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Abstract We provide a mathematical development of generalized gauge the-
ory for interactions of an individual particle represented by a complex energy-
density wave-packet Ψ in the Minkowski time-space. So, we obtained a general
gauge 4-potential field which determinates the acceleration of this particle, by
using the complex phase transformation of Ψ, generated during any interaction
process, with local symmetry of the Lagrangian density: the Euler-Lagrange
equation derived from this Lagrangian density represents the partial differen-
tial equation of motion of Ψ.
This developed mathematical theory is then applied for the famous example of
the Aharonov-Bohm effect for the electrons.

Keywords: Interaction Processes, Mathematical gauge theory, Covariant
derivative, Local symmetries, Aharonov-Bohm effect.

1 Basic Equations and Interaction Processes in the IQM

Theory

Quantum mechanics, based on the Schrödinger equation is an epistemic statis-
tical theory, here denominated as Statistical Quantum Mechanics (SQM), to
differentiate it from the new part of the ontological quantum theory, provided
in [5, 6] and [7], denominated Individual particles Quantum Mechanics (IQM).



Differential Equations and Control Processes, N 1, 2022

Both of them are necessary components of the quantum theory, as are the Clas-
sical Mechanics for Individual objects (ICM),based on the Newton equations,
Hamiltonian-Jacobi equations or the Euler-Lagrange equation of motion of in-
dividual objects) and the Statistical Classical Mechanics (SCM), based on the
Liouville equations.

In the IQM theory there is a deeper specification of the state of the particle,
and in this approach to completion provided in [5], these states are specified by
the energy-density distributions of a given particle in the Minkowski time-space.
Such an ontic state, also not fully accessible (non fully observable by the mea-
surements, and/or with non accessible small compactified higher-dimensions
for the electric charge (5th timelike dimension with the coordinate q4 = ct4)
and spin (6th spacelike dimension with the coordinate q5), for example), has
to represent the complete description of an individual elementary particle, in
order to be able to compute from it all properties of a particle as its rest-mass,
position, speed, momentum, total energy, etc...

It was shown [4, 11, 12, 5, 17] that, generally, any massive particle can be
defined in the Minkowski time-space (we will not use the real higherdimensional
expressions but only its reduced forms to the 4-D representation) with the
signature (+,−,−,−), by the complex wave-packet

Ψ = Φ(t,−→r )e−iϕT (1)

where −→r = q1e1 + q2e2 + q3e3 (for the 3-D Minkowski space orthonormal basis
vectors ej, with ej ·ej = −1 for 1 ≤ j ≤ 3 and e0 ·e0 = 1 for the time-coordinate
q0 = ct) composed by two sub components: by the shape Φ(t,−→r ) of particle’s
body that is a real function which defines the real rest-mass energy-density
Φm ≡ ΨΨ = Φ2(t,−→r ) ≥ 0, and by the de Broglie ’phase (pilot) wave’ with

phase ϕT (t,−→rT ) = −1
~St0=0, where St0=0 =

∫ t,−→rT
0,−→r0

L(t′,−→r ,−→v )dt′ is the Hamilto-

nian principal function for the initial particle’s position (t0,
−→r0) and the current

position at t ≥ 0 (its barycenter) at −→rT (t) ≡ 1
1Φ

∫ −→r Φm(t,−→r )dV , and particle’s

Lagrangian at time t′, L(t′,−→r ,−→v ) = −E − −→v−→p where E is particle’s total
energy and −→p its canonical (conjugate) momentum, and 1Φ ≡

∫
Φm(t,−→r )dV

is the particle’s invariant energy (equal to rest-mass energy m0c
2 for massive

particles and energy E0 of a boson, measured in the frame in which massive
source of this boson is in rest).

Thus, for a free (non accelerated) particle which propagates with constant
speed v and momentum p, so that−→v−→p = −vp, with barycenter position−→rT (t) =
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−→r0 +−→v t, we obtain that the phase change linearly in time t ≥ 0,

ϕT (t) =
E − pv

~
t (2)

When a particle propagates in the vacuum with constant speed −→v it has
the time-invariant spherically-symmetric distribution [10], Φm = K√

r
, where

r = ‖−→r − −→r T‖ is the distance from its barycenter −→rT , corresponding to
particle’s hydrostatic equilibrium where each infinitesimal amount of parti-
cle’s material body Φm(t,−→r ) is in rest w.r.t. particle’s barycenter. However,
generally, during an acceleration each infinitesimal amount of energy-density
Φm(t,−→r ) moves with a different speed −→w(t,−→r ) w.r.t. the group velocity
−→v (t) = d

dt
−→rT (t) = v1e1 + v2e2 + v3e3, with v = ‖−→v ‖ =

√
v2

1 + v2
2 + v2

3, of
particle’s energy-density wave-packet and it is shown [5] that is,satisfied the
following relationship −→v (t) = 1

1Φ

∫ −→w(t,−→r )Φm(t,−→r )dV , so we can introduce

the variation-velocity of the particle’s matter flux −→u (t,−→r ) = −→w(t,−→r ) − −→v (t)
at each space-time point (t,−→r ) inside particle’s matter (where Φm(t,−→r ) > 0).
As shown in [5], during an inertial propagation when the particle is in a hydro-
static equilibrium, we have that Φm is spherically symmetric around particle’s
barycenter with −→u (t,−→r ) = 0 in every point inside particle’s matter, so that ev-
ery infinitesimal amount of Φm propagates with the constant wave-packet group
velocity −→v . Only during the particle’s accelerations we have that −→u (t,−→r ) 6= 0,
so that particle’s body changes dynamically its shape in time.

In the assumption [5] of the topology of the matter of an elementary massive
particle, the wave-packet do not undergo a spreading, also when it changes its
matter density distribution (i.e., its energy-density Φm), and tends to its stable
stationary spherically symmetric distribution during inertial propagation in the
vacuum. That is, the matter has some internal self-gravitational autocohesive
force analogously to the peace of perfect fluid in the vacuum, so that at any
instance of time, the 3-D space topology of particle’s matter distribution, and
consequently its compressible energy-density Φm is simply connected, closed,
continuous and differentiable.

The Lagrangian density L of a particle [5], is given by

L =
~
1Φ

(−∂ϕT
∂t

ΨΨ +
i

2
(Ψ∂0Ψ−Ψ∂0Ψ−Ψ−→w∇Ψ + Ψ−→w∇Ψ)) (3)

with previously introduced speed of particle’s matter/enegy density Φm(t,−→r )

−→w(t,−→r ) = −→v (t) +−→u (t,−→r ) (4)
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Thus, each massive elementary particle satisfies the following conservation laws:
Analogously to the Euler first equation of fluid dynamics (continuity equation),
which represents the conservation of mass, here we have the analog equation
for the conservation of matter (that is of the particle’s rest-mass energy),

∂Φm(t,−→r )

∂t
+∇ · (Φm(t,−→r )−→w(t,−→r )) = 0 (5)

and hence, from the fact that for the real component Φ(t,−→r ) of the wave-packet
Ψ(t,−→r ) in (1), we have that Φm = Φ2, we obtain its first-order differential
equation

∂Φ(t,−→r )

∂t
= −→w(t,−→r )∇Φ(t,−→r )− 1

2
(∇ · −→u (t,−→r ))Φ(t,−→r ) (6)

In what follows, for the Cartesian coordinate system, ∇ = e1
∂
∂x + e2

∂
∂y + e3

∂
∂z

is the gradient (for x ≡ q1, y ≡ q2 and z ≡ q3) so that the Laplacian is defined
by 4 = −∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 (we are using positive-time metric signature
(+,-,-,-))
It holds also for bosons when they become unstable after an initial ’space ex-
plosion’ and, consequently, assume the massive particle behavior and a finite
but non-zero energy-density volume in open 3-D space. We need that the body
of the particle Φm provides also the physical internal pressure P (t,−→r ) (which is
a non-geometrical property) in order to guarantee the hydrostatic equilibrium
of the massive particles. The hydrostatic equilibrium of an massive elementary
particle demonstrated that the body of this particle Φm is a material substance
[10], which is fluid and elastic, and which can not be reduced to the time-space
geometry.

Hence, in this IQM theory [5] for individual elementary particles based on
energy-density wave-packets, the point-like particles are only the stable-state
bosons when they propagate with speed of light in the vacuum, and with their
energy-density distributed in higher compactified dimensions [6]. In Section 2.7
in [5], dedicated to the 3-D radial expansion of the bosons w.r.t. the direction
of particle’s propagation, to the tunneling and reflections, has been considered
the cylindrical expansion of the massive boson with energy density Φm (that is,
during the unstable boson’s states where the variation-velocity −→u (t,−→r )) 6= 0.
The real physical hyperdimensional representation of the massless bosons
energy-density, for a given instance of time t, for the Euclidean space point
−→r = −→r0 + −→c t, is given by Φm = Φ2(r4, t4, q5) = σ(q5) δ(

−→r − −→r0 − −→c t) where,
σ(q5) = 1Φ

L , with the length of the 6th dimension is L = 4πR5, denotes the
constant energy-density distributed in 6th dimension with radius R5.
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Thus, by integration of this hyperdimensional density over 6th dimension
with coordinate q5, from [6] we obtain the common point-like 4-D representation
of the massless boson’s energy-density in the 4-dimensional Minkowski time-
space by the Dirac function (note that its pilot-wave phase is ϕT = 0),

Φm(t,−→r ) = 1Φδ(
−→r −−→r0 −−→c t) (7)

where 1Φ is a constant (equal to a total energy E = pc of a boson in the
frame where the source of this boson is in the rest), which is consequently only
mathematically correct point-like representation of the massless boson. In fact,
now the total energy, for a given time-instance t, can be obtained by integration
in the ordinary 3-D space, by E =

∫
ΦmdV = 1Φ

∫
δ(−→r − −→r0 − −→c t)dxdydz =

1Φ · 1 = 1Φ. However, it is not physically correct, because we would have an
infinity density of energy Φm in the single point of the boson’s barycenter −→r =
−→r0 +−→c t. In such case, the Schwarzschild radius rs would be greater (or equal)
than the radius of the point (boson’s barycenter) which is zero, so that the
boson would become a black hole, which does not correspond to physical facts.
Note that this fact can’t happen in the case when we are using the complete
6-D expression for the wave-packet, where Φ2(t,−→r , q5) = σ(q5)δ(

−→r −−→r0 −−→c t)
is also physically composed expression where the energy density is only σ(q5)
and there exists only in the 6th dimension and not in M 4, and hence the Dirac
’function’ δ in the Minkowski time-space M 4 defines only the position of the
boson and not its energy-density. In effect, by the integration in 6-D time-space
of boson’s energy density, its total energy is E =

∫
Φ2(t,−→r , q5)dq1dq2dq3dq5 =∫

σ(q5)(δ(
−→r −−→r0 −−→c t)dV )dq5 =

∫
σ(q5)dq5 = 1Φ.

