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Abstract. Solutions of singularly perturbed boundary-value problems with a
small parameter are characterized by large gradients in very narrow regions
(boundary layers). This circumstance sharply limits the use of standard finite-
difference methods with a fixed stepsize in such problems due to significant
calculation errors or possible loss of stability. This paper presents an effective
method for numerical integration of singularly perturbed boundary-value prob-
lems based on replacing the spatial variable with a new independent variable of
the Sundman-type, which depends on the derivatives of the unknown function.
The use of such non-local transformations, which satisfy a simple asymptotic
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condition, makes it possible to automatically stretch the boundary-layer re-
gion. The resulting problem turns out to be much simpler than the original one
in the sense that standard (classical) numerical methods with a fixed stepsize
can already be applied to solve it. Several new multiparameter nonlinear and
linear singularly perturbed boundary-value problems for second-order reaction-
diffusion type ODEs having monotonic and non-monotonic exact or asymp-
totic solutions, expressed in terms of elementary functions, are constructed. A
comparison of numerical solutions with exact and asymptotic solutions is pre-
sented. The numerical results show that the method based on Sundman-type
transformations for solving boundary-layer problems gives high accuracy. As
a result of an extensive analysis of the obtained results, recommendations are
given for the choice of regularizing functions that determine the most effective
Sundman-type transformations. The difference between regularizing functions
in boundary-layer problems and blow-up problems is discussed. The test prob-
lems formulated in this paper can be used to estimate the accuracy of any other
numerical methods for solving two-point singularly perturbed boundary-value
problems with a small parameter.

Keywords: singularly perturbed boundary-value problems, boundary layer,
Sundman-type transformations, non-local transformations, nonlinear ODEs,
multiparameter test problems, exact solutions, numerical integration.
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1. Introduction

Singularly perturbed linear and nonlinear boundary-value problems with its
highest order derivative multiplied by a small parameter are often used for
mathematical modeling of various phenomena and processes in natural science
and engineering (such problems are often encountered, for example, in hydro-
and aerodynamics [1, 2, 3] and in the theory of convective heat and mass transfer
[3, 4, 5]). An important qualitative feature of such problems is that for the
zero value of a small parameter the order of the differential equation under
consideration decreases and some boundary conditions cannot be satisfied.

Singularly perturbed boundary-value problems have large gradients of solu-
tions in narrow regions (boundary layers), which leads to a loss of convergence
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of standard finite-difference methods and makes them of little use for solving
problems of this type (in [6], examples of exotic incorrect numerical solutions
of singularly perturbed problems obtained by ordinary non-specialized meth-
ods are given). One of the first works, where in full measure it was said on
the inadmissibility of classical finite-difference schemes and the need to develop
special schemes, possessing the property of convergence regardless of the value
of the small parameter, there were publications [7, 8], in which the foundations
of two different approaches to the solution of boundary-value problems with a
boundary layer were laid. In [7], the classical central-difference scheme was pro-
posed with a grid, thickening near boundary layers and having a uniform error
in the approximation of nodes (such a grid has uniformly second-order accuracy
with respect to a small parameter). In [8], an exponential fitting scheme was
developed, the coefficients of which were chosen in such a way that the scheme
is asymptotically exact in the boundary-layer region (this approach allows us
to construct uniformly convergent finite-difference schemes on a uniform grid).

Various methods of the numerical integration for linear and nonlinear
singularly perturbed boundary-value problems are considered, for example,
in [9, 10, 11, 12, 13, 14, 15, 34, 16, 17, 18, 20, 19, 21, 22, 23, 24, 25, 26, 27,
28, 29, 30, 31, 32, 33]. For numerical solution of such problems various authors
apply methods with a piecewise-uniform grid (two-grid methods) characteriz-
ing by a small stepsize in the boundary layer and a large stepsize outside the
boundary layer (for example, see [11, 13, 21, 22, 23, 26, 29]). It is important to
note that in the methods based on the use of a piecewise-uniform grid (as well
as the methods developed in [7, 8]), a priori information on the structure and
the rate of damping of asymptotic solutions in the boundary layer is taken into
account (explicitly or implicitly).

In [35] (see also [36]), for numerical integration of singularly perturbed
boundary-value problems with a single boundary layer, it was proposed to
apply non-local transformations at the initial stage, which allows further in-
tegration of the reduced problem by standard numerical methods applying a
uniform grid for the computational domain. This paper is a further deepening
and development of the approach [35], which is based on the application of
non-local transformations (generalized Sundman transformations) for the nu-
merical integration of singularly perturbed boundary-value problems. Extensive
testing of this method has been carried out on new transformations and new,
more complex nonlinear multiparameter test problems, the solutions of which
are expressed in elementary functions. Comparison of numerical, exact, and
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asymptotic solutions showed the high efficiency of the Sundman transforma-
tions method for solving singularly perturbed problems with a boundary layer
(even for problems with degeneracy, when the highest derivative vanishes at the
boundary).

Remark 1. Generalized Sundman transformations (non-local transfor-
mations) were used in [37, 38, 39, 40, 41, 42] for numerical integration of Cauchy
problems with monotonic and non-monotonic blow-up solutions that have very
large gradients in a neighborhood of a priori unknown point. Comparison of
exact and numerical solutions of several test problems for ODEs of the first,
second, third and fourth orders, as well as systems of nonlinear coupled ODEs,
showed high efficiency of this method for numerical integration of blow-up prob-
lems. In [42], non-local transformations were used for numerical integration of
blow-up problems for nonlinear PDEs.

Remark 2. In [44, 45, 46, 47, 48], generalized Sundman transformations
of special type were applied to obtain exact solutions, first integrals, and also
to linearize some second-order ODEs.

Remark 3. In [1, 49, 50, 51, 52, 34, 53, 54, 55], asymptotic methods
are described that make it possible to find approximate analytical solutions to
boundary-layer problems.

Note that hypersingular nonlinear boundary-value problems are not con-
sidered in this paper (in hypersingular boundary-value problems with a small
parameter ε, super-thin boundary layers arise, and the derivative at the bound-
ary layer can have very large values of the order of e1/ε and more [43] (in ordinary
problems with boundary layers, the derivative at the boundary usually has the
order of ε−1 or ε−1/2)).

2. Qualitative features of singularly perturbed boundary-

layer problems with a small parameter

2.1. Illustrating a three-parameter linear problem. Exact and asymp-
totic solutions. Boundary-layer region

Let us analyze qualitative features of singularly perturbed boundary-value prob-
lems with a small parameter at the highest derivative, that have solutions of
the boundary-layer type, on an example of a specific problem.

Test problem 1. We consider the following three-parameter boundary-value
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problem for the second-order linear equation with constant coefficients [35]:

εy′′xx + y′x + y = 0 (0 < x < 1); y(0) = a, y(1) = b, (1)

where a, b, and ε are free parameters. A boundary layer for this problem
develops near the point x = 0 as ε→ 0 (ε > 0).

