) = 𝑚𝒟
2 + 𝜆𝐷,𝑘𝑚𝒟 + 𝜆𝐹,𝑘𝑚 , being the sum of 

time-independent eigenvalues 𝜆𝐷,𝑘 and 𝜆𝐹,𝑘 of the matrices 𝐷 and 𝐹,  depend on time only through 

the differential operator 𝒟. 

 

4. Obtaining a matrix system of equations with diagonal matrices 

 

By substituting the spectral decomposition (10) of the matrix 𝒢(𝑡) into equation (9) and taking 

into account that the Kronecker product of an arbitrary matrix by one is equal to the matrix itself, 

the following equation is obtained, in which only diagonal matrices appear, namely: 

 

 

 

𝑊(𝑚𝐼𝒟2 +𝑚Λ𝐷𝒟 +𝑚Λ𝐹)𝑊
−1𝓅(𝑡) = (𝐻 ⊗ ℐ𝑇)𝜙(𝑡), 

𝑚
𝑑𝓅(0)

𝑑𝑡
= (𝐺 ⊗ ℐ𝑇)𝓍0

′ , 𝑚𝓅(0) = (𝐺 ⊗ ℐ𝑇)𝓍0 . 
(11) 

 

By introducing a new vector variable  𝓏(𝑡) = 𝑊−1𝓅(𝑡) into the last equation and multiplying 

the resulting equation on the left by the matrix 𝑊−1, the following system of equations is obtained: 

 

 

𝑚𝐼
𝑑2𝓏(𝑡)

𝑑𝑡2
+𝑚Λ𝐷

𝑑𝓏(𝑡)

𝑑𝑡
+ 𝑚Λ𝐹𝓏(𝑡) = 𝑊

−1(𝐻 ⊗ ℐ𝑇)𝜙(𝑡), 

𝑚
𝑑𝓏(0)

𝑑𝑡
= 𝑊−1(𝐺 ⊗ ℐ𝑇)𝓍0

′ , 𝑚𝓏(0) = 𝑊−1(𝐺 ⊗ ℐ𝑇)𝓍0 , 

(12) 

 

which is decomposed into 𝑚 independent equations for each independent variable 𝓏𝑖(𝑡), 𝑖 =
1,2, … ,𝑚 
 

 

𝑑2𝓏𝑖(𝑡)

𝑑𝑡2
+ λ𝐷𝑖

𝑑𝓏𝑖(𝑡)

𝑑𝑡
+ λ𝐹𝑖𝓏𝑖(𝑡) =

1

𝑚
{𝑊−1(𝐻 ⊗ ℐ𝑇)𝜙(𝑡)}𝑖, 

𝑑𝓏𝑖(0)

𝑑𝑡
=
1

𝑚
{𝑊−1(𝐺 ⊗ ℐ𝑇)𝓍0

′ }𝑖, 𝓏𝑖(0) =
1

𝑚
{𝑊−1(𝐺 ⊗ ℐ𝑇)𝓍0}𝑖, 

(13) 

 

where {𝑊−1(𝐻 ⊗ ℐ𝑇)𝜙(𝑡)}𝑖, {𝑊
−1(𝐺 ⊗ ℐ𝑇)𝓍0

′ }𝑖, {𝑊
−1(𝐺 ⊗ ℐ𝑇)𝓍0}𝑖 – 𝑖-th elements of vectors 

𝑊−1(𝐻 ⊗ ℐ𝑇)𝜙(𝑡), 𝑊−1(𝐺 ⊗ ℐ𝑇)𝓍0
′ , 𝑊−1(𝐺 ⊗ ℐ𝑇)𝓍0. 

Each of equations (13) has an analytical solution, which, in most cases, is known and contained 

in numerous reference literature [14]. The vector 𝓏(𝑡) is determined using the found solution 

elements 𝓏𝑖(𝑡), 𝑖 = 1,2, … ,𝑚. 

The required vector of solutions 𝑥(𝑡) of original equation (1) is related to the matrix of 

unknowns 𝑌(𝑡) by the equation 𝑥(𝑡) = 𝑈Λ𝐴
−
1

2𝑉𝑌(𝑡)ℐ. In turn, the matrix 𝑌(𝑡) upon moving from 
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the ordinary matrix space to the Kronecker matrix space, is transformed into the Kronecker vector 

𝓎(𝑡), which is transformed, first, into the vector 𝓅(𝑡), and then into the vector 𝓏(𝑡), determined by  

equations (13), that is, 𝑌(𝑡) ⇒ 𝓎(𝑡) = (𝐼 ⊗ ℐ)𝓅(𝑡) = (𝐼 ⊗ ℐ)𝑊𝓏(𝑡), where the matrices 𝑈, 𝑉, 

𝑊are the transforming m × m-similarity matrices. 