So, from (7) the volume of the massless boson in the ordinary 3-dimensional
space is equal to zero. Only in such conditions a particle can travel with the
maximal possible speed of light. But the matter/energy of the boson exists
also in such conditions: it is uniformly distributed only in the spacelike sixth
dimension (used for the spin) where it propagates with a constant speed v5.
Consequently, the hidden matter of a boson in the compactified higher dimen-
sions results in zero rest-mass in the ordinary flat Minkowski time-space and
explains why the boson can propagate with maximal possible speed. During
this massless stable-state, the gravitational anti-black-hole barrier acting in the
boson’s barycenter (in 3-D space) does not permit the leaking of the matter
from 6th into ordinary 3-dimensional space.

We consider the vacuum as the perfect 3-dimensional space symmetry where
each possible direction of the propagation has the same physical conditions.
Thus, the propagation of the particles in the vacuum is inertial and the par-
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ticle propagates along GR geodesics with constant speed as a stable particle1.
The asymmetry due to the presence of an infinitesimal inertial particle in flat
Minkowski spacetime is purely circumstantial, because the spacetime is consid-
ered to be unaffected by the presence of this particle. However, according to
general relativity, the presence of any inertial entity disturbs the symmetry of
the manifold even more profoundly, because it implies an intrinsic curvature of
the spacetime manifold, i.e., the manifold takes on an intrinsic shape that dis-
tinguishes the location and rest frame of the particle. Note that, from the fact
that the stable bosons have no matter/energy in the ordinary 3-dimensional
(open) space, the stable bosons do not generate any local time-space curva-
ture, differently from the fermions. Thus, the local time-space neighborhood
of a massless boson is always a locally flat Minkowski time-space, differently
from the fermions (and also unstable massive bosons). The fact that the sta-
ble bosons have no any curved island-metrics in the ordinary 4-dimensional
time-space, results in missing of any physical resistance of the neighborhood
time-space to their propagation (differently from the massive particles with
energy-density present in the 4-dimensional time-space and, generated from it,
curved micro-island metrics). Consequently, they propagate with maximal pos-
sible speed in the ordinary 4-dimensional time-space. Thus, the bosons have the
point-like 4-dimensional structure corresponding to their position (barycenter),
but physically their total energy-density is Φm(q5) = σ(q5) = 1Φ

4πR5
= const.

But there are the situations when a stable, stationary, boson becomes ex-
cited for a short interval of time, as in the situations when the space symmetry
during its propagation is sharply broken. Thus, the time-space boundary condi-
tions for the particle’s propagation are drastically changed, by considering that
particle’s wave-packet is a time-space perturbation and, if such a perturbation
meets another perturbation, it changes its form. These events we analyzed in
details for the phenomena of refraction and ’wave-behaviors’ of an individual
photon [5]. In all these situations a photon may change its momentum, direc-
tion of propagation and its velocity, without changing its total energy, because
these ’interactions’ are not based on collisions with another particles (as Comp-
ton effects, or annihilations), but on instantaneous 3-D space expansions of their
geometric wave-packet scalar field Φ in the presence of a local sharply broken
space symmetry. These are strong General Relativity effects correlated with
the particle’s ’micro-island’ curvature metrics, caused by a dynamical changing
of the boundary conditions in the local space around this particle.

1Such a 3-D space symmetry during an inertial propagation of a massive particle causes a spherical symmetry
of its stable energy-density distribution Φm = K√

r
, for r ≤ r0 in a sphere with a radius r0
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Example 1 The breaking of 3-D pace-symmetry for massless bosons and their
transformation into massive bosons (short-range bosons) and derived theory of
clouds of short-range photons generated by electrically charged particles that
generate the electromagnetic field is provided in [17].

In order to generate a static electric field around a single charged fermion
(as electron, for example), the short-range massive photons must be constantly
emitted in all radial directions from this charged fermion, so that the number
N >> 1 of emitted photons must be very high at each fixed instance of time.
However, in order to maintain the constant energy-level of the charged fermion,
it means that practically all of irradiated short-range photons will come back to
be absorbed by the same fermion. So, the total emitted energy from a charged
fermion corresponds to the total absorbed energy of the same fermion.
Moreover, in [17] we explained that such a cloud of emmitted/absorbed short-
range photons around any charged particle, generates the electromagnetic 4-
potential (gauge field),

A4 = (A0, A1, A2, A3) = (
φ(t,−→r )

c
,
−→
A (t,−→r )) (8)

where A0 = φ
c and φ is the scalar Coulomb potential derived from the the density

ρ of these short-range massive photons, and
−→
A = A1e1 +A2e2 +A3e3 is a 3-D

vector potential, such that the electric and magnetic forces are defined by:

−→
E = −∇φ− ∂

−→
A

∂t
,

−→
B = ∇×

−→
A (9)

The physical origin of the continuous emission of short-range photons from
charged particles is explained in [7], Section 5.1.2, based on the Kaluza-Klein
theory of the small compactified time-like 5th dimension (generating electric
charge of particle by propagation of particle’s energy-density in this closed di-
mension).

The interactions between any two wave-packets (particles) can be obtained only
by their local collisions. In dependence on their energy and velocities, they can
produce a kind of Compton’s effects (elastic collisions) in which they survive
the collisions by changing their momentum and energy (with the conservation
of total momentum and energy), or they can produce a total fusion with a
possible creation of the new stable particles (in Feynman’s diagrams).

Thus, for any two massless bosons with the Dirac function energy-
distributions, it is impossible to have the collisions during their stable states,
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but only when they are excited and involved in their temporary 3-D ”spatial
explosions”. Such 3-D spatial explosions can happen also when two stable
particles are at a very small mutual distance, during which the ideal spatial
symmetry for a free particle in the vacuum does not hold more for both of
them. The bosons have a physical role as the intermediators between the mas-
sive particles (that have the rest-mass and the 3-D volume Vt greater than zero),
that is, they are a quantum-source that generates the fields (the phenomena
as electromagnetic fields are the statistical results of actions of a high number
of photons). In the case when the bosons are massless (long range interactions
as for massless photons) then we have no the significant interference between
themselves. This situation can be obtained at the quantum level only if the col-
lisions between photons, for example, are practically improbable. Consequently,
a number of photons can coexist in the same small 3-D region of space without
any significant direct interference between them, heaving contemporarily the
collisions with fermions which have the rest-mass and volume Vt greater than
zero. Also in such a situation, we can have the rare cases of the interference
between the photons. In normal situations, these interferences statistically can
be neglected, while in the cases of very strong field interactions (when the local
density of photons is extremely high) these inter-boson’s interactions are sig-
nificant. Thus, we have the following assumption:
Interaction-dynamics Assumption: The interactions between the bosons
and fermions are realized always between two non-point like particles. That
is, between a massive fermion and a massive unstable boson with a small but
finite energy-density volume Vt.

2 Introduction to Gauge Invariance: Local Symmetries

A key innovation of the 20th century was Herman Weyl’s invention of gauge
theory, in which a global physical symmetry is replaced by a local one; the arbi-
trary phase in Hamiltonian-based quantum wave function becomes a function
of time-space, a change that requires the existence of the electromagnetic gauge
field. Weyl’s gauge method, where the global symmetry is transformed into a lo-
cal one, applied to the Standard-Model symmetry group SU(3)×SU(2)×U(1),
is enough in the SQM theory to yield the strong, weak and electromagnetic in-
teractions.

It is well known the relativistic invariance or Poincare symmetry and the
internal symmetry based on the Lie group U(1) symmetry of phase transfor-
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mations (the conservation of matter and, dually, of electric charge for Dirac
equation). Analogously, we can consider the isospin symmetry SU(2) (used
for the electroweak force interactions) and the flavour symmetry SU(3) of the
strong force interactions. All of them are continuous global symmetry trans-
formations (they give rise to conserved currents and charges as described by
Noether’s theorem, that is, they presuppose that, at least in principle, we can
measure all the components of a field Ψ at all points −→r in space at the same
time.

However, here we have to consider the theories which are invariant if the
symmetry operations are performed locally where the transformation parame-
ters are dependent on local space coordinates (for example, if the rotation angle
θ of Lorentz transformation is not constant for all infinitesimal pieces of matter
Φm = ΨΨ, but is dependent on its space position −→r , that is, the rotation angle
is a function θ(−→r )). A gauge theory is a theory where the action is invariant
under a continuous group symmetry that depends on time-space and such local
symmetries introduce these gauge fields to the theory which mediate a force.
Let us consider, for instance, the internal phase transformation, when θ is not
a constant phase, but depends on space position −→r , and when we require that
the Lagrangian density L in equation (3) be invariant under such local smooth
changes of phase:

Ψ|(t,−→r ) 7→ Ψ′|(t,−→r ) = eiθ(
−→r )Ψ|(t,−→r ) (10)

However, since the Lagrangian density L is invariant under global internal sym-
metry when θ is constant, it is not invariant under local phase transformations
given by (10). The problem is that the derivatives of the field Ψ does not
transform like the field in (10). In fact we have for j = 1, 2, 3 that:

∂jΨ|(t,−→r ) 7→ ∂jΨ
′|(t,−→r ) = ∂j[e

iθ(−→r )Ψ|(t,−→r )] = eiθ(
−→r )[∂jΨ + iΨ∂jθ(

−→r )] (11)

If we want to consider the phase transformations θ(−→r ) that differ from a point
to point, we have to define a connection that specifies the mode how we suppose
to transport the phase of Ψ from r4 = (t,−→r ) to r′4 as we travel along some path
γ. Let us consider the infinitesimal transport r′4 = r4 + δr4 = r4 +

∑3
i=0 δqiei,

so that with this infinitesimal transport we have the change of Ψ:

δΨ|r4
= Ψ|(r4+δr4) −Ψ|r4

(12)

This problem is analog to the problem of the derivation of a vector field W, with
a vector at a point p = r4, wp = W(p) =

∑3
j=0wjej, along a particular curve
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lying in a given manifold in the differential geometry. In contrast to differential
geometry, the vector field Ψ are not vectors in the tangent space (plane) of a
manifold, but belong to an ”internal” vector space V (like isospin, flavor, etc..)
and hence the local transformation (10) can be considered as a time-space
dependent change of the basis in V and hence it is a passive transformation.