Depending on the values of the determining parameters, problem (1) can
have both monotonic and non-monotonic solutions. The exact solution of the
problem is determined by the formulas

y =
a exp(λ2)− b

exp(λ2)− exp(λ1)
exp(λ1x) +

b− a exp(λ1)

exp(λ2)− exp(λ1)
exp(λ2x),

λ1 =
−1− (1− 4ε)1/2

2ε
, λ2 =

−1 + (1− 4ε)1/2

2ε
.

(2)

If ε is small, we find λ1 ' −ε−1, λ2 ' −1, y′x(0) ' −ε−1(a − eb), and
y′′xx(0) ' ε−2(a− eb). From the above relation for the first derivative, it follows
that when using direct numerical methods to solve such singularly perturbed
boundary-value problems with a small parameter, the shooting numerical pro-
cedure should begin with large values of the derivative (of order ε−1), which is
a complicating factor for numerical methods.

Let us assume a ≥ 0 and b ≥ 0. If a > eb, then solution (2) decreases
monotonically and if a < eb, then solution (2) increases monotonically, and
very quickly, in a narrow region 0 ≤ x < x∗, where

x∗ ' ε ln(1/ε), y∗ ' eb (for case a = 0). (3)

In the remaining region x∗ ≤ x ≤ 1, the solution is a monotonically decreasing
function that changes slowly enough.

The exact solutions (2) of problem (1) are shown in Fig. 1 by the solid
lines for two sets of numerical values of the determining parameters: a) a = 1,
b = 0, ε = 0.005 and b) a = 0, b = 1, ε = 0.005. One can see that for
the second set of values the solution in the region 0 ≤ x ≤ x∗ ≈ 0.026709653
increases rapidly (the maximum value y∗ ≈ 2.646247631), and in the region
x∗ ≤ x ≤ 1 it decreases slowly. For comparison in Fig. 1, we also present the
curves obtained by using the exact solution (2) for ε = 0.05 and ε = 0.5 (the
dashed and dash-dotted lines, respectively). It is seen that as the parameter ε
decreases near the point x = 0, the curved lines become steeper and steeper,
approaching the vertical line.
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Figure 1: Exact solutions (2) of problem (1) (solid lines) and numerical solutions of the trans-
formed problem (8) (points) with g = 1 + |z| + |f |1/2 for two sets of numerical values of the
determining parameters: a) a = 1, b = 0, ε = 0.005 and b) a = 0, b = 1, ε = 0.005 (the dashed
and dash-dotted lines are obtained by using formula (2) for ε = 0.05 and ε = 0.5, respectively).

When applying direct numerical methods in such problems, to take into
account the singularities of the solution in the boundary-layer region, it is nec-
essary to take sufficiently many points in a small neighborhood of the left bound-
ary. Therefore, the use of uniform grids throughout the domain of variation of
the independent variable x is connected with the necessity of partitioning the
region 0 ≤ x ≤ 1 into a large number of intervals of integration.

2.2. Order relation between the first and second derivatives

Let us assume that |a− eb| = O(1). Then, taking into account the estimates of
the first and second derivatives given after solution (2), we obtain the following
order relation between the derivatives on the left boundary:

|y′′xx| ' |y′x|2. (4)

Following [35], we will now show that under certain assumptions about the
local behavior of the solutions, the order relation between derivatives (4) is
sufficiently general and is valid if, inside the boundary layer region, the leading
term of the asymptotic expansion of the solution as ε → 0 has the form y =
ϕ(x/δ), where ϕ = ϕ(z) is a smooth function, the first and second derivatives
of which are bounded and non-vanishing in some neighborhood of the point
z = 0, and δ = δ(ε) is a function with the property δ → 0 as ε → 0. Indeed,
differentiating twice the function y = ϕ(x/δ) with respect to x, we find the
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derivatives y′x = δ−1ϕ′z(z) and y′′xx = δ−2ϕ′′zz(z). Eliminating δ from these
formulas, we obtain the order relation (4), which we will need later.

3. Numerical integration of boundary-value

problems based on Sundman transformations

3.1. Description of the solution method

Let us consider two-point problems for second-order nonlinear ODEs with
boundary conditions of the first kind (Dirichlet boundary conditions):

y′′xx = f(x, y, y′x) (0 < x < 1); (5)

y(0) = a, y(1) = b, (6)

where the function f can also depend on the small parameter ε > 0. For
singularly perturbed boundary-value problems we have f = ε−1F (x, y, y′x, ε),
where F (x, y, z, 0) is a smooth function of three arguments.

We introduce a new non-local (Sundman-type) independent variable ξ by
means of the first-order differential equation and the initial condition [35] (see,
also [37, 38, 39]):

ξ′x = g(x, y, y′x), ξ(0) = 0, (7)

where g = g(x, y, y′x) is a regularizing function that must satisfy some simple
conditions described below.

We introduce the notation z = y′x. It is not difficult to show that the
original boundary-value problem (5)–(6) after passing to the Sandman-type
variable (7) is transformed to the following problem for the system of three
first-order coupled ODEs [35]:

x′ξ =
1

g(x, y, z)
, y′ξ =

z

g(x, y, z)
, z′ξ =

f(x, y, z)

g(x, y, z)
(0 < ξ < ξ1);

x(0) = 0, y(0) = a, y(ξ1) = b,

(8)

where the value ξ1 is determined during the solution process when the final
condition x(ξ1) = 1 is reached.

Let us consider the simplest regularizing function: g ≡ 1. In this case, the
first ODE of system (8), taking into account the initial condition x(0) = 0,
gives ξ = x and numerical integration of the remaining two ODEs is equivalent
to the integration of the original problem (5)–(6).
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For the general case, the regularizing function g = g(x, y, z), successfully se-
lected, itself will determine the position and the density of points of integration
with respect to the original variables x and y and allow more accurately to solve
problem (8) using the shooting method or other standard fixed-step numerical
methods with respect to the new non-local variable ξ [56, 57, 58, 59, 60, 61].

3.2. Regularizing functions. The asymptotic condition.
Examples

For numerical solution of singularly perturbe boundary-value problems, as well
as for solving blow-up Cauchy problems, it is reasonable to use regularizing
functions of the form [37, 38, 39]:

g = G(|z|, |f |) ≡ G(|y′x|, |y′′xx|), (9)

where f = f(x, y, z) is the right-hand side of equation (5) and z = y′x. We
impose the following conditions on the function G = G(u, v):

G > 0; Gu ≥ 0, Gv ≥ 0; G→∞ as u+ v →∞; G(0, 0) = 1 (10)

with u ≥ 0 and v ≥ 0.

When using regularizing functions of the form (9) for flat and rectilinear
segments of the curve y = y(x), on which y′x = const, a fixed stepsize in ξ

gives a fixed stepsize in x. Note that if equation (5) is autonomous (that is,
the equation does not depend explicitly on x) and the regularizing function is
chosen in the form (9), then the second and the third equations of system (8)
form an independent subsystem that is integrated independently of the first
equation.