It’s worth noting that if one of the matrices turns out to be diagonal when diagonalizing matrices 

in equation (1), then its spectral decomposition is not required 

 

5. The example of application  
 

The application of the developed method is disclosed in this section by the example of a matrix 

of differential equation in the second-order ordinary derivatives (e.g., the Lagrange equation for 

generalized coordinates [4]) 

 

 

𝐴
𝑑2𝑥(𝑡)

𝑑𝑡2
+ 𝐵

𝑑𝑥(𝑡)

𝑑𝑡
+ 𝐶𝑥(𝑡) = 0, 

𝑑𝑥(0)

𝑑𝑡
= 𝑥0

′ ,   𝑥(0) = 𝑥0, 

(14) 

 

where 𝐴, 𝐵, 𝐶 – non-singular matrices (det 𝐴 = 3, det 𝐵 = 5, det 𝐶 = 10) 

 

𝐴 = (
2 1
1 2

),   𝐵 = (
2 3
1 4

),   𝐶 = (
4 1
2 3

),  

𝑥(𝑡) = (
𝑥1(𝑡)

𝑥2(𝑡)
),   𝑥0 = (

𝑥01
𝑥02
),   𝑥0

′ = (
𝑥01
′

𝑥02
′ ). 

 

 

Using the method suggested in the article, system of matrix equations (14) is reduced to a 

system of two independent equations with respect to the variables 𝓏𝑖(𝑡), 𝑖 = 1,2, 

 

 

𝑑2𝓏𝑖(𝑡)

𝑑𝑡2
+ λ𝐷𝑖

𝑑𝓏𝑖(𝑡)

𝑑𝑡
+ λ𝐹𝑖𝓏𝑖(𝑡) = 0, 

𝑑𝓏𝑖(0)

𝑑𝑡
= 𝑧01

′ =
1

2
{𝑊−1(𝐺 ⊗ ℐ𝑇)𝓍0

′ }𝑖, 𝓏𝑖(0) = 𝑧01 =
1

2
{𝑊−1(𝐺 ⊗ ℐ𝑇)𝓍0}𝑖. 

(15) 

 

Let’s find the numerical values of the variables from equations (15), i.e. the eigenvalues (λ𝐴1, 

λ𝐴2), (λ𝐷1, λ𝐷2), (λ𝐹1, λ𝐹2) of the matrices 𝐴, 𝐷, 𝐹, the transforming similarity matrices 𝑈, 𝑉, 𝑊, 

the matrix 𝐺 in the initial conditions, and also obtain the necessary spectral decompositions of all 

matrices. 

 

The eigenvalues (λ𝐴1, λ𝐴2), (λ𝐷1, λ𝐷2), (λ𝐹1, λ𝐹2) of matrices 𝐴, 𝐷, 𝐹 and the transforming 

similarity matrices  𝑈, 𝑉, 𝑊 are obtained by spectral decomposition of matrices 𝐴,  𝐷 =

Λ𝐴
−
1

2𝑈−1𝐵𝑈Λ𝐴
−
1

2 and 𝐹 = 𝑉−1Λ𝐴
−
1

2𝑈−1𝐶𝑈Λ𝐴
−
1

2𝑉, namely, 

 

𝐴 = (
2 1
1 2

) = 𝑈Λ𝐴 𝑈
−1 = (

−1 1
1 1

) (
1 0
0 3

)(

−1

2

1

2
1

2

1

2

); 
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𝐷 = Λ𝐴
−
1

2𝑈−1𝐵𝑈Λ𝐴
−
1

2 = (
1 0
0 3

)
−
1

2
(

−1

2

1

2
1

2

1

2

)(
2 3
1 4

) (
−1 1
1 1

) (
1 0
0 3

)
−
1

2
= (

1 0
2√3

3

5

3

); 

𝐷 = (
1 0
2√3

3

5

3

) = 𝑉Λ𝐷𝑉
−1 = (

−√3

3
0

1 1
)(
1 0

0
5

3

) (
−√3 0

√3 1
); 

 