We require that the physics do not depend on the local choice of the basis,
so that the differentiation has to be defined based on the change of Ψ (or Ψ)
relative to the parallel transported Ψp, so we have δΨ|r4

= Ψp|r′4 − Ψ|r4
. In

this case we have no Christoffel symbols Γjik, but an imaginary term −iαAk(r4)
where Ak(r4) is a suitably chosen vector field (an element of the Lie algebra
belonging to the gauge group element, for example for the unitary group2,
eiθ(r4) ∈ U(r4)) and α is a coupling constant. Thus, analogously to the case
used for definition of covariant derivative in General Relativity, we have,

δΨ|r4
= (iα

∑
k

Ak(r4)dqk)Ψ|r4
and DΨ|r4

=
3∑

k=0

(∂k − iαAk(r4))Ψ|r4
dqk (13)

with the gauge covariant derivative at point r4,

Dk = ∂k − iαAk(r4), k = 0, 1, 2, 3 (14)

(we denote by D′k the covariant derivative at a point p = r′4 and A′k the k-th
component of a 4-vector field

A = (A0,A1,A2,A4)

at a point r′4). From the fact that we want that the Lagrangian den-
sity becomes invariant under the covariant derivatives, i.e., D′kΨ|r′4 = (∂k −
iαA′k)(eiθ(r4)Ψ|r4

) = eiθ(r4)(∂k − iαAk)Ψ|r4
= eiθ(r4)DkΨ|r4

, we obtain that Ak
should transform like

Ak(r4) 7→ A′k(r′4) = Ak(r4) +
1

α
∂kθ(r4) k = 0, 1, 2, 3 (15)

Consequently, we conclude that we can promote a global symmetry to local
(i.e., gauge) symmetry (for example, from U(1) into U(r4)) by replacing the
standard derivative operators ∂k by the covariant derivative operators Dk. The
standard model of elementary particles, which is based on the concept of local

2Historically, while trying to explain the quantum effects of electrodynamics, it was found that Quantum
Electrodynamic (QED) could be explained by a U(1) Abelian gauge theory. Yang and Mills then generalized
this Abelian U(1) gauge theory to the non Abelian gauge theory case (with the self interactions).
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gauge invariance, has shown to be very successful theory3. Let us consider a
parallel transport at finite distances, for example in the case of the Abelian
symmetry group U(1), from the initial point r4 into the final point r′4, so that
an infinitesimal parallel transport along a finite curve γ(r4, r

′
4) is given by (13)

which formally may be integrated

Ψp|r′4 = eiα
∫
Ak(z)dzkΨ|r4

(16)

In fact, for infinitesimal transport, by taking the Taylor approximation, we
obtain Ψp|r′4 = Ψp|(r4+δr4) ≈ (1 + iα

∑
kAk(r4)dqk)Ψ|r4

= Ψ|r4
+ δΨ|r4

.
Remark: There is a subset of configurations of material fields Ψ that changes
only because of the presence of the gauge field. They are geodesic configurations
which satisfy the equation DkΨ = 0 for k = 0, 1, 2, 3, which is equivalent to
linear equation ∂kΨ = iαAkΨ.
�
Minimal Coupling. Thus, we can make a system invariant under local gauge
transformation at the expense of introducing a gauge vector field, which defines
in a given point p = r4 the 4-vector A(r4), that plays the role of connection.
This procedure, that relates the matter field (of a particle) and gauge field
(by which this particle interacts) through the covariant derivative is known as
’minimal coupling’.

3 Unified IQM Gauge Theory for Individual Particles

Let us consider how such a kind of localization of the internal phase transfor-
mation is supported by the particle’s matter/energy-density wave-packet which
propagates with an arbitrary acceleration in a given locally flat Minkowski ref-
erence frame; we want to derive a general gauge field which is a source of such
an acceleration of this particle. That is, the gauge theory provided in this
section represents the unification of the three basic forces of the nature: elec-
tromagnetic, weak and strong forces. This is done by the general complex local
phase transformation θ(t,−→r ) = θR(t) + iθI(t,

−→r ) valid for each of these three
basic forces.

3In hopes of duplicating the success of the standard model, general relativity (which is non-renormalizable)
was also formulated as a local gauge theory [24]. A Poincare transformation thet consists of constants and effects
all of space instantly is called a global transformation: in GR such transformations violates special relativity,
since such transformation takes us from one inertial reference frame to another, and, in presence of gravity,
reference frames will be accelerated so that would be possible to have the information transmitted faster than
the speed of light!
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Unified Local Symmetry. Let us consider the evolution of the parti-
cle’s wave-packet Ψ ≡ Φ(t,−→r )e−iϕT from initial time-instance t to another
Ψ′ ≡ Φ(t + δt,−→r )e−iϕT |(t+δt) at a time-instance t + δt > t, in a given field of
(combination of) basic forces. We would like to express this evolution as the re-
sult of the local phase transformation δθ(t,−→r ), that is, by Ψ 7→ Ψ′ = eiδθ(t,

−→r )Ψ.
We assume that δt is an infinitesimal amount of time during which a particle
has the interaction with only one boson of the field so that, after this interac-
tion, this particle changed its velocity momentum and energy and its phase for
a small amount δθ. Hence, this local phase transformation θ(t,−→r ) is complex
(differently from the usual theory for the point-like particles). The fact that this
complex local phase transformation is a local symmetry for this particle holds
from the fact that both Ψ and Ψ′ are the solutions of the same Lagrangian L
for the field Ψ only at two different instances of time.

Thus, by substitution of Ψ′ ≡ eiθ(t,
−→r )Ψ into L we obtain the same La-

grangian form, that is, we obtain that L is invariant under this local phase
transformation. This complex local phase transformation supports any kind
of basic forces or their combinations and hence mathematically represents the
unification of these basic forces.
�
For a free particle (without any external field that influence its propagation) we
obtain the case when the external gauge field is zero, that is, when A(r4) = 0.

In the case when we have some external gauge field (i.e., the total field which
can be represented by a sum of different types of the fields as well) A(r4) 6= 0
which influences the propagation of a particle (without annihilation of this
particle), with Lagrangian density denoted by Lgauge. The total Lagrangian
density L = Lfree + Lgauge is given by equation in (3), where the gauge field
is indirectly represented by the matter-density speed −→w(r4) = −→v (t) + −→u (r4),
where −→v (t) is the speed of particle’s barycenter which changes in time (the
accelerations and matter-density speed are the direct results of the interaction
of a particle with this external gauge field A(r4)).

Consequently, any local phase transformation Ψ 7→ Ψ′ = eiθ(
−→r )Ψ transforms

the matter-density speed −→w(r4) and, consequently, the particle’s trajectory,
accelerations and momentum/energy. This mathematical consequence explains
that the local phase changing of the phase indeed means that we have some
gauge field which modifies the original (free particle) particle’s trajectory, speed
and momentum/energy. Thus, in what follows, we will use the general local
phase transformations θ(r4) = θ(t,−→r ).
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Let us represent the free Lagrangian of the free particle (stationary situation
when −→u (t,−→r ) = 0) which propagates with a constant speed −→v , momentum p
and energy E, and from (4) −→w(t,−→r ) = −→v , and hence from (3),

Lfree = ~
1Φ

(−∂ϕT
∂t ΨΨ + i

2(Ψ∂Ψ
∂t −Ψ∂Ψ

∂t −Ψ−→v∇Ψ + Ψ−→v∇Ψ))

= ~
1Φ

(−E−pv
~ ΨΨ + i

2(Ψ∂0Ψ−Ψ∂0Ψ +
∑3

j=1 vj(Ψ∂jΨ + Ψ∂jΨ)))

It is not invariant under the local phase transformations Ψ 7→ Ψ′ = eiθ(t,
−→r )Ψ.

In fact, for such a transformations, we obtain

Lfree 7→ Lfree + (−∂0θe0 +∇θ)J = Lfree −
∑3

i=0 Ji∂iθ

where J = J0e0 +
−→
J (with

−→
J = −→v ΨΨ = J0

−→v , for the Noether charge density
J0 = ΨΨ = Φm) is the Neother current of the free particle’s Lagrangian, and
−∂0θe0 +∇θ(t,−→r ) is the time-space function, generally different from zero.

The physical meaning of this invariance is that the local phase transforma-
tion necessarily changes the particle’s trajectory, so that instead of the constant
speed −→v we will have an acceleration and corresponding matter-density speed
−→w(t,−→r ). That is, we obtain the general normalized Lagrangian density L in
(3) used previously for the Ponicare symmetries, valid in all possible cases for
the accelerated particles:

L =
~
1Φ

(−∂ϕT
∂t

ΨΨ +
i

2
(Ψ∂0Ψ−Ψ∂0Ψ +

3∑
j=1

wj(Ψ∂jΨ−Ψ∂jΨ))) (17)

Thus, we can obtain the invariant free Lagrangian LIfree by introducing a general
gauge field as explained by (15),

Aµ = (A0,A1,A2,A4)

and by replacing the derivatives ∂j by the covariant derivatives Dj, given by
(14), so that

LIfree(Ψ,Ψ,Aj) =
~
1Φ

(−∂ϕT
∂t

ΨΨ+
i

2
(ΨD0Ψ−ΨD0Ψ+

3∑
j=1

vj(ΨDjΨ−ΨDjΨ)))

=
~
1Φ

[−E − pv
~

ΨΨ+
i

2
(Ψ∂0Ψ−Ψ∂0Ψ+

3∑
j=1

vj(Ψ∂jΨ−Ψ∂jΨ))+α(A0+
3∑
j=1

vjAj)ΨΨ]

(18)

where −→v = v1e1 + v2e2 + v3e3, E and p are the velocity, energy and momentum
of the free particle, respectively. Consequently, the general Lagrangian density,
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valid for accelerated particles as well, must be equal to the sum of the free
invariant Lagrangian LIfree above and the Lagrangian of the introduced gauged
field Aµ, which interacts with the previously free particle and determines its
final trajectory, speed and momentum/energy.

Let us consider the properties of the general gauge filed Aµ (the resulting
combination of all forces acting on this moving particle) and its effect on the
propagation of a given particle which at a given instance of time t has a given
speed −→v and a given momentum/energy. If we would eliminate the gauge
field (external force), then this particle would continue to propagate with this
constant speed as a free particle with the Lagrangian density Lfree. But if we
do not eliminate this gauge field then, after an infinitesimal amount of time
t′ = t + δt, it will change its speed and hence the Lagrangian density will be
equal to that of accelerated particles in equation (17) where −→w = −→v +−→u (t′,−→r ).
Consequently, the gauge Lagrangian is obtained by

Lgauge = L − LIfree(Ψ,Ψ,Aj) (19)

that is, Lgauge = ~
1Φ

[−(∂ϕT∂t −
E−pv

~ )ΨΨ + i
2

∑3
j=1(wj − vj)(Ψ∂jΨ − Ψ∂jΨ) −

α(A0 +
∑3

j=1 vjAj)ΨΨ], and from the fact that Ψ∂jΨ−Ψ∂jΨ) = 0 (the Euler-
Lagrange equation solutions of the Lagrangian L are the fields Ψ = Φe−iϕT ), and
by definition of the pilot-wave phase changing during this infinitesimal amount
of time δt, from (2),

−δθ
δt
≡ ∂ϕT

∂t
|t′ −

∂ϕT
∂t
|t =

E ′ − p′v′

~
− E − pv

~
(20)

we obtain the following gauge Lagrangian

Lgauge =
~
1Φ

(
δθ

δt
− α(A0 +

3∑
j=1

vjAj))ΨΨ (21)

which is invariant for the local phase transformations. Hence, from (19), also
L = Lgauge + LIfree must is invariant for the local phase transformations, as
expected.
Remark: Note that in this approximative derivation of the gauge Lagrangian,
we considered only the pilot-wave changing of the particle and not also of its
density Φ distribution, that is, the method of derivation of Lgauge was as for a
point-like particle, and because of that we obtained from (20) that δθ is a real
amount. If we consider also that during δt changes the energy-density Φ2 as
well, then we have to assume that δθ is a complex value in the gauge Lagrangian
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Lgauge. That is, for the non point-like massive particles the gauge Lagrangian
Lgauge in (21) is valid only for the complex values δθ, as it will be shown.
�
Now we have to understand if the components Aj of this gauge Lagrangian are
independent variables, as it is so if we define the gauge field independently of the
particle’s field Ψ, or not. The answer is no. In fact, in our approach the gauge
Lagrangian is derived from the particle’s Lagrangian densities for two possible
particle’s states: when it is free particle and when it is not. Thus the gauge
field Aµ is derived indirectly from the particle’s behavior. Here we have the
final behavior of a particle (its trajectory, velocity, accelerations, momentum-
energy changes, etc...) and after that we analyze the properties of the gauge
field which caused such a particular particle’s behavior (which is a resulting
effect of a number of different fundamental forces as electromagnetic, weak,
strong). Hence, the total gauge field is derived from this concrete particle’s
behavior, that is, from its field Ψ. Consequently, in this framework, we have
the gauge Lagrangian dependent only on two variables, so that, from (21), it
can be expressed by Lgauge(Ψ,Ψ).