If the right-hand side of the singularly perturbed ODE (5) has the form

f(x, y, y′x) = ε−1F (x, y, y′x),

when choosing regularizing functions, besides the simple conditions (9)–(10),
additional considerations should be taken into account.

If the Sundman transformations are not applied, i.e. g = 1, and ε→ 0, the
right-hand sides of the last two ODEs in (8) will tend to infinity (since |z| → ∞
and |f | → ∞) in the boundary layer. In this region, we also have |f | = O(z2),
which follows from the order relation (4). The specified qualitative features of
such problems significantly complicate the use of standard numerical methods
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for their integration and lead to the necessity of proportional refinement of the
stepsize as ε decreases.

To avoid refining the grid as ε→ 0 and to use a fixed stepsize with respect to
the Sundman-type variable ξ, one should choose suitable regularizing functions
satisfying the following asymptotic condition [35]:

|z|/g = O(1) as ε→ 0. (11)

Then in the boundary layer the right-hand side of the second ODE in (8) will not
have singularities as ε→ 0, and the third ODE in (8) will have a substantially
smaller singularity than for g = 1. It follows from (10) that it is possible to
choose regularizing functions which have asymptotics

g → m1|z| as |z| → ∞ or g → m2|f |1/2 as |f | → ∞, (12)

where m1 and m2 are positive constants of the order of unity. Such asymptotic
conditions (as well as the normalization condition in (10)) can be satisfied, for
example, if we take simple regularizing functions of the form

g = 1 + |z| or g = (1 + |f |)1/2. (13)

Let us consider in more detail the first regularizing function (13). In this
case, the inequality |z|/g < 1 holds. From the second equation of system (8)
we get |y′ξ| ≤ 1. In the boundary-layer region, where the derivative z is large
as ε→ 0, we have |y′ξ| ≈ 1, which leads to a linear dependence y ≈ ±ξ + const.
The right-hand side of the third equation of system (8), taking into account
relation (4) (that is |f | ∼ z2), becomes linear with respect to z in this region.
Outside the boundary layer, system (8) does not have qualitative features. The
second regularizing function (13) has similar qualitative features.

Thus, the use of regularizing functions (13) allows us to completely suppress
the unbounded growth of the right-hand side of the second equation of system
(8) in the boundary-layer region as ε → 0 and to reduce (in comparison with
g = 1) the right-hand side of the third equation. Further, by using concrete
examples, it will be shown that regularizing functions of the form (13) have a
limited scope.

It is also advisable to use more complicated regularizing functions of the
mixed form

g = (1 + k1z
2 + k2|f |)1/2, (14)

g = 1 + k1|z|+ k2|f |1/2, (15)

g = 1 + kmax(|z|, |f |1/2), (16)
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which satisfy the asymptotic condition (11) as well as the normalization con-
dition in (10). Formulas (14)–(16) include the parameters k1 ≥ 0, k2 ≥ 0, and
k > 0 which can vary (with k1 + k2 = O(1) and k = O(1)). Note that the
regularizing function (14) was proposed in [35]. It will be further shown that
regularizing functions (15)–(16) are more universal than functions (13) and (14)
and lead to much more accurate numerical solutions.

3.3. Additional explanations and comments

1◦. From equation (7) and formula (9), for small increments of the argument
∆x, neglecting terms of the order of o(∆x), we obtain

∆ξ = G(|z|, |f |)∆x,

where z = y′x and f = y′′xx.

It follows that the choice of a fixed stepsize for a new variable ∆ξ = h

is equivalent to using a variable stepsize for the original independent variable
∆x = h/G. Suppose that G = G(u) > 0, G(0) = 1, G′u > 0, and u = |z|. Then
an increase in the derivative z with respect to x leads to a decrease in the stepsize
∆x. Therefore, the application of the generalized Sundman transformations
corresponds to the automatic choice of the stepsize with respect to x. When
using formulas (13) and (14) the stepsize ∆x is small in the boundary-layer
region.

2◦. It is useful to additionally transform problem (8), which was obtained
after the transition to a new (Sundman-type) independent variable, by intro-
ducing a normalized derivative by the formula z̄ = εz. In this case, for the
regularizing functions (13) and (14), the right-hand sides of the second and
third equations obtained from (8) (and written in the form resolved with re-
spect to derivatives) will be bounded in the boundary-layer region.

3◦. Methods, based on the use of a piecewise-uniform grid (see, for example,
[22, 23]) are particular degenerate cases of the method based on generalized
Sundman transformations with a piecewise-smooth regularizing function of the

form g =

{
c1 if 0 ≤ x ≤ σ,

c2 if σ < x ≤ 1,
, where c1 and c2 are constants, σ = σ(ε), and

σ → 0 as ε→ 0.

4◦. For moderately small values of ε (εmin < ε� 1), regularizing functions
that do not satisfy the asymptotic condition (11) can be used. However, such
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functions usually lead to significant computation errors at sufficiently small
ε� εmin.

5◦. In this paper, we apply a combination of the classical explicit Runge–
Kutta method of the fourth-order of approximation with a fixed stepsize and
a specific shooting procedure with Maple implementation [60]. For this pur-
pose, an auxiliary Cauchy problem described by the transformed equations (8)
with the first two conditions at the left extreme point and an additional initial
condition z(0) = s is numerically integrated. The value of the parameter s
is determined by satisfying the boundary condition at the right extreme point
x = 1 (see the last boundary condition in (8)). Similarly, after applying a
generalized Sundman transformation to the original problem in the first stage,
any effective numerical methods with a fixed stepsize (for example, explicit
and implicit Runge–Kutta methods, explicit Adams–Bashforth and implicit
Adams–Moulton methods [62, 63, 64]) can be used in the final stage.

The general flow chart showing the main steps needed to implement the
proposed method is displayed in Fig. 2.

4. Singularly perturbed linear boundary-value problems.

Numerical and analytical solutions

4.1. Linear simple test problem. Numerical solutions
obtained by using various regularizing functions

First, we illustrate the characteristic features of the proposed method on simple
linear problems.

The results of numerical integration of the transformed problem (8), used
for solving the original problem (1), for f = −ε−1(z + y) with the regularizing
function g = 1 + |z|+ |f |1/2, which are obtained by the shooting method (from
the point x = 0) with the fixed stepsize h = 0.01 by using Maple [60], are
shown in Fig. 1 by points for two sets of numerical values of the determining
parameters. The first set is a = 1, b = 0, ε = 0.005 (monotonic solution) and
the second set is a = 0, b = 1, ε = 0.005 (non-monotonic solution).

It can be seen that there is a good coincidence between the numerical solu-
tions and the corresponding exact solutions, which are determined by formula
(2) and are represented by solid lines.

Table 1 shows the maximum absolute errors of numerical solutions of the
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Set original singularly
perturbed boundary-value problem

Introduce generalized Sundman
transformation with regularizing function

Obtain reduced singularly
perturbed boundary-value problem

Determine the parameters of the
reduced problem. Apply shooting method

Apply standard numerical
method with uniform grid

Update stepsize or
regularizing function

If the
numerical
results are
correct?