𝐹 = 𝑉−1Λ𝐴
−
1

2𝑈−1𝐶𝑈Λ𝐴
−
1

2𝑉 = 

= (
−√3 0

√3 1
) (
1 0
0 3

)
−
1

2
(

−1

2

1

2
1

2

1

2

)(
4 1
2 3

) (
−1 1
1 1

) (
1 0
0 3

)
−
1

2
(
−√3

3
0

1 1
) = (

2 0

0
5

3

); 

𝐹 = (
2 0

0
5

3

) = 𝑊Λ𝐹𝑊
−1 = (

1 0
0 1

) (
2 0

0
5

3

) (
0 1
1 0

), 

 

whence it follows that the eigenvalues of the matrices 𝐴, 𝐷 and 𝐹 are (λ𝐴1, λ𝐴2) = (1, 3), 

(λ𝐷1, λ𝐷2) = (1,
5

3
), (λ𝐹1, λ𝐹2) = (2,

5

3
), respectively.  

The matrices in the initial conditions of equations (15) are  

 

 

𝐺 = 𝑉−1Λ𝐴

1

2𝑈−1 = (
−√3 0

√3 1
) (
1 0
0 3

)

1

2
(

−1

2

1

2
1

2

1

2

) = (
√3

2
−
√3

2

0 √3
)  

 

(𝐺 ⊗ ℐ𝑇) = (
√3

2
−
√3

2

0 √3
)⊗ (1 1) = (

√3

2

√3

2
−
√3

2
−
√3

2

0 0 √3 √3
),  

 

 

and the initial conditions in equation (15) can be written as follows 

 

 

(
𝑧01
′

𝑧02
′ ) =

1

2
{𝑊−1(𝐺 ⊗ ℐ𝑇)𝓍0

′ }𝑖 =
1

2
(
0 1
1 0

) (
√3

2

√3

2
−
√3

2
−
√3

2

0 0 √3 √3
)(
𝑥01
′

𝑥02
′ ) = (

√3

4
𝑥01
′ −

√3

4
𝑥02
′

√3

2
𝑥02
′

), 

  

(
𝓏01
𝓏02
) =

1

2
{𝑊−1(𝐺 ⊗ ℐ𝑇)𝓍0}𝑖 =

1

2
(
0 1
1 0

) (
√3

2

√3

2
−
√3

2
−
√3

2

0 0 √3 √3
)(
𝑥01
𝑥02
) = (

√3

4
𝑥01 −

√3

4
𝑥02

√3

2
𝑥02

). 

 

 

Equations (15) define the vector of independent solutions 𝓏(𝑡) = (𝓏1(𝑡), 𝓏2(𝑡))
𝑇, the 

components of which 𝓏1(𝑡) and 𝓏2(𝑡)  are found by solving the following equations:  
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– component 𝓏1(𝑡)  
 

 

𝑑2𝓏1(𝑡)

𝑑𝑡2
+
𝑑𝓏1(𝑡)

𝑑𝑡
+ 2𝓏1(𝑡) = 0, 

 

𝑑𝓏1(0)

𝑑𝑡
= 𝑧01

′ =
√3

4
𝑥01
′ −

√3

4
𝑥02
′ ,    𝓏1(0) = 𝑧01 =

√3

4
𝑥01 −

√3

4
𝑥02, 

(16) 

 

– component 𝓏2(𝑡) 
 

 

 

𝑑2𝓏2(𝑡)

𝑑𝑡2
+
5

3

𝑑𝓏2(𝑡)

𝑑𝑡
+
5

3
𝓏2(𝑡) = 0 , 

𝑑𝓏2(0)

𝑑𝑡
= 𝑧02

′ =
√3

2
𝑥02
′ , 𝓏2(0) = 𝑧02 =

√3

2
𝑥02. 

(17) 

 

The solutions of equations (16) and (17) are known and can be expressed analytically [14]  

 

𝓏1(𝑡) = 𝑧01𝑒
𝛼𝑡 (cosω 𝑡 −

𝛼

ω
 sinω 𝑡)+

1

ω
𝑧01
′ 𝑒𝛼𝑡 sinω𝑡, (18) 

 

at 𝛼 = −0,5, ω = 1,322876; 

 

𝓏2(𝑡) = 𝑧02𝑒
𝛼𝑡 (cosω 𝑡 −

𝛼

ω
 sinω 𝑡)+

1

ω
𝑧02
′ 𝑒𝛼𝑡 sinω𝑡. (19) 

 

at 𝛼 = −0,833, ω = 0,986. 