The second consideration is that the gauge Lagrangian (21) does not cor-
respond exactly to the real situation because the fields Ψ = Φe−iϕT (where Φ
is a real density distribution function) used in L and LIfree in equation (19) are
different not only in the pilot-wave phases but also in the densities Φ, and hence
(21) can be used only for the massive but point-like bosons. In effect, from the
fact that the interactions of the observed massive particle are always with the
unstable (massive) bosons, it means that the term in (21) in front of ΨΨ must
be a real value.

However, if we want to use (21) for Ψ that are not point-like massive par-
ticles, then we need to use the complex fields Aj instead of real, in order to
obtain that such complex fields compensate the fact that the observed particle’s
density Φ in L and in LIfree are slightly different also for infinitesimal δt.

In fact, let us consider an infinitesimal phase transformation for a real
amount δθR > 0 during an infinitesimal amount of time δt > 0 of the ob-
served massive particle which, at a time instance t ≥ 0, is given by the complex
field (particle’s wave-packet) Ψ|(t,−→r ) = Φ(t,−→r )e−iϕT and its changing into the

complex field at the time t + δt, Ψ′ = Ψ|(t+δt,−→r ) = Φ(t + δt,−→r )e−i(ϕT |t−δθR(t)).
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Then, for the changing of the density Φ, we may always define the real function:

δθI(t,
−→r ) ≡

{
−ln(Φ(t+δt,−→r )

Φ(t,−→r )
) ≈ − δt

Φ(t,−→r )
∂Φ(t,−→r )

∂t , if Φ(t+ δt,−→r )Φ(t,−→r ) 6= 0

0 , otherwise
(22)

Note that natural logarithm is always well defined for particle’s barycenter,
where −→r = −→rT (t), for an infinitesimal δt. So, from ∂Φ

∂t ≈
Φ(t+δt,−→r )−Φ(t,−→r )

δt and
δt

Φ(t,−→r )
∂Φ(t,−→r )

∂t << 1, we have that −ln(Φ(t+δt,−→r )
Φ(t,−→r )

) = −ln(1 + δt
Φ(t,−→r )

∂Φ(t,−→r )
∂t ) ≈

− δt
Φ(t,−→r )

∂Φ(t,−→r )
∂t .

Consequently, the changing of the particle’s wave-packet satisfies local
transformation Ψ′ = (Φ(t,−→r )e−δθI)e−i(ϕT |t−δθR(t)) = ei(δθR+iδθI)Ψ = eiδθΨ. That
is, the complex-phase transformation for this observable massive non point-like
particle is given by:

Ψ 7→ Ψ′ = eiδθΨ where δθ(t,−→r ) = δθR + iδθI (23)

So, for the non point-like massive particle expressed by the field Ψ, we need to
considering an infinitesimal local complex-phase δθ = δθR+ iδθI where only real
component θR corresponds to the particle’s pilot-wave phase transformation,
i.e., δΨ = eiδθΨ − Ψ and for δΨ as well. From the fact that Lgauge in (21) is
invariant w.r.t. local phase transformation, we must have that

0 = δLgauge =
∂Lgauge
∂Ψ δΨ+

∑3
j=0

∂Lgauge
∂(∂jΨ) ∂j(δΨ)+

∂Lgauge
∂Ψ

δΨ+
∑3

j=0
∂Lgauge
∂(∂jΨ)

∂j(δΨ)

=
∂Lgauge
∂Ψ δΨ +

∂Lgauge
∂Ψ

δΨ = ~
1Φ

(δθδt − α(A0 +
∑3

j=1 vjAj))(ΨδΨ + ΨδΨ), i.e.,

δθ = δθR + iδθI = α(A0δt+
3∑
j=1

Aj(vjδt)) = αAjδsj (24)

where δsj are the infinitesimal changes of the coordinates of the barycenter
of the particle, i.e., the time-space changing along particle’s trajectory. Note
that the same result we obtain from the Euler-Lagrange equation of motion
obtained from the Lagrangian Lgauge(Ψ,Ψ) in (21), because

∂Lgauge
∂Ψ

= ~
1Φ

(δθδt −
α(A0 +

∑3
j=1 vjAj)Ψ =

∑3
j=0 ∂j

∂Lgauge
∂(∂jΨ)

= 0.

This result shows that in this mathematical framework, the gauge field
properties are not determined in all time-space points, but exclusively in the
time-space points of the particle’s barycenter, that is, on its trajectory −→rT (t).
Let us show that it is indeed so.

Indeed, let us consider the invariant free Lagrangian LIfree in (18) and show
that it corresponds to the general Lagrangian L restricted only on the particle’s
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trajectory time-space points. Thus, we have to show that analogously to L = 0,
LIfree = 0. It is enough to verify that from (24) and (21), Lgauge = 0, so that

from (19), LIfree = L − Lgauge = 0 − 0 = 0. Let us show now that LIfree is
just the reduction of L to the time-space points on the particle’s trajectory.
In fact, in Lagrangian LIfree given by (18), in the place of −→w we have the
speed of barycenter −→v , and what we need is only to show that the component
ΨΨ, −(E − pv) + α(A0 +

∑3
j=1Ajvj), of the Lagrangian LIfree, is equal to

−∂ϕT
∂t |t′ ≡ −

∂ϕT
∂t .

In effect, it holds from (20), so that the Lagrangian LIfree, for the infinites-
imal phase transformations, can be equivalently written as follows,

LIfree(Ψ,Ψ) =
~
1Φ

(−∂ϕT
∂t

ΨΨ +
i

2
(Ψ∂0Ψ−Ψ∂0Ψ +

3∑
j=1

vj(Ψ∂jΨ−Ψ∂jΨ))) (25)

which is a reduction of the general Lagrangian for accelerated particles L in
(17) only to the time-space points of the particle’s trajectory, where wj = vj,
j = 1, 2, 3.

Note that this is a general result for any possible combination of the external
forces (electromagnetic, weak and strong), so that the parameter α do not
depend on the particular case of the gauge fields. Let us now determine this
parameter and, after that, the values that must have the general gauge 4-vector
field A on the trajectory of the particle.

Let us consider the changing of the field δΨ on the trajectory points (t,−→rT )
in (20) caused by an infinitesimal local complex-phase transformation δθ =
δθR + iδθI , so that

δΨ|(t,−→rT ) = eiδθΨ−Ψ

≈ (1 + iδθ)Ψ−Ψ = iδθΨ = iα(A0δt+
∑3

j=1Aj(vjδt))Ψ from (24)

= iα
∑3

j=0Aj(
−→r4)δljΨ|(t,−→rT ),

with generally complex components Aj. Thus, we obtained a general result
of the covariant derivatives in equation (13), restricted only to the time-space
points of the particle’s trajectory. With this, we concluded consistently the
introduction of the gauge field. Let us determine its values on the particle’s
trajectory. Thus for δt→ 0, we obtain

dΨ

dt
|(t,−→rT ) = limδt→0

δΨ

δt
= iα(A0 +

3∑
j=1

vjAj)Ψ|(t,−→rT ) (26)
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So, we can use the total derivative of Ψ on the particle’s barycenter time-
space points rT (t) = (t,−→rT ), that is, rT (t) = te0 + −→rT (t), with −→w(t,−→rT ) =
−→v (t) +−→u (t,−→rT ) and from dϕT

dt = E+−→p−→v
~ and

dΦ(t,−→r )
dt = ∂Φ

∂t +
∑3

j=1
∂Φ
∂qj

dqj
dt = ∂Φ

∂t −
−→w∇Φ

= (−→w∇Φ− ∇·
−→w

2 Φ)−−→w∇Φ from (6)

= −∇·
−→w

2 Φ = −∇·
−→u

2 Φ,
we obtain

dΨ

dt
|(t,−→r T ) = (Φ

d e−iϕT

dt
+ e−iϕT

dΦ

dt
)(t,−→r T ) = −(i

E +−→p−→v
~

+
∇ · −→u (t,−→r T )

2
)Ψ|(t,−→r T )

(27)
Consequently, from (26) and (27), we may determine the gauge field (only on
the points of the particle’s trajectory rT (t) = te0 +−→rT (t)), i.e., rT (t) = (t,−→r T ),
as follows:

A0 −−→v
−→
A g = − 1

α
(
E +−→p−→v

~
− i∇ ·

−→u (rT )

2
) (28)

where
−→
A g =def A1e1 + A2e2 + A3e3 is the vector component of the gauge

4-potential Aµ = A0e0 +
−→
A g and A0 is its scalar (time) component. So we

can chose a natural choice (by dividing terms with particle’s speed and that
without)

A0 = − 1

α
(
E

~
− i∇ ·

−→u (rT )

2
),

−→
A g =

−→p
α~

(29)

It seems a natural choice that the scalar component A0 of the gauge 4-potential
determines particle’s total energy (or Hamiltonian), while the vector gauge

potential
−→
A g determines particle’s canonical momentum.