Stop

No

Yes

Figure 2: The flow chart of the proposed method described in Section 3.
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transformed problem (8) used for numerical integration of the original problem
(1) with ε = 0.005 obtained by the method based on generalized Sundman
transformations for a = 1, b = 0 and a = 0, b = 1 with three stepsizes h and
eight different regularizing functions g. For comparison, similar data are also
indicated for the case g = 1, which corresponds to the direct numerical inte-
gration (without using Sundman-type transformations) with the same stepsize
with respect to x.

The maximum absolute error of the numerical solutions for a = 1, b = 0

No. Regularizing function Stepsize 0.1 Stepsize 0.05 Stepsize 0.01

1 g=1 + |z| 0.017119347 0.006702741 0.000137030

2 g=(1 + |f |)1/2 0.000707586 0.000160259 0.000001602

3 g = (1 + |z|+ |f |)1/2 0.000611528 0.000146118 0.000001741

4 g = (1 + z2 + |f |)1/2 0.000900004 0.000204128 0.000001775

5 g = (1 + z4 + f2)1/4 0.000886025 0.000193071 0.000002601

6 g = 1 + |z|+ |f |1/2 0.000512010 0.000112509 0.000000410

7 g = (1 +R1)
1/2 0.000707586 0.000160259 0.000001602

8 g = 1 +R2 0.000550849 0.000119910 0.000000414

9 g=1 process diverges process diverges 0.193331173

The maximum absolute error of the numerical solutions for a = 0, b = 1

No. Regularizing function Stepsize 0.1 Stepsize 0.05 Stepsize 0.01

1 g=1 + |z| 0.047029578 0.013710597 0.000713696

2 g=(1 + |f |)1/2 0.000824707 0.000249922 0.000001663

3 g = (1 + |z|+ |f |)1/2 0.000570299 0.000115649 0.000000554

4 g = (1 + z2 + |f |)1/2 0.000559160 0.000109360 0.000000180

5 g = (1 + z4 + f2)1/4 0.000630398 0.000136417 0.000000390

6 g = 1 + |z|+ |f |1/2 0.000265927 0.000025385 0.000000017

7 g = (1 +R1)
1/2 0.000592523 0.000122175 0.000000346

8 g = 1 +R2 0.000602708 0.000090517 0.000000145

9 g=1 process diverges process diverges 0.528189578

Table 1: Comparison of the accuracy of numerical solutions of the transformed problem (8),
which is used to solve the original problem (1), for various regularizing functions g with ε =
0.005 and three stepsizes h. Here R1 = max(z2, |f |), R2 = max(|z|, |f |1/2).

It can be seen that the seven regularizing functions (Nos. 2–8) make it
possible to obtain numerical solutions in the entire region with high accuracy
even with a sufficiently large stepsize (with respect to ξ) equal to h = 0.1.

It is important to note that the first five regularizing functions (Nos. 1–5)
were used in [35], and the three functions (Nos. 6–8) are new. It can be seen that
the best results are obtained by using the new regularizing function No. 6: for a
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nonmonotonic solution and the stepsize 0.01, it provides an order of magnitude
of the numerical solution more accurate than the other regularizing functions.
Function No. 8 also provides high accuracy of calculations. Further comparison
of numerical and exact solutions in more complex nonlinear test boundary layer
problems will lead to the same conclusions: these two regularizing functions
lead to very good results in the vast majority of cases. Here and further on, for
greater clarity, the two best results in each column of all tables are highlighted
in lilac.

The maximum absolute error of the numerical solutions for a = 1, b = 0

No. Regularizing function N=100 N=200 N=500

1 g=1 + |z| 0.002126935 0.000129392 0.000001946

2 g=(1 + |f |)1/2 0.000183256 0.000007810 0.000000141

3 g = (1 + |z|+ |f |)1/2 0.000227354 0.000007881 0.000000140

4 g = (1 + z2 + |f |)1/2 0.000216955 0.000012022 0.000000216

5 g = (1 + z4 + f2)1/4 0.000242947 0.000013334 0.000000289

6 g = 1 + |z|+ |f |1/2 0.000322285 0.000010201 0.000000132

7 g = (1 +R1)
1/2 0.000188884 0.000007943 0.000000139

8 g = 1 +R2 0.000152543 0.000002787 0.000000035

9 g=1 0.193331172 0.006948616 0.000105565

The maximum absolute error of the numerical solutions for a = 0, b = 1

No. Regularizing function N=100 N=200 N=500

1 g=1 + |z| 0.022065809 0.001390730 0.000470727

2 g=(1 + |f |)1/2 0.000685290 0.000129855 0.000006104

3 g = (1 + |z|+ |f |)1/2 0.000481694 0.000019363 0.000000765

4 g = (1 + z2 + |f |)1/2 0.000762107 0.000039963 0.000000667

5 g = (1 + z4 + f2)1/4 0.000751407 0.000081003 0.000000685

6 g = 1 + |z|+ |f |1/2 0.001389189 0.000027408 0.000000479

7 g = (1 +R1)
1/2 0.000729929 0.000060206 0.000000643

8 g = 1 +R2 0.000617123 0.000016893 0.000000338

9 g=1 0.528189578 0.018983935 0.000288408

Table 2: Comparison of the accuracy of numerical solutions of the transformed problem (8),
which is used to solve the original problem (1), for various regularizing functions g with ε =
0.005 for a different number of grid points N . Here R1 = max(z2, |f |), R2 = max(|z|, |f |1/2).

Table 2 shows the results allowing to compare the efficiency of various regu-
larizing functions that are used for numerical solution of the transformed prob-
lem (8) with ε = 0.005 for a = 1, b = 0 and a = 0, b = 1 for a different number
of grid points N = ξ1/h (here ξ1 is the length of the interval of numerical
integration of the transformed equations).
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Let us compare, for example, the maximum absolute errors of the numer-
ical solutions obtained for a given ε with the regularizing function No. 8 and
function No. 9 (the latter solution is obtained without using transformations)
with the same number of grid points. In this case, for N = 100, the use of
generalized Sundman transformations makes it possible to increase the accu-
racy of the numerical solution by more than 1200–3000 times, and for N = 500,
approximately 850 times (as the number of grid points increases, the error of
the numerical solution, obtained without using transformations, gradually de-
creases).

It can be seen that for all regularizing functions considered in Table 2, the
accuracy of the numerical integration of problem (1) with a monotone solution
for a = 1, b = 0 is significantly higher than the accuracy of the numerical
integration of problem (1) with a non-monotonic solution for a = 0, b = 1.