 

The required solution 𝑥(𝑡) of original equation (14) is expressed through the independent solutions 

𝓏1(𝑡) and 𝓏2(𝑡) of equations (16) and (17) 

 

 

𝑥(𝑡) = (
𝑥1(𝑡)

𝑥2(𝑡)
) = 𝑈Λ𝐴

−
1

2𝑉𝑌(𝑡)ℐ = (
−1 1
1 1

) (
1 0
0 3

)
−
1

2
(
−√3

3
0

1 1

) (
𝓏1(𝑡) 𝓏1(𝑡)

𝓏2(𝑡) 𝓏2(𝑡)
) (
1
1
) = 

= (

4√3

3
𝓏1(𝑡) +

2√3

3
𝓏2(𝑡)

2√3

3
𝓏2(𝑡)

).  
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Fig. 1. Solutions 𝑥1(𝑡) and 𝑥2(𝑡) for the example of the matrix differential equation in the second-

order ordinary derivatives calculated using the developed method and numerical methods on a 

computer 

 

 

The required solutions 𝑥1(𝑡) and 𝑥2(𝑡)  of original equation (14), obtained using the developed 

method developed, are shown in Fig. 1. 

Fig. 1 also presents solutions obtained using a numerical method on a computer. For 

comparison, solutions are also given calculated with a time step of 0.1 and 0.01. Comparison of the 

solutions obtained using the developed method with the solutions calculated using the numerical 

method shows their complete coincidence, which is a consequence of the fact that the developed 

method presented in the article does not contain approximating conditions and assumptions and is 

accurate. 

 

 

6. Conclusion  
 

The existing methods of reducing matrix systems of coupled differential equations in ordinary 

derivatives to a system of decoupled differential equations are based on the simultaneous 

diagonalization of two symmetric matrices of the equation based on the theorem on their 

simultaneous diagonalization and reduction of one of them to a diagonal identity one. Since the 

number of simultaneously diagonalized matrices does not exceed two, the initial matrix equations 

are considered, as a rule, in a truncated form, without any equation term, so that the total number of 

matrices does not exceed two. At the same time, in many applications, matrix differential equations 

have three or more matrices, which essentially motivated the development. 

This article suggests a method that allows one to diagonalize three matrices in a second-order 

matrix differential equation and thereby obtain a system of independent equations, the solution of 

each of which are easily found in an explicit analytical form. 

For this, one of the matrices of the equation (positive definite) is reduced to a diagonal identity 

form, and the other is subjected to spectral decomposition using a general similarity transformation. 

In the method proposed in the article, the third matrix in the matrix equation is reduced to a 
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diagonal form using the transition from the usual matrix space with the usual matrix algebra to the 

Kronecker matrix space in which the rules of the Kronecker matrix algebra are used. 

The developed method is equally applicable to matrix differential equations of the second order 

𝐴
𝑑2𝑥(𝑡)

𝑑𝑡2
+ 𝐵

𝑑𝑥(𝑡)

𝑑𝑡
+ 𝐶𝑥(𝑡) = 𝑓(𝑡)  with three matrices 𝐴, 𝐵 and 𝐶, and matrix differential equations 

of higher orders, but with three matrices in the equation, i.e. 

 

𝐴
𝑑𝑛𝑥(𝑡)

𝑑𝑡𝑛
+ 𝐵

𝑑𝑚𝑥(𝑡)

𝑑𝑡𝑚
+ 𝐶𝑥(𝑡) = 𝑓(𝑡),   𝑛 > 𝑚 ≥ 1. 

 

 

The main requirement for the matrices 𝐴, 𝐵, 𝐶  is the positive definiteness of one of them, 

which is to be diagonalized first and reduced to the diagonal identity form. 

It’s worth noting that the fundamental possibilities inherent in the method proposed herein 

allow, under certain assumptions and additional studies, to consider matrix differential equations in 

ordinary derivatives of a higher order (n≥3) and with the number of matrices in the equation greater 

than three, i.e. equations (𝐷𝑠𝑥(𝑡) = 𝑑𝑠𝑥(𝑡)/𝑑𝑡𝑠 - differential operator) 

 

𝐴𝑛𝐷
𝑛𝑥(𝑡) + 𝐴𝑛−1𝐷

𝑛−1𝑥(𝑡) + ⋯+ 𝐴0𝑥(𝑡) = 𝑓(𝑡).  
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