In fact, the imaginary component of the scalar gauge potential Im(A0)
is proportional to the divergence of the rest-mass energy flux ∇ · −→w(t,−→r T ) =
∇·(−→u (t,−→r T )+−→v (t)) = ∇·−→u (t,−→r T ) which is responsible for the change of the
particle’s shape Φ during interaction of the particle with intermediary bosons
(gauge field). It is easy to verify (we can extend its validity from the particle’s
barycenter also for any point −→r from the fact that −→u (t,−→r ) is different from
zero for the points inside particle’s body) that we obtain:

Im(A0) =
∇ · −→u (t,−→r )

2α
= − 1

α

d ln Φ(t,−→r )

dt
= − 1

2α

d ln Φm(t,−→r )

dt
(30)

That is, the total time derivative of particle’s rest-mass energy density Φm is
determined by the imaginary component of scalar gauge potential A0. With
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this generalization, we can define the gauge 4-potential also for the positions
different from the particle’s barycenter (t,−→r T ), from (29)

A0(t,
−→r ,−→p ) = − 1

α
(
E(t,−→r ,−→p )

~
− i∇ ·

−→u (t,−→r )

2
),

−→
A g(
−→p ) =

−→p
α~

(31)

from the fact that the canonical momentum −→p is time-dependent, while the
total energy E is equal to the Hamiltonian. In the case when Ψ|(t,−→rT ) =√

1Φδ(
−→r −−→rT )e−iϕT is the field of a stable boson, where ϕT = 0, we have

that dϕt
dt = 0 and −→u = 0 and hence ∇ ·−→u = 0, so that equation (28) is equal to

zero which is satisfied when all components Aj = 0, that is for the zero 4-vector
potential Aµ = 0, as expected in the flat Minkowski time-space (there is no
any interaction of this massless boson with another bosons during its stable
Dirac function state when propagates with the speed of light in the vacuum
along the GR geodesics). Only if this boson becomes unstable massive boson
(by the presence of another material objects on its trajectory) then it can have
an interaction with another particles and change its trajectory, as it happens
for the fermions.
Now, from (24) and (31), we obtain that δθI = Im(αA0)δt, that is

δθI =
∇ · −→u

2
δt = −d ln Φ

dt
δt (32)

so that for δt 7→ 0, δθI = − ln Φ|t+δt)−ln Φ|t)
δt δt = − ln Φ|t+δt

Φ|t we obtain the result in

(22). So by substitution of (32) into (24) by using (31), we obtain

δθR = −E +−→p−→v
~

δt = −dϕT
dt

δt (33)

and finally, we provide an infinitesimal localy symmetry transformation by

δθ = δθR+ iδθI = −E +−→p−→v
~

δt+ i
∇ · −→u

2
δt = −dϕT

dt
δt− id ln Φ

dt
δt = −id ln Ψ

dt
δt

(34)
Remark: In our working framework, where we determine the (composed) gauge
field only from the particle’s behaviour (dominantly from its trajectory), it is
an expected result, because based only on the observation of the particle’s
trajectory, mathematically we are not able to determine the values of the gauge
filed in the time-space points different from the particle’s trajectory. That is,
we are able to derive acting forces on the particle only in the time-space points
of the particle’s trajectory, that is in the barycenter of the particle.
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But this is not a particular side-effect of this completion of the Quantum
Mechanics, based on the field Ψ of the matter/energy-density wave-packet of
an elementary particle, but a fundamental new result: it creates a strong conti-
nuity between a ’macroscopic’ classical mechanics and ’microscopic’ Quantum
Mechanics. This continuity is based on the fact that gauge fields acts on the
particle’s barycenter with the produced forces which determine and modify the
original free particle trajectory.

It is well known that the standard Quantum Mechanics and its gauge theory
is based on the energy considerations and wavefunctions based on the Hamilto-
nian energy-levels, as in Schrödinger, Klein-Gordon or Dirac equations, and on
their Lagrangian densities which define the interactions of a free particle with
external forces by an explicit introduction of the particular gauge field.

The second new result of this dual approach used in this completion of
QM is that here the general Lagrangian density of the accelerated particle’s
wave-packet contains implicitly the gauge field, whose effects on the particle
are visible in the behavior of the general Lagrangian density, that is, in its
Euler-Lagrangian equation of motion. This is a similar approach to that used
by Johannes Kepler, for example, to establish that the orbit of a planet is an
ellipse with the Sun at one of the two foci, and after that by Newton to explain
that the ’gauge field’ that determines such orbits must satisfy his own laws
of motion and law of universal gravitation (the direction of the acceleration is
towards the Sun and the magnitude of the acceleration is in inverse proportion
to the square of the distance from the Sun).
�
Let us show how the parallel transport at finite distances works, along a par-
ticle’s path (of the particle barycenter) from the initial point rT = (t,−→rT (t)),
at the time-instance t, into the final point r′T = (t′,−→rT (t′)) at the time instance
t′ = t+4t, for any finite time interval 4t > 0. From the fact that the parallel
transport along a finite particle’s trajectory γ(r4, r

′
4) is given by (16), it may be

integrated and hence, from (24), we have that

Ψ|r′T = eiθΨ|rT = eiα
∫
γ
Ak(z)dzkΨ|rT (35)

where the local phase transformation θ is obtained by the path integral:

θ = α

∫
γ(rT ,r′T )

Ak(z)dzk = α

∫ t′

t

(A0(τ,
−→rT (τ)))+

3∑
j=1

vj(τ)Aj(τ,−→rT (τ)))dτ (36)

Consequently, by the path integration of the phase along the particle’s trajec-
tory, we obtain the following result:
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Proposition 1 The gauge 4-vector potential of the particle’s filed Ψ = Φe−iϕT

satisfies:

d

dt
ln Ψ|(t,−→rT (t)) = iα(A0(t,

−→rT (t))) +
3∑
j=1

vj(t)Aj(t,−→rT (t))) (37)

A ’parallel transport’ (35) of this particle’s filed along a finite curve of its
barycenter γ(rT , r

′
T ), from the initial point rT = (t,−→rT (t)) into the final point

r′T = (t′,−→rT (t′)), where t′ = t +4t for a finite time interval 4t > 0, produces
the following local complex-phase transformation (36):

θ = −ϕT |r
′
T

rT
− i ln Φ|r′TrT = −ϕT |r′T + ϕT |rT − i ln Φ(r′T ) + i ln Φ(rT ) = −i ln Ψ|r′TrT

(38)

Proof : From (26) we obtain the equation (37). Then, from (36),

θ = α
∫
γ(rT ,r′T )(A0 +

∑3
j=1 vjAj)dt =

∫
γ(rT ,r′T )(−i

d
dt ln Ψ)dt = −i ln Ψ|r

′
T
rT

= −i ln
Φ(r′T )e

−iϕT |r′
T

Φ(rT )e
−iϕT |(rT ) = −ϕT |r′4 + ϕT |r4

− i(ln(Φ(r′T )− ln Φ(rT )).

In effect, for the infinitesimal 4t = δt we have that
δθ
δt = −ϕT |t+δt−ϕT |t

δt − i ln Φ|t+δt−ln Φt
δt = −dϕT

dt − i
d
dt(ln Φ)|(t,−→rT (t))

= −dϕT
dt − i(

1
Φ
dΦ
dt )|(t,−→rT (t)) = −E+−→v−→p

~ − i( 1
Φ(−∇·

−→u
2 Φ))

= α(− 1
α(E~ −

∇·−→u
2 )−−→v (

−→p
α~))

= α(A0 −−→v
−→
Ag), in accordance with (24).

�
Notice that this result (38) can be obatiend directly by integration of infinites-
imal local symmetry transformation (34) in time, iver particle’s trajectory γ

from t to t′ = t+4t.
It is easy to verify that the results of this proposition are in according with the
gauge theory. In fact from (35) for the ’parallel transformation’, we have

Ψ|r′4 = eiθΨ|r4
= eiα

∫
γ
Ak(z)dzkΨ|r4

= ei(−i ln(
Ψ|r′4
Ψ|r4

))Ψ|r4
= eln(

Ψ|r′4
Ψ|r4

)Ψ|r4

= (
Ψ|r′4
Ψ|r4

)Ψ|r4
.

Moreover, the interaction of a particle with an external field boson cnages only
locally particle’s density Φ mainly in particle’s surface, so that the density in
particle’s barycenter (which is maximal possible density Φ∞ does not change
during the interactions (emission/absorbtion) of bosons, and the speed of this
invariant particle’s denisity in its barucenter is equal to particle’s speed −→w = −→v .
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Hence, in particle’s barycenter rT = (t,−→r T ),

ln
Φ|r′T
Φ|rT

≈ 0 (39)

and practically alway just equal to zero. So, we have from (38) that (for ∂0 =
∂
∂t),

∂0θ = −(∂0ϕT )r′T + (∂0ϕT )rT − i( 1
φ
∂Φ
∂t )r′T + i( 1

φ
∂Φ
∂t )rT

= −E
~ |r′T + E

~ |rT − i(
1
φ(−→w∇φ− ∇·

−→u
2 Φ))r′T + i( 1

φ(−→w∇φ− ∇·
−→u

2 Φ))rT

= −(E~ − i
∇·−→u

2 )r′T + (E~ − i
∇·−→u

2 )rT − i
−→v∇(ln

Φ|r′
T

Φ|rT
)

≈ −(E~ − i
∇·−→u

2 )r′T + (E~ − i
∇·−→u

2 )rT , from (39), that is

∂0θ = αA′0 − αA0 (40)

Similarly,

∇θ = −(∇ϕT )r′T +(∇ϕT )rT − i∇(ln
Φ|r′

T

Φ|rT
) = −(∇ϕT )r′T +(∇ϕT )r′T , from (39)

= −( ∂ϕT
∂−→r T

)r′T + ( ∂ϕT
∂−→r T

)r′T , because on trajectory −→r = −→r T

=
−→p
~ |r′T −

−→p
~ |rT , that is

∇θ = α
−→
A ′g − α

−→
A g (41)

That is, we obtained the satisfaction of the the gauge transformation in (15),

Aj 7→ A′j = Aj + 1
α∂jθ, for j = 0, 1, 2, 3.

So, we obtain that

Aµ(t,−→r ,−→p ) = − 1

α
(
E(t,−→r ,−→p )

~
− i∇ ·

−→u (t,−→r )

2
)e0 +

−→p
α~

(42)

is well defined gauge. By considering that on the particle’s trajectory γ we have
that −→w = −→v , the equation (36) is the line integral of the gauge field Aµ done on
the trajectory rT = te0 +−→rT (t) and hence drT = dte0 + d−→rT (t) = (e0 +−→v (t))dt,

θ = α

∫
γ

AµdrTµ (43)

where for drT = drµT = d(t′e0 + −→r T (t)) = dt′e0 + d−→r T (t) = (e0 + −→v )dt′ =
(dt, v1dt, v2dt, v3dt), it corresponding dual 4-vector is drTµ = d(t′e0−−→r T (t)) =
dt′e0 − d−→r T (t) = (e0 −−→v )dt′ = (dt,−v1dt,−v2dt,−v3dt).
We may consider ~αAµ as the force (resulting of all quantum forces) acting on
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the particle at a given point in space (the particle’s barycenter rT (t)), the line
integral ~θ above is the work done on the particle when it propagates along a
trajectory-path γ(rT , r

′
T ).