It can also be seen that function No. 1 is low effective for the non-monotonic
solution. This is due to the fact that near the boundary layer there is a sharp
extremum at the point x = x∗ (see Fig. 1b) where the derivative vanishes,
y′x|x=x∗ = z|x=x∗ = 0. Using formula (2) with a = 0 and b = 1, we find the
curvature at the extremum point

k∗ =
|y′′xx|

(1 + |y′x|2)3/2

∣∣∣∣
x=x∗

=
∣∣y′′xx∣∣x=x∗

' e
(1

ε
− 1
)
. (17)

Thus, the curvature of k∗ tends to infinity as ε→ 0. Therefore, in the vicinity
of the point x∗, where the most dramatic qualitative changes of the solution
take place, it is necessary to make a small stepsize to obtain high accuracy
of numerical calculations. When choosing the regularizing function No. 1 in
Table 2, we have g = 1 + |z| ≈ 1 in the vicinity of the extremum, so the
stepsize in x (for a fixed N) here will be maximal (whereas a small stepsize is
required for this region with a large curvature). This circumstance leads to a
large calculation error in the extremum region for the function g = 1 + |z|.

To explain the above more clearly, let us make a linear-fractional transfor-
mation of the independent variable

X =
(β + 1)x

x+ β
, β =

x∗
1− 2x∗

, (18)

which stretches the boundary layer area and translates the point x∗ in the x, y
plane to the point X∗ = 1/2 in the X, y plane (and leaves the endpoints of the
considered interval motionless).
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In Fig. 3a), the exact solution (2) of problem (1) is shown by the thick
solid line for a = 0, b = 1, ε = 0.005 in the X, y plane. Also in Fig. 3b),
we present the behavior of the absolute error E of the numerical solution of
the transformed problem (8) for the regularizing function g = 1 + |z| with the
stepsize 0.01 and the same values of the parameters. It can be seen that the
maximum absolute error in this case is located in the transition area between
the boundary layer and the outer region (near the extremum of the function y).

Figure 3: a) Exact solution (2) of problem (1) with a = 0, b = 1, and ε = 0.005 in the x,
y plane (thin solid line) and in the X, y plane (thick solid line); b) absolute error E of the
numerical solution of the transformed problem (8) with the regularizing function g = 1 + |z|
and the same values of the parameters in the x, y plane (thin solid line) and in the X, y plane
(thick solid line).

The regularizing functions of mixed type Nos. 3–5 in Tables 1 and 2, in
addition to z = y′x also including f = y′′xx, satisfy the asymptotic condition (11)
in the boundary-layer region.

The inclusion of the second derivative in these formulas allows us to take
into account the large curvature in the vicinity of the extremum point (see (17)),
and accordingly, reduces the stepsize (with respect to x) in this area. Therefore,
the accuracy of numerical solutions obtained by using the regularizing functions
Nos. 3–5 is much higher than by using function No. 1.
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For the non-monotonic solution (with a = 0, b = 1) the best results are
given by the regularizing function No. 4.

In Fig. 4, the numerical integration results of the transformed problem (8),
used for solving the original problem (1), are shown for a = 0, b = 1, ε = 0.005,
h = 0.01, and g = (1 + z2 + |f |)1/2. For clarity, solutions are given using
the original independent variable x and normalized Sundman-type variable ξ̄ =
ξ/ξ1, which stretches the boundary-layer region.

Precisely such a stretching of the region with large gradients, which oc-
curs automatically after choosing a suitable regularizing function, reduces the
stepsize in x and ensures high accuracy of numerical solutions in the boundary
layer.

Further, we will consider only boundary-layer type problems that have non-
monotonic solutions (since such problems present the greatest difficulties for
numerical integration).

Figure 4: a) Numerical solutions of the transformed problem (8), which is used to solve the
original problem (1) with a = 0, b = 1, and ε = 0.005, for g = (1+z2+|f |)1/2 and h = 0.01: y(x)
(thin solid line) and y(ξ̄), where ξ̄ = ξ/ξ1 (thick solid line); b) absolute errors E(x) and E(ξ̄) of
numerical solutions of the transformed problem (8) for the same values of the parameters and
the regularizing function g.
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4.2. Multiparameter linear boundary-value problem having solutions
with several extrema

Test problem 2. Consider now the more complex five-parameter linear
boundary-value problem

εy′′xx + y′x + c cos(λx) = 0 (0 < x < 1); y(0) = a, y(1) = b, (19)

where a, b, c, λ, and ε are free parameters. Depending on the values of the
parameters, this problem can have one, two and more extrema or cannot have
them at all.

It is easy to show that the exact solution of problem (19) is determined by
the formulas

y = A+Be−x/ε + S(x), S(x) =
c[ελ cos(λx)− sin(λx)]

λ(1 + ε2λ2)
,

A =
b− S(1) + [S(0)− a]e−1/ε

1− e−1/ε
, B =

a− b+ S(1)− S(0)

1− e−1/ε
.

(20)

The corresponding asymptotic solution as ε→ 0 has the form

y = b+ c
sinλ

λ
+

(
a− b− c sinλ

λ

)
e−x/ε − c

λ
sin(λx). (21)

Let us consider in more detail a special case of a = 0, b = c = 1, and λ = πn
(n = 1, 2, . . . ). Substituting the indicated values of the parameters in (21), we
obtain

y = 1− e−x/ε − 1

λ
sin(λx), λ = πn. (22)

The exact solutions of problem (19), which are described by formulas (20)
for a = 0, b = c = 1, and ε = 0.005, are represented in Fig. 5 by solid lines
for two values of the parameter λ: λ = π and λ = 2π. For these parameter
values, the solution has two and three extrema, respectively (for λ = π at
x∗ = 0.0265534145 the solution reaches a maximum value of y∗ = 0.978476138).
Results of numerical solutions of the transformed problem (8), used for solving
problem (19) with the regularizing function g = (1 + z2 + |f |)1/2 and the fixed
stepsize h = 0.01 for the same values of the determining parameters, are shown
by points. It can be seen that there is a good coincidence between the numerical
and exact solutions. The maximum absolute error of the numerical solutions
for λ = π is E = 0.000000926 and λ = 2π is E = 0.009993346. The maximum
absolute error of the asymptotic solutions (22) for λ = π is E = 0.009966909
and λ = 2π is E = 0.009992805.
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Figure 5: Exact solutions (20) of problem (19) with a = 0, b = c = 1, and ε = 0.005 (solid lines)
and numerical solutions of the corresponding transformed problem (8) with g = (1+z2 + |f |)1/2
and stepsize h = 0.01 (points) for the two values of λ: a) λ = π and b) λ = 2π.

5. Singularly perturbed nonlinear boundary-value

problems. Numerical and analytical solutions

5.1. Multiparameter boundary-value problem with quadratic
nonlinearity. Exact and numerical solutions

Test problem 3. We consider the five-parameter boundary-value problem for
the reaction-diffusion type ODE with quadratic nonlinearity

εy′′xx + (y + px+ q)y′x + p(y + px+ q) = 0 (0 < x < 1); (23)

y(0) = a, y(1) = b, (24)

where a, b, p, q, and ε are free parameters.

The substitution u = y+px+q transforms equation (23) to the autonomous
equation εu′′xx+uu′x = 0; by introducing the new variable v(u) = u′x it is reduced
to the first-order linear ODE εv′u + u = 0.