For any gauge field’s effect θ = θR + iθI in (43) of the initial state of the
particle Ψ|t0 along its trajectory (path γ) up to the time t ≥ t0, we obtain for
any Minkowski time-space point (t0,

−→r ) such that Φ(t0,
−→r ) 6= 0:

eiθΨ|t0 = eiα
∫
γ
AµdrTµΨ|t0 = eiα

∫
γ
AµdrTµΦ(t0,

−→r )e−iϕT |t0

= ei(θR+iIm(α
∫
γ
AµdrTµ))Φ(t0,

−→r )e−iϕT |t0 = e−Im(α
∫
γ
AµdrTµ)Φ(t0,

−→r )e−i(ϕT |t0−θR)

= e−α
∫ t
t0
Im(A0)dt′)Φ(t0,

−→r )e−i(ϕT |t0−θR) = eα
∫ t
t0

∇·−→u (t′,−→r )
2α dt′)Φ(t0,

−→r )e−i(ϕT |t0−θR)

= eα
∫ t
t0

∇·−→u (t′,−→r )
2α dt′)Φ(t0,

−→r )e−i(ϕT |t0−θR)

= e
∫ t
t0

d ln Φ(t′,−→r )

dt′ dt′)Φ(t0,
−→r )e−i(ϕT |t0−θR) from (30)

= eln Φ(t,−→r )−ln Φ(t0,
−→r )Φ(t0,

−→r )e−i(ϕT |t0−θR)

= ( Φ(t,−→r )
Φ(t0,

−→r )
)Φ(t0,

−→r )e−i(ϕT |t0−θR) = Φ(t,−→r )e−i(ϕT |t0−θR)

= Φ(t,−→r )e−iϕT |t from (38), θR = −ϕT |t + ϕT |t0,
= Ψ|t,

with, for particle’s trajectory γ from (t0,
−→r t0) to (t,−→r T ),

θR((t,−→r T ); (t0,
−→r t0)) = Re(α

∫
γ AµdrTµ) =

∫
γ(
E(t′,−→r T ,−→p )

~ e0 −
−→p
~ )drTµ

=
∫
γ(
E(t′,−→r T ,−→p )

~ e0−
−→p
~ )(e0−−→v )dt′ = −

∫ t
t0

E(t′,−→r T ,−→p )−pv
~ dt′, and, from above,

θI((t,
−→r T ); (t0,

−→r t0)) = Im(α

∫
γ

AµdrTµ) = − ln(
Φ(t,−→r T )

Φ(t0,
−→r t0)

) (44)

As expected, we obtained the gauge theory result, of the particle’s internal lo-
cal symmetry transformation, Ψ|t = eiθΨ|t0 where θ = θR((t,−→r T ); (t0,

−→r t0)) +
iθI((t,

−→r T ); (t0,
−→r t0)).

Geodesic configurations. In this particular cases we have that DjΨ = 0.
Let us consider the cases when j = 1, 2, 3, for which on the trajectory with
coordinates qjT with j-th momentum component pj, so indeed is satisfied this
condition,

DjΨ = (∂j − iαAj)Ψ = ∂jΨ− ipj~ Ψ = ∂
∂qjT

Ψ− ipj~ Ψ = i
pj
~ Ψ− i pjα~Ψ = 0

on the free particle’s trajectory, from Ψ = Φ(t,−→r )e−iϕT (t,−→r T ), with

ϕT = 1
~(−→p (−→r T (t)−−→r T (0)) + Et) = 1

~(−
∑3

j=1 pj(q
j
T (t)− qjT (0)) + Et).

By considering thatin geodesic configuration we have a propagation of a free
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particle, when ωp ≡ ∂ϕT
∂t = E+−→p−→v

~ , we obtain that on particles trajectory

D0Ψ = (∂0 − iαA0)Ψ = (−iωpΨ +−→w∇Ψ− ∇·
−→u

2 Ψ) + i(E~ − i
∇·−→u

2 )Ψ

= −iωpΨ + −→w∇Ψ + iE~ Ψ = −iωpΨ + −→v ∂Ψ
∂−→r T

+ iE~ Ψ, because in barycenter
−→w = −→v

= −iωpΨ +−→v (i
−→p
~ ) + iE~ Ψ = i(−ωp + E+−→v−→p

~ )Ψ = 0 ·Ψ = 0, as expected.
�
Conclusions: We have seen that the general Lagrangian density of a particle
is the addition of a Lagrangian density of this particle in its perfect stationary
(free particle) state and a total gauge field (as a combination of a number
of existent quantum fields), which can be observed on the particles barycenter
(trajectory). That is, like in the standard quantum gauge field theory where the
particles are considered as point-like objects. We are able to use the standard
gauge field theory also in the constructive way (as in the standard quantum
mechanics) by considering a Lagrangian density Lfree of the free particle (that
propagates with a constant speed) by adding to it a specific gauge Lagrangian.

In both cases, the point-like approximation for the particles is well suited for
the interactions of a particle with the gauge fields. Thus, this new theory of QM
(the IQM theory), based on the non point-like massive particle that propagates
as wave-packets of a given invariant amount of matter, distributed in a small
but finite volume, is a conservative extension of the standard point-like based
quantum mechanics for the particles. But for the high-energy physics, where the
annihilation and creation of the new particles are dominant, the interactions
of the non point-like particles introduce the direct collisions of their matter-
densities, which produce the forces that are not based only on the bosons (also
in their unstable states when they have the properties of the ’virtual particles’)
of the gauge fields.

A local symmetry can be connected also to indeterminism because of the
time dependence of its transformation parameter. For example, the time depen-
dence of a transformation for a local symmetry will ensure that a transforma-
tion can have the initial and final configurations invariant, while transforming
the history between those two points. Thus for the local U(1) symmetry with
θ(t,−→r ), this can be theoretically achieved if the parameter θ(t,−→r ) vanishes at
the initial and final times, ti and tf , for every −→r , while it has non-zero value
at at least one point −→r for a time t, for which ti < t < tf . Since such a trans-
formation is a symmetry of the theory, the transformed history will extremize
the action for the same initial and final configurations and hence a theory with
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a local symmetry can thus be indeterministic.

Notice that this is not possible in our case, because from equation (38) for
a limit 4t 7→ 0 around this time-instance t we always have that lim4t7→0θ = 0.
That is, we can not have at t the value of θ 6= 0 if the initial Φ(r4) and final

Φ(r′4) configurations are the same, so that ln(Φ(r′4)
Φ(r4)) = 0. Consequently, in our

case there is no more than one realizable history for a given initial and final
configuration of the field Ψ, and hence our system is deterministic and these
local symmetries must be necessarily the gauge symmetries.

4 Example: Aharonov-Bohm Effect

The most commonly described case, sometimes called the Aharonov-Bohm
solenoid effect, takes place when the wave function of a charged particle pass-
ing around a long solenoid experiences a phase shift as a result of the enclosed
magnetic field, despite the magnetic field being negligible in the region through
which the particle passes and the particle’s wavefunction being negligible inside
the solenoid.

It is sometimes called the Ehrenberg-Siday-Aharonov-Bohm effect, first
predicted the effect in 1949 by Werner Ehrenberg and Raymond Siday [1].
Aharonov-Bohm effect was first described in 1959 in an article [2], written by
Yakir Aharonov and his doctoral advisor David Bohm and received various re-
sponses. The Aharonov-Bohm effect is important conceptually because it bears
on three issues apparent in the recasting of (Maxwell’s) classical electromag-
netic theory as a gauge theory, which before the advent of quantum mechanics
could be argued to be a mathematical reformulation with no physical conse-
quences. In fact, when developing their idea, Aharonov and Bohm consulted
experimental physicist Robert G.Chambers and in their article, they described
the experiment which had to be carried out to prove their theory. Only a year
later [3], in 1960, Chambers performed the proposed experiment and proved
that effect does exist. In following years, effect was confirmed by more and
more precise experiments.

The Aharonov-Bohm effect shows that the local electric
−→
E and magnetic

−→
B

forces do not contain full information about the electromagnetic field, and the
electromagnetic 4-potential vector, (φ(t,−→r )

c ,
−→
A (t,−→r )) in (8) with (9), must be

used instead. By Stokes’ theorem, the magnitude of the Aharonov-Bohm effect
can be calculated using the electromagnetic fields alone, or using the 4-potential
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alone. But when using just the electromagnetic fields, the effect depends on the
field values in a region from which the test particle is excluded. In contrast,
when using just the electromagnetic four-potential, the effect only depends on
the potential in the region where the test particle is allowed. Therefore, one
must either abandon the principle of locality, which most physicists (and me)
are reluctant to do, or accept that the electromagnetic 4-potential offers a more
complete description of electromagnetism than the electric and magnetic forces
can.

My opinion [17] is that the electric and magnetic forces are only derived ef-
fects of the fundamental electromagnetic phenomena based on the 4-potentials
(which are the statistical results of the interaction produced by high number
of photons as intermediators between charged massive particles). This vision
of the electromagnetic phenomena is compatible with the vision of gravitation
phenomena based on the fundamental concept of the time-space curvature, that
is, on the gravitational potential (metrics), where the gravitational acceleration
force −→g is a derived effect (in the case of the Newton’s gravitation approxi-
mation, this force is just equal to the gradient of the gravitational potential,
similarly to the electric force which is proportional to the gradient of the scalar
potential φ in (9). So, from the fact that

−→
E and

−→
B are derived forces, we can

also have the 3-D regions where we have the photons (thus 4-potential different

from zero) but with zero electromagnetic fields
−→
E =

−→
B = 0, as in the case of

the scalar Tesla’s waves (composed by massive photons) considered in [17].

Let us now consider a long solenoid, carrying magnetic field
−→
B . If solenoid

is ideal (i.e. infinitely long and with a perfectly uniform current distribution),

the field
−→
B inside is uniform and the field outside is zero. We will use cylindrical

coordinate system (r, θ, z) with z axis in the middle of solenoid and pointing in
direction of magnetic field.

Thus, we consider the case when outside the solenoid φ = 0 while, from

(9),
−→
A satisfies condition that

−→
E = −∇φ − ∂

−→
A
∂t = 0 − ∂

−→
A
∂t = 0. That is, in

this cylindrical system
−→
A = Arer + Aθeθ + Azez is static and depends only on

the distance r from the center of the solenoid, such that
−→
B = ∇ ×

−→
A = 0.

The model for the Aharonov-Bohm effects, with thin solenoid with radius r0, in
order to obtain the constant magnetic force

−→
B inside the infinite long solenoid

and zero outside this solenoid is provided by the potential vector filed
−→
A with
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Ar = Az = 0 and

Aθ(r) ≡

{
ΦB

2πr2
0
r , if 0 ≤ r ≤ r0

ΦB
2πr , if r > r0

(45)

where ΦB is total magnetic flux through the solenoid. That is, Aθ(r) iz zero in
the center of the solenoid and grows linearly up to the max value ΦB

2πr0
and then

decreases again to zero for r → ∞. Notice that for
−→
A (r, θ) = Aθ(r)eθ, holds

the Lorenz gauge (also the Coulomb gauge-transverse gauge) condition, when

∇ ·
−→
A +

1

c2

∂φ

∂t
=

1

r

∂(rAr)

∂r
+

1

r

∂Aθ

∂θ
+
∂Az

∂z
+

1

c2
· 0 = 0 (46)

Then, from ∇ ×
−→
A = (1

r
∂Az
∂θ −

∂Aθ
∂z )er + (∂Ar∂z −

∂Az
∂r )eθ + 1

r(
∂(rAθ)
∂r − ∂Ar

∂θ )ez, we
obtain for the magnetic force

−→
B = ∇×

−→
A =

{
ΦB
πr2

0
ez , if 0 ≤ r ≤ r0

0 , if r > r0

(47)

In the case when we send a coherent beam of electrons toward this solenoid,
these massive bosons around solenoid interact with the electrons of this beam by
changing their direction of propagation, momentum and energy (Hamiltonian
is changed by the 4-potential, that is by the interaction with massive bosons).
This model can be used as the physical explanation of the Aharonov-Bohm
effect, based on the massive photons (the intermediate bosons of the electro-
magnetic 4-potential field) interacting with the coherent beam of electrons (see
figure 1). Thus, the electrons passing near to the solenoid have the interactions
with these massive photons, so that these interactions change the trajectory,
momentum vector, and energy (Hamiltonian) of each electron in the beam and
explain the interference between left and right (around the solenoid) beams of

electrons. The right beam trajectory is parallel to
−→
A (at the point of closest

approach), while the left beam trajectory is antiparallel. Even in the absence
of any Lorentz force on the electrons, these interactions produce a phase shift
between the complex wave-packets Ψ of the electrons in the right w.r.t. the left
beams.

For any contracted curve around the solenoid C with the surface S, from the
Stokes theorem we have that (consider that we adopted positive-time Minkowski

time-space signature (+,−,−,−), so that
∑3

i=1Aidqi = −
−→
Ad−→r ), from (47),∮

C

(−
−→
Ad−→r ) = −

∫
S

(∇×
−→
A )d
−→
S =

∫
S

(−
−→
Bd
−→
S ) = ΦB (48)
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Figure 1: The Aharonov-Bohm

where ΦB 6= 0 is the total magnetic flux inside this solenoid. Electromagnetic
theory implies that an electron with negative electric charge e travelling along
some path γ, composed by particle’s trajectory from time 0 to time t > 0, in
a region with zero magnetic field

−→
B , but non-zero

−→
A , acquires a phase shift

M θA, given in SI units by

M θA = −e

~

∫
γ

−→
Ad−→r = −e

~

∫ −→r T (t)

−→r T (0)

−→
Ad−→r = −e

~

∫ t

0

−→
A (−→r T (τ))−→v (τ)dτ (49)

where d−→r ≡ −→v (τ)dτ is an infinitesimal trajectory length of this electron. That
is, in our new Individual-particle QM (IQM) theory [5, 6, 7], we have that the
complex wave-packet of a free individual electron (when the solenoid is off)
Ψoff = Φ0(t,

−→r ) e−iϕ
0
T |t e−iα

H

, where Φm = Φ2
0(t,
−→r ) has a hydrostatic equi-

librium spherically symmetric energy-density [10], during this non-relativistic
propagation,

ϕ0
T |t =

E0 − p0v0

~
t =

m0c
2 + 1

2m0
−→v 2

0

~
t (50)

where m0 is electron’s rest-mass and v0 (with −→v 2
0 = −v2

0) is a constant speed
of this free electron along the axis x (the direction of the propagation of the
beam of electrons). In the case when the solenoid is on, this electron is not
more a free particle, so that it changes its de Broglie pilot phase ϕT by the
amount M θA in (49). This is expected just because the interactions of massive
photons emitted by solenoid (by generating scalar waves above with 4-potential
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components φ and
−→
A ) with an electron, changes its energy, momentum and

trajectory, by generating the new pilot-wave phase of this electron ϕT |t, such
that, from (49) and (50),

θR = −ϕT |t = −ϕ0
T |t+ M θA ≈ −

1

~

∫ t

0

(m0c
2+

1

2
m0
−→v 2(τ)+e

−→
A (−→r T (τ))−→v (τ))dτ

(51)
by considering that ‖−→v ‖ ≈ v0 and d−→r = d−→v (τ)dτ . However, we can not use
the simple method used for the Schrödinger wavefunctions in SQM, where only
this phase changing of the wavefunction under influence of

−→
A is considered,

i.e., by4 ψ′ = ψ eiθR because, in statistic quantum mechanics, the electron is
considered as a point-like particle for which only the phase is changed.

Magnetic Aharonov-Bohm effect: Let us now consider the phase-shift
Aharonov-Bohm effects on the left and right beams of electrons in Figure 1:
two electrons (one in left and other in the right beam) traveling together (in
parallel) with the same velocity −→v pass by the solenoid on opposite sides.
At the point of closest approach to the solenoid, one is traveling parallel to−→
A (r, θ) = Aθ(r)eθ on its side, the other antiparallel. So, the pilot-wave of each
wave-packet (Ψ1 and Ψ2, relatively) accumulates a phase shift M θA given by
(49) as it traverses the vector potential at trajectory points −→r T (t) = (r, θ).

The scalar product
−→
A−→v in equation (49) implies that the phase changes are

of opposite sign for electrons passing the solenoid on opposite sides. So, the
two individual electrons Ψ1 and Ψ2 on their different paths (γ1 and γ2, respec-
tively) past a long solenoid enclosing the magnetic flux ΦB accumulate a phase
difference

4ϕ = −e

~

∫
γ1

−→
Ad−→r − (−e

~

∫
γ2

−→
Ad−→r ) ≈ −e

~

∮
C

−→
Ad−→r =

e

~
ΦB (52)

known as the magnetic Aharonov-Bohm phase shift. We consider that from

4Note that such a transformation from the Schrödinger wavefunction ψ (a state vector in Hilbert space)
when the solenoid is off to the state ψ′ = ψeiθR when the solenoid is on, from my point of view seems non
correct, because we know that each state in SQM remains equal if we change only the phase of it. Consequently,
in the SQM, we have that both ψ and ψ′ correspond to the same quantum state of the electron. This is in
contradiction with the fact that the state ψ of the electron, when the solenoid is off, must be different from
the state ψ′ when the solenoid is on, and hence they would have different trajectories depending if solenoid
is off or on. So, also the probability density to find this electron (described by these two wavefunctions) at
a given point, instead to be equal, ψ′ψ′ = ψe−iθRψeiθR = ψψ, must be different (consider that ψ(t,−→r ) and
ψ′(t,−→r ) are distributed theoretically in whole space), that is, for the modules of these two complex time-space
functions has to different (|ψ(t,−→r )| 6= |ψ′(t,−→r )| and not only their phases). Thus, it has to be provided a
different mathematical elaboration of the Aharonov-Bohm quantum experiments in the statistical quantum
theory (SQM).
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t = 0 (when the beam of electrons is split in the left and right-hand side com-
ponents) to t > 0 (when the left and right beams are recombined, see figure 1)
these two considered electrons traveling together defined two paths γ1 and γ2,
respectively, such that γ1 + γ2 defines approximatively the whole closed loop C
around this solenoid.
So, if we change magnetic field in solenoid, we change phase difference between
beams and interference pattern will shift. Aharonov and Bohm suggested how
it could be measured by heaving electron waves traversing the two paths inter-
fere with each other. Achieving interference patterns requires that the initial
electron beam be adequately coherent and that its splitting maintain that co-
herence. The former is accomplished by having a well-collimated beam with
narrow spreads in angle and particle energy, and later requires something like
a diffraction grating or an electromagnetic biprism.

4.1 Unified IQM Gauge Theory for Aharonov-Bohm effects

By considering that IQM theory is classical deterministic part of the quan-
tum theory, also in classical electrodynamics theory this Aharonov-Bohm effect
there exists, and not only in the statistical quantum mechanics based on the
probabilistic wavefunction (with the ensemble interpretation). In our case, in
IQM theory, an individual electron is not point-like but is composed by its 3-D
body of rest-mass density Φm(t,−→r ) = Φ2(t,−→r ). During the interaction with

the field
−→
A (that is, with massive photons which are the intermediate bosons

of this field), the rest-mass energy density of the electron is changed as well, so
that for the modified electron’s wave-packet Ψ′ = Φ′(t,−→r ) e−iϕ

′
T e−iα

H 6= Ψ eiθR,
because Φ′(t,−→r ) 6= Φ(t,−→r ). In fact, the interaction of an individual massive

particle (an electron in our case) and external fields (
−→
A in our case) in the IQM

theory is defined in the unified gauge theory [7], based on the local symmetry
(a kind of localization of the internal phase transformations for the electrons’s
accelerated complex wave-packet Ψ).
So, we will use now this Aharonov-Bohm experiment as an example, to which
we can apply this new gauge theory, with the following property:
Let us consider the evolution of the particle’s wave-packet Ψ ≡ Φ(t,−→r )e−iϕ

H
T ,

from initial time t to another Ψ′ ≡ Φ(t + δt,−→r )e−iϕ
H
T |(t+δt) at a time-instance

t + δt > t, in a given external field (a combination of basic forces). We would
like to express this evolution as the result of the local phase transformation
δθ(t,−→r ), that is, by Ψ 7→ Ψ′ = eiδθ(t,

−→r )Ψ. We assume that δt is an infinitesimal
amount of time during which a particle has the interaction with only one boson
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of the external field. Thus, after this interaction, this particle changed its ve-
locity, momentum, energy, and hence its phase for a small amount δθ. So, this
local phase transformation θ(t,−→r ) = θR(t,−→r )+iθI(t,

−→r ) is complex, differently
from the SQM theory for the point-like particles (where it is a real value).
In the gauge theory of the IQM presented in Section 3, we derived the gauge La-
grangian density with intermediators of the 4-potential Aµ = (A0,A1,A2,A4)
representing a total external field (as a combination of the basic quantum
forces), by (21), Lgauge = ~

1Φ
(δθδt − α(A0 +

∑3
j=1 vjAj))ΨΨ, which is invari-

ant for the local phase transformations, where in our case α = e
~ is the cou-

pling constant. We demonstrated that the total 4-potential on the massive
particle’s trajectory (here the trajectory of an electron), that is, for the points
rT (t) = te0 +−→rT (t)), determines particle’s velocity −→v , canonical momentum −→p
and total energy E (i.e., the Hamiltonian), from (29):

A0 = − 1

α
(
E(rT ,

−→p )

~
− i∇ ·

−→u (rT )

2
),

−→
A g =

−→p
α~

(53)

Note that the scalar component A0 is a complex component, while other Aj
are real components of the gauge 4-potential Aµ = A0e0 +

−→
A g).

Remark: In fact, in our case from (28), we are interested for the real component

Re(A0 − −→v
−→
A g) of the total 4-potential which generates the modification δθR

of electron’s pilot-wave phase (the imaginary components of A0, defines the
complex phase component δθI) so that, from (24) and (51)

Re(A0 −−→v
−→
A g) = 1

α
δθR
δt = 1

αδt(−
1
~(m0c

2 + 1
2m0
−→v 2(t) + e

−→
A (−→r T (t))−→v (t))δt,

that is,

Re(A0 −−→v
−→
A g) = −1

e
(m0c

2 +
1

2
m0
−→v 2(t) + e

−→
A (−→r T (t))−→v (t)) (54)

Note that for v4 = (v0, v1, v2, v3) = (c,−→v ), and solenoid’s 4-potential (8), A4 =

(A0, A1, A2, A3) = (φc ,
−→
A ), we obtain,

−A4v4 = −φ−
−→
A−→v = −φ+

3∑
i=1

Aivi (55)

Thus, in our case with A0 = φ
c = 0, from general equation (54), we obtain this

specific equation

Re(A0 −−→v
−→
A g) = −1

e
(m0c

2 +
1

2
m0
−→v 2 + eA4v4) (56)
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and from this we see the fundamental physical difference between the general
IQM gauge 4-potential Aµ and electromagnetic 4-potential A4: when the elec-
tromagnetic 4-potential is zero, the gauge 4-potential becomes constant (differ-
ent from zero) and continues to govern particle’s inertial propagation as well.
That is, the gauge 4-potential always determine particle’s pilot-wave phase also
in the intervals of time when particle is free.
Thus, from equation (38) in Proposition 1, δθR = −ϕT |t+δt + ϕT |t, we obtain
the changing of electron’s pilot-wave phase ϕT , for an infinitesimal amount of
time δt,

ϕT |t+δt = ϕT |t +
1

~
(m0c

2 +
1

2
m0
−→v 2 + eA4v4)δt (57)

caused by the electromagnetic vector field
−→
A , generated by the solenoid, as

expected.
Moreover, we note the fundamental difference from the mathematical total
gauge complex 4-potential Aµ = (A0,

−→
A g) and the physical solenoid’s real 4-

potential (8), A4 = (φc ,
−→
A ).