As a result, we find the general solution of equation (23) in the explicit form

y = c
1− Ae−cx/ε

1 + Ae−cx/ε
− px− q. (25)

The constants of integration A and c are determined from the transcendental
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system of equations

c
1− A
1 + A

= a+ q, c
1− Ae−c/ε

1 + Ae−c/ε
= b+ p+ q, (26)

obtained by substituting function (25) into the boundary conditions (24). As
ε → 0 and b + p + q > 0, the asymptotic solution of system of ODEs (26) is
given by the expressions

A =
b− a+ p

b+ a+ p+ 2q
, c = b+ p+ q. (27)

Remark 4. The asymptotic solution (27) exactly satisfies the first ODE
of system (26), and the discrepancy of the second ODE of the same system has
the exponentially small order e−(b+p+q)/ε as ε→ 0.

Figure 6: a) Numerical solution of the transformed problem (8), which is used to solve the
original problem (23)–(24), for the regularizing function g = (1 + z2 + |f |)1/2 with a = 1, b = 1,
p = 1, q = 0, and ε = 0.005: x = x(ξ) (solid line) and y = y(ξ) (dashed line); b) exact solution
(25) (solid line) of problem (23)–(24) with a = 1, b = 1, p = 1, q = 0, and ε = 0.005 and
numerical solution (circles) of the transformed problem (8) for g = (1 + z2 + |f |)1/2 with a = 1,
b = 1, p = 1, q = 0, and ε = 0.005; c) and d) absolute errors E of numerical solutions of
the transformed problem (8) for g = (1 + z2 + |f |)1/2 and the same values of the parameters,
respectively, with respect to ξ and x.

The numerical solution x = x(ξ), y = y(ξ) of the transformed problem (8)
with the regularizing function g = (1 + z2 + |f |)1/2 which is used to solve the
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original problem (23)–(24) with a = b = 1, p = 1, q = 0, and ε = 0.005 is
shown in Fig. 6a. The exact solution to the original problem (23)–(24), which
is determined by formula (25) with A = 1/3, c = 2 for the same values of the
parameters a, b, p, q, and ε, is shown by solid line in Fig. 6b (in this case,
the difference between the exact and the asymptotic solutions is far beyond
the limits of the accuracy of our calculations). The circles represent the results
of numerical integration of the corresponding transformed problem (8) with
g = (1 + z2 + |f |)1/2, which are obtained by the shooting method with initial
point x = 0 and the stepsize h = 0.01 by using a special Maple procedure.
The maximum modulus of the difference between the exact and the numerical
solutions is equal to 0.000003261.

The maximum absolute error of the numerical solutions of problem (23)–(24)

No. Regularizing function Stepsize 0.1 Stepsize 0.05 Stepsize 0.01

1 g = 1 + |z| 0.137389203 0.053399823 0.000857913

2 g = (1 + |f |)1/2 0.000937303 0.000228167 0.000005030

3 g = (1 + |z|+ |f |)1/2 0.000786873 0.000196698 0.000003249

4 g = (1 + z2 + |f |)1/2 0.000607467 0.000154641 0.000003261

5 g = (1 + z4 + f2)1/4 0.000617535 0.000156509 0.000005624

6 g = 1 + |z|+ |f |1/2 0.000637870 0.000096382 0.000000429

7 g = (1 +R1)
1/2 0.000630415 0.000172091 0.000004600

8 g = 1 +R2 0.000621275 0.000164464 0.000001680

9 g = 1 process diverges process diverges process diverges

Table 3: Comparison of the accuracy of numerical solutions of the transformed problem (8),
which is used to solve the original problem (23)–(24), for various regularizing functions g with
a = b = 1, p = 1, q = 0, ε = 0.005 and three stepsizes h. Here R1 = max(z2, |f |), R2 =
max(|z|, |f |1/2).

Table 3 shows the maximum absolute errors of numerical solutions of the
transformed problem (8) used for numerical solutions of the original problem
(23)–(24) for a = b = 1, p = 1, q = 0, ε = 0.005 with three stepsizes h and
different regularizing functions g. It can be seen that functions Nos. 2–8 allow
one to obtain numerical solutions in the entire region with high accuracy even
with a sufficiently large stepsize (with respect to the non-local variable ξ) equal
to h = 0.1. For stepsize h = 0.05 and h = 0.01, the best results are provided
by function No. 6.

Tables 4 and 5 shows the maximum absolute errors of the numerical so-
lutions of the transformed problem (8), used for the numerical solution of the
original problem (23)–(24) for a = b = 0, p = 1, q = 0, and ε = 0.005, for three
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stepsizes h, different numbers of grid points N , and nine different regularizing
functions g.

The maximum absolute error of the numerical solutions of problem (23)–(24)

No. Regularized function Stepsize 0.1 Stepsize 0.05 Stepsize 0.01

1 g = 1 + |z| 0.177592060 0.035246285 0.000212137

2 g = (1 + |f |)1/2 process diverges 0.376921099 0.021473151

3 g = (1 + |z|+ |f |)1/2 0.025249660 0.006467125 0.000196032

4 g = (1 + z2 + |f |)1/2 0.000752856 0.000163579 0.000000699

5 g = (1 + z4 + f2)1/4 0.000627973 0.000154532 0.000002003

6 g = 1 + |z|+ |f |1/2 0.000393742 0.000067536 0.000000061

7 g = (1 +R1)
1/2 0.000712931 0.000202734 0.000000999

8 g = 1 +R2 0.000663385 0.000119895 0.000000265

9 g = 1 process diverges process diverges 0.019513818

Table 4: Comparison of the accuracy of numerical solutions of the transformed problem (8),
which is used to solve the original problem (23)–(24), for various regularizing functions g with
a = b = 0, p = 1, q = 0, ε = 0.005 for three stepsizes h. Here R1 = max(z2, |f |), R2 =
max(|z|, |f |1/2).

The special case g = 1 corresponds to the direct numerical solution (without
using transformations) with the same stepsize with respect to x. It can be seen
that functions Nos. 4–8 allow one to obtain numerical solutions in the entire
region with high accuracy even with a sufficiently large stepsize (with respect
to ξ) equal to h = 0.1. For stepsize h = 0.05 and h = 0.01, the best results are
provided by functions No. 6 and No. 8.

Unsatisfactory results for function No. 2 can be explained by the fact that
in this case a degeneracy occurs at the initial point, where the second derivative
vanishes, y′′xx|x=0 = f |x=0 = 0.

Indeed, when choosing the regularizing function No. 2, in the vicinity of the
point x = 0 we have g = (1 + |f |)1/2 ≈ 1 and the asymptotic condition (11) is
not satisfied.

Therefore, the function g = (1 + |f |)1/2 cannot suppress here the growth of
the right-hand side of the second equation of the transformed problem (8).

As a result, the stepsize in x (for a fixed N) will be maximum here (whereas
for this region with a large first derivative, y′x|x=0 ≈ 2ε−1, a small stepsize is
required). This circumstance leads to a large calculation error in the boundary-
layer region for the function g = (1 + |f |)1/2.

From Tables 4 and 5 it can be seen that the use of the regularizing function
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The maximum absolute error of the numerical solutions of problem (23)–(24)

No. Regularized function N=100 N=200 N=300

1 g = 1 + |z| 0.000734178 0.000325332 0.000061158

2 g = (1 + |f |)1/2 process diverges 0.034146715 0.016310528

3 g = (1 + |z|+ |f |)1/2 0.004963520 0.000514743 0.000202650

4 g = (1 + z2 + |f |)1/2 0.000198725 0.000007921 0.000001328

5 g = (1 + z4 + f2)1/4 0.000222372 0.000010748 0.000002162

6 g = 1 + |z|+ |f |1/2 0.000195161 0.000003566 0.000000433

7 g = (1 +R1)
1/2 0.000159026 0.000009546 0.000001646

8 g = 1 +R2 0.000118378 0.000004655 0.000000747

9 g = 1 0.019513818 0.001179663 0.000182152

Table 5: Comparison of the accuracy of numerical solutions of the transformed problem (8),
which is used to solve the original problem (23)–(24), for various regularizing functions g with
a = b = 0, p = 1, q = 0, ε = 0.005 for a different number of grid points N . Here R1 =
max(z2, |f |), R2 = max(|z|, |f |1/2).

No. 3 gives a low accuracy of numerical solutions. This is due to the fact that
in this case we have g = (1 + |z| + |f |)1/2|x=0 = O(|z|1/2), i.e. near the initial
point x = 0, the asymptotic condition (11) does not hold.

5.2. Multiparameter boundary-value problem with
exponential nonlinearity. Exact and numerical solutions

Test problem 4. We now consider the five-parameter boundary-value problem
for the reaction-diffusion type ODE with exponential nonlinearity

εy′′xx + ey+px+qy′x + pey+px+q = 0 (0 < x < 1); (28)

y(0) = a, y(1) = b, (29)

where a, b, p, q, and ε are free parameters.

The substitution u = y + px + q transforms ODE (28) to the autonomous
equation εu′′xx + euu′x = 0; by introducing the new variable v(u) = u′x it is
reduced to the first-order linear ODE εv′u + eu = 0. As a result, we find the
general solution of equation (28) in the explicit form

y = − ln

(
ce−kx/ε +

1

k

)
− px− q. (30)

The integration constants c and k are determined from the transcendental
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system of equations

c+
1

k
= e−a−q, ce−k/ε +

1

k
= e−b−p−q, (31)

obtained by substituting expression (30) into the boundary conditions (29) and
by performing some elementary transformations.

As ε→ 0, the asymptotic solution of system (31) is given by the formulas

c = e−a−q − e−b−p−q, k = eb+p+q. (32)

The maximum absolute error of the numerical solutions of problem (28)–(29)

No. Regularized function Stepsize 0.1 Stepsize 0.05 Stepsize 0.01

1 g = 1 + |z| 0.185049898 0.035618317 0.000212182

2 g = (1 + |f |)1/2 0.000692372 0.000191043 0.000001852

3 g = (1 + |z|+ |f |)1/2 0.000699196 0.000182170 0.000000707

4 g = (1 + z2 + |f |)1/2 0.000706940 0.000139584 0.000000656

5 g = (1 + z4 + f2)1/4 0.000741403 0.000160845 0.000002135

6 g = 1 + |z|+ |f |1/2 0.000479280 0.000062701 0.000000075

7 g = (1 +R1)
1/2 0.000790921 0.000199628 0.000001181

8 g = 1 +R2 0.000492648 0.000109479 0.000000283

9 g = 1 process diverges process diverges 0.016651291

Table 6: Comparison of the accuracy of numerical solutions of the transformed problem (8),
which is used to solve the original problem (28)–(29), for various regularizing functions g with
a = b = 0, p = 1, q = −1, ε = 0.005 and three stepsizes h. Here R1 = max(z2, |f |),
R2 = max(|z|, |f |1/2).

Tables 6 and 7 shows the maximum absolute errors of the numerical so-
lutions of the transformed problem (8), used for the numerical solution of the
original problem (28)–(29) for a = b = 0, p = 1, q = −1, and ε = 0.005, for
three stepsizes h, different numbers of grid points N , and different regularizing
functions g. It can be seen that functions Nos. 2–8 allow one to obtain numer-
ical solutions in the entire region with high accuracy even with a sufficiently
large stepsize (with respect to ξ) equal to h = 0.1. For stepsize h = 0.05 and
h = 0.01, the best results are provided by functions No. 6 and No. 8. Note
that in this case function No. 1 is low effective; the reason for this is due to the
non-monotonicity of the solution and is explained at the end of Section 4.1.
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The maximum absolute error of the numerical solutions of problem (28)–(29)

No. Regularized function N=100 N=200 N=300

1 g = 1 + |z| 0.008033009 0.000490903 0.000168976

2 g = (1 + |f |)1/2 0.000174781 0.000006417 0.000001164

3 g = (1 + |z|+ |f |)1/2 0.000146092 0.000005956 0.000000895

4 g = (1 + z2 + |f |)1/2 0.000215039 0.000007804 0.000001386

5 g = (1 + z4 + f2)1/4 0.000186220 0.000009774 0.000002374

6 g = 1 + |z|+ |f |1/2 0.000254116 0.000003781 0.000000540

7 g = (1 +R1)
1/2 0.000149504 0.000009551 0.000001620

8 g = 1 +R2 0.000096813 0.000004651 0.000000799

9 g = 1 0.016651291 0.000385984 0.000062467

Table 7: Comparison of the accuracy of numerical solutions of the transformed problem (8),
which is used to solve the original problem (28)–(29), for various regularizing functions g with
a = b = 0, p = 1, q = −1, ε = 0.005 for a different number of grid points N . Here R1 =
max(z2, |f |), R2 = max(|z|, |f |1/2).

5.3. Another multiparameter problem with exponential
nonlinearity. Asymptotic and numerical solutions

Test problem 5. Let us consider the four-parameter boundary-value problem
with exponential nonlinearity

εy′′xx + eyy′x + cxey = 0 (0 < x < 1); (33)

y(0) = a, y(1) = b, (34)

where a, b, c, and ε are free parameters.

The solution of problem (33)–(34) cannot be represented in a closed ana-
lytical form. Therefore, in order to obtain an approximate solution as ε → 0,
we use the method of matched asymptotic expansions [52, 53, 53].

As ε→ 0, near the left boundary x = 0, a boundary layer, called the inner
region, is formed. In this region, the last term of equation (33) can be neglected.
The leading term of the asymptotic expansion of the solution in the boundary
layer, satisfying the first boundary condition (34), has the form

yi = − ln

[(
e−a − 1

k

)
e−kτ +

1

k

]
, τ = x/ε, (35)

where τ is the boundary-layer (stretched) variable, k is the constant that is
determined further in the solution process. In the outer region, O(ε) ≤ x ≤ 1,
the first term of equation (33) can be neglected and the leading term of the
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asymptotic solution of problem (33)–(34) is found from the truncated equation
ey(y′x + cx) = 0. Its solution, satisfying the second boundary condition (34),
has the form

ye = b+
1

2
c− 1

2
cx2. (36)

The inner and outer solutions, (35) and (36), must satisfy the matching con-
dition yi(τ → ∞) = ye(x → 0), which allows us to determine the constant k
entering into (35):

k = e(2b+c)/2. (37)

A uniform applicable (in the entire domain 0 ≤ x ≤ 1) composite expansion of
the solution of problem (33)–(34) is defined by the formula

y = yi + ye − ye|x=0

= − ln

[(
e−a − 1

k

)
e−kx/ε +

1

k

]
− 1

2
cx2, k = e(2b+c)/2.

(38)

For non-monotonic solutions (if a < b and c > 0), for the maximum value
of the required function we obtain y∗ ' ye|x=0 = b+ 1

2c.

Figure 7: Asymptotic solutions (38) of the original problem (33)–(34) for a = 0, b = 1, ε = 0.005
and c = 0 (solid line), c = −1 (dashed line), and c = 1 (dash-dotted line), and numerical solu-
tions of the corresponding transformed problem (8) (circles) obtained by generalized Sundman
transformations with a regularizing function g = (1 + z2 + |f |)1/2.
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In Fig. 7, the asymptotic solutions (38) of problem (33)–(34) are shown for
a = 0, b = 1, ε = 0.005 and the three values of the parameter c = −1, 0, 1. The
circles represent the results of numerical solutions of the corresponding trans-
formed problem (8) with the regularizing function g = (1+z2 + |f |)1/2, obtained
by the shooting method (from the point x = 0) with the stepsize h = 0.01 by
using Maple. The maximum modulus of the difference between the asymp-
totic and numerical solutions at c = −1, 0, 1 are, respectively, 0.002612894,
0.000005160, 0.001691475. The maximum modulus of the difference between
the numerical solutions for h = 0.01 and h = 0.005 (stepsize is reduced by half)
for the same values ââof c, respectively, are equal to 0.001063206, 0.000004164,
0.000013097.

6. Regularizing functions recommended for

calculations. Remarks on blow-up problems

6.1. Regularizing functions recommended for calculations

For all the singularly perturbed linear and nonlinear boundary-value problems
with a small parameter considered in this paper, which are described by ODEs
of the form εy′′xx = F (x, y, y′x), the best numerical results are given by using the
composite regularizing functions

g = 1 + |y′x|+ |y′′xx|1/2,
g = 1 + max(|y′x|, |y′′xx|1/2),

(39)

where y′′xx can be replaced by f = ε−1F (x, y, y′x). These formulas are the most
versatile and work well in all cases.

Sufficiently good results are also provided by the regularizing function

g = (1 + |y′x|2 + |y′′xx|)1/2,

recommended in [35].

Recall that earlier, in Sections 4.1 and 5.1, by analyzing the solutions of
test problems (1) and (23)–(24) (for some parameter values), it was shown that
the regularizing functions (13) (functions Nos. 1 and 2 in the tables) are of
limited applicability and do not work well for non-monotonic solutions or if the
original equation degenerates at the border of the boundary layer.
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6.2. Difference between the choice of regularizing functions in
boundary-layer problems and blow-up problems

In Cauchy problems for nonlinear ODEs, the blow-up solutions can be repre-
sented in a vicinity of the power-law singular point x∗ as

y ' A(x− x∗)−β, β > 0, (40)

where 0 ≤ x < x∗. Since the position of the singular point x∗ is unknown in
advance, it is difficult to solve such problems by standard numerical methods
with a fixed stepsize.

In [39, 40, 41], to solve blow-up problems, it was proposed to use Sandman-
type transformations of the form (7), which replaced the unknown interval of
variation of the independent variable of the original problem 0 ≤ x < x∗ by a
given semi-infinite interval 0 ≤ ξ <∞ of the resulting problem. By integrating
Eq. (7), we have

ξ =

∫ x

0

g(x, y, y′x) dx, y = y(x). (41)

Since the singular point x∗ after transformation must go to the infinite point
ξ =∞, the condition

lim
x→x∗

I =∞, I =

∫ x

0

g(x, y, y′x) dx (42)

must be satisfied.

For second-order nonlinear ODEs, taking into account the relations (40)
and (42), it can be shown that for the simplest regularizing functions of the
form g = g(z) and g = g(f) with z = y′x and f = y′′xx, the following power-law
asymptotic conditions should be used [40, 41]:

g(z)→ m1|z|
1

β+1 + ε1 as |z| → ∞, (43)

g(f)→ m2|f |
1

β+2 + ε2 as |f | → ∞, (44)

where m1 > 0, m2 > 0, ε1 ≥ 0, and ε2 ≥ 0. To the conditions (43) and (44),
as in the problems with a boundary layer, one should add a condition of the
normalization type g(0) = 1. Comparative analysis of exact and numerical
solutions to blow-up problems showed that in asymptotic relations (43) and
(44) one should choose the minimum values ε1 = ε2 = 0 [40, 41].
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It is seen that conditions (11) and (12) imposed on regularizing functions
in singularly perturbed problems with a small parameter differ significantly
from conditions (42)–(44), which must be satisfied by regularizing functions in
blow-up problems.

For second-order nonlinear ODEs with monotone and non-monotone blow-
up solutions, that have a singularity in the form of a pole of any integer order
(β = 1, 2, . . . ), one can recommend to use the composite regularizing function
[39, 40, 41]:

g = (1 + |y′x|+ |y′′xx|)1/3, (45)

where the second derivative y′′xx can be replaced with the right-hand side of
the original equation y′′xx = f(x, y, y′x). It can be seen that the regularizing
function (45) differs significantly from functions (39), which give good results
in boundary-layer problems.

Note that the composite regularizing functions (39) satisfy the condition
(42) for any blow-up solutions of the power-law form (40) with β > 0. The
analysis of the possibility of using these functions for numerical integration of
blow-up problems is far beyond the scope of this paper. The authors are going
to investigate this issue in the future.

7. Brief conclusions

Singularly perturbed boundary-value problems for second-order ODEs with a
small parameter at the highest derivative are considered. Such problems are
characterized by narrow boundary layers with large gradients, which greatly
limits the applicability of standard fixed-step numerical methods (their use can
lead to significant errors). We offer an effective method of numerical integration
of singularly perturbed boundary-value problems based on using Sundman-type
transformations. As a result, we obtain more convenient reduced problems
that allow one to apply standard numerical methods with a fixed stepsize with
respect to a new independent variable. An extensive testing of the method
is carried out on various multiparameter linear and nonlinear problems with
monotonic and non-monotonic solutions. Comparison of numerical, exact, and
asymptotic solutions of several singularly perturbed boundary-value problems
with a small parameter showed the high accuracy of the method based on
Sundman-type transformations.
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