�
If we consider now the whole process of the interaction of an electron with mas-
sive photons of the field

−→
A , along electron’s path (on its trajectory) from time

0 to a time t > 0, then the sum θR of all infinitesimal changes δθR(t) of the
phase along electron’s trajectory −→r T (t) is equal to the integral in (51). Let us
how that this integral corresponds to the path-integral of the gauge 4-potential
for computation of the total particle’s pilot wave phase θR. In fact, from (51)
we have that

θR = −ϕ0
T |t+ M θA = −ϕ0

T |t − e
~
∫
γ

−→
Ad−→r

≈ −1
~
∫ t

0 (m0c
2 + 1

2m0
−→v 2(τ) + e

−→
A (−→r T (τ))−→v (τ))dτ

= e
~
∫ t

0 −
1
e(m0c

2 + 1
2m0
−→v 2(τ) + e

−→
A (−→r T (τ))−→v (τ))dτ

= α
∫ t

0 Re(A0 −−→v
−→
A g)dτ from (54)

= α
∫ t

0 Re(A0 +
−→
A g)((e0 −−→v ))dτ

= α
∫
γ Re(A

µ)d−→r Tµ from d−→r Tµ = (e0 −−→v )δτ

= Re(α
∫
γ Aµd−→r Tµ)

That is, we obtain the following result of the path integration if we are using
the electromagnetic vector field

−→
A or the gauge 4-potential Aµ :

θR = −ϕ0
T |t −

e

~

∫
γ

−→
Ad−→r = Re(α

∫
γ

Aµd−→r Tµ) (58)
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where −ϕ0
T |t is the path integration (50) when the solenoid is ’off’. With this

we concluded the translation from the classical electromagnetic framework into
the global gauge IQM theory for individual electrons of the Aharonov-Bohm
effects.

Consequently, when the solenoid is active (solenoid is ’on’), we have the
transformation from the wave-packet of an electron Ψ = Φ(t,−→r ) e−iϕT into the

modified (by the potential vector
−→
A (t,−→r )) wave-packet Ψ′ = Φ′(t,−→r ) e−iϕ

′
T =

Φ′(t,−→r ) e−i(ϕT−θA), which is shifted for the phase θA given by (49).

4.2 Quantum Forces in the Aharonov-Bohm Effect

Based on the results in previous section, we can explain the unified gauge
theory, based on the the total gauge 4-potential Aj, 0 ≤ j ≤ 3, in this example
of Aharonov-Bohm experiments:

Corollary 1 The velocity-dependent potential energy U of the non-relativistic
electron in the Aharonov-Bohm experiments is given by

U = −eRe(A0 −−→v
−→
A g)−

m0
−→v 2

2
(59)

where A0 is the time and
−→
A g vector coponents of the gauge 4-potential.

Proof : It is enough to demonstrate that the electron’s potential energy U , used
in the Lagrangian L = T − U , where T = m0v

2

2 = −m0

2
−→v (t)−→v (t) is electron’s

kinetic energy for the velocity−→v (t) = d
dt
−→r T (t), is equal, from from (56) and(55),

to

U = e(φ+
−→
A−→v ) +m0c

2 = e(φ−
3∑
i=1

Aivi) +m0c
2 (60)

In the SI system, the Lorentz force, acting on an electron during Aharonov-
Bohm experiments, is equal to

−→
F = e(

−→
E +−→v ×

−→
B ) = e(−∇φ− ∂

−→
A

∂t
+−→v × (∇×

−→
A )) (61)

Let us, for example, compute the first component of the force
−→
F , with

(−→v × (∇×
−→
A ))1 = v2(

∂A2

∂q1
− ∂A1

∂q2
)− v3(

∂A1

∂q3
− ∂A3

∂q1
)

= ∂
∂q1

(
∑3

i=1Aivi)− dA1

dt + ∂A1

∂t = ∂
∂q1

(−
−→
A−→v )− dA1

dt + ∂A1

∂t

since
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∂
∂q1

(−
−→
A−→v ) = v1

∂A1

∂q1
+ v2

∂A2

∂q2
+ v3

∂A3

∂q3
,

and
dA1

dt = ∂A1

∂t + v1
∂A1

∂q1
+ v2

∂A1

∂q2
+ v3

∂A1

∂q3
,

so we obtain,

F1 = e[− ∂φ
∂q1
− ∂A1

∂t + ∂
∂q1

(−
−→
A−→v )− dA1

dt + ∂A1

∂t ]

= e[− ∂
∂q1

(φ+
−→
A−→v ) + d

dt
∂
∂v1

(φ+
−→
A−→v )] = − ∂U

∂q1
+ d

dt
∂U
∂v1

and hence:
−→
F = −∇U +

d

dt
(
∂U

∂−→v
) (62)

Let us show that U is electron’s potential, which can be used to define the
electron’s Lagrangian in classical electrodynamics,

L = T−U = −m0
−→v 2

2
−e(φ+

−→
A−→v )−m0c

2 =
m0v

2

2
−m0c

2−eφ+e
3∑
i=1

Aivi (63)

which is a non-relativistic case when the external field energy-potential Le =
−e(φ+

−→
A−→v ) depends also on the particle’s velocity.

It can be shown by using the Euler-Lagrange equation of motion

∂L

∂q
− d

dt

∂L

∂q̇
= 0 (64)

where, for the space coordinate q, q̇ denotes the velocity, and here rewritten in
the full vectorial form:

0 = d
dt
∂L
∂−→v −∇L = d

dt
∂
∂−→v (−m0

−→v 2

2 − U)−∇(−m0
−→v 2

2 − U)

= d
dt(m0

−→v − ∂U
∂−→v ) +∇U = m0

d−→v
dt − (−∇U + d

dt(
∂U
∂−→v )).

Thus, from the Newton’s law
−→
F = m0

d−→v
dt , we obtain the correct Lorentz force

in (62), so that indeed U is electron’s potential. We know the canonical mo-
mentum from classical mechanics, from (63),

−→p ≡ ∂L

∂−→v
= m0

−→v + e
−→
A (65)

where m0
−→v is the kinetic momentum, that is,

−→v =
1

m0
(−→p − e

−→
A ) (66)

so that the Hamiltonian (in our Minkowski time-space signature (+,−,−,−))
is given by the Legendre transformation H = −−→p−→v −L = −m0

−→v 2

2 + eφ+m0c
2

and, from (66),

H = − 1

2m0
(−→p − e

−→
A )2 + eφ+m0c

2 (67)
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Hence, the unified gauge theory of IQM is in perfect accordance with classical
electrodynamics. Note that in the de Broglie pilot-wave phase, the total energy
is equal to the Hamiltonian and the momentum is canonical.
�
In addition, the classical Maxwell equations are derived from QED scatter-
ing process while both classical electromagnetic fields and potentials serve as
mathematical tools that are constructed to approximate the interactions among
elementary particles described by QED physics, i.e., neither classical fields nor
potentials represent any real entities of nature.
The vector potentials (φ,

−→
A ) as well as EM field are nothing but mathematical

idealisations that approximate the interactions among electrons which are me-
diated by the photons, as it has been shown in [17], the EM field will come into
play in classical theory since they comprise major parts of the Lorentz force
equation. Now it is clear that, in the Aharonov-Bohm effect, it does not matter
whether the EM fields are zero or not in the region where the beam of electrons
can enter, the underlying mechanism is the interactions between this beam of
electrons and the field

−→
A , while such interactions are mediated by massive pho-

tons. Moreover, the Maxwell’s EM fields are not produced directly by electrons
or any hypothetical magnetic monopoles, they serve as calculation tools and
emerge in the classical world because of the coupling effect between charged
particles with photons. We can regard the classical four-potential (φ,

−→
A ) as

well as EM field as mathematical statistical manifestations of photons. There
is no any ’nonlocal feature’ in an Aharonov-Bohm experiment: its effect can
be interpreted as the manifestation of massive photons propagating between
electrons in the framework of the IQM theory.
As it was shown in [17], the electromagnetic phenomena and forces are achieved
trough the basic phenomena of emission and absorption of the long/short-range
photons by the charged particles. So, also Lorentz force is the statistical effect
of this phenomena of emission and absorption of the long/short-range photons
by the charged particle.
Thus, we can have the particular cases when the 4-potential field (φ,

−→
A ) there

exists, mediated by massive and slow photons, in which the Maxwell’s electro-
magnetic fields

−→
E and

−→
B are zero and the Lorentz force consequently is zero,

but still there is another force that these massive photons generate on an elec-
tron, based on their mutual collisions in which these massive photons transfer
their momentum to this electron.
It is just the case of the Aharonov-Bohm effect, because for φ = ∂

−→
A
∂t = ∇×

−→
A =

0 we obtain, from (61), that the Lorentz force
−→
F is zero. However, in the late
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1990’s, a quantum force was predicted for the Aharonov-Bohm physical system
by Shelankov [18], and elucidated by Berry [19]. That this (non-Lorentz) force
is indeed present is demonstrated a number of times [20]. For experiments with
electron beams, the presence of a longitudinal force along the beam can lead
to time delays, while a transverse force leads to deflections. The absence of a
longitudinal force, as made apparent by the absence of electron time delays, has
been investigated more recently. The deflection, another indicator of force, is
accompanied by a characteristic asymmetry in the electron diffraction pattern.
In order to understand the underlying physical nature of these non-Lorentz
forces, we have to analyze the consequences of the Maxwell equations in the
case of the Aharonov-Bohm effects.
So, if we replace the equations (9) into the ordinary Maxwell equations for the

electric and magnetic fields
−→
E and

−→
B , we obtain the following equations for

the electromagnetic 4-potential in the region outside the solenoid for r > r0,
where ρ = 0 and current

−→
j = 0:

−∇2φ− ∂

∂t
(∇ ·
−→
A ) = 0, (−∇2 +

1

c2

∂2

∂t2
)
−→
A +∇(∇ ·

−→
A +

1

c2

∂φ

∂t
) = 0 (68)

From the fact that, in our case, the voltage potential is φ = 0, we have no any
scalar wave for φ, differently from the case analyzed in [17] for Tesla’s scalar

waves. So, we need to investigate if we have the vector
−→
A (radiation) waves.

Notice that, in our case, it holds not only Coulomb gauge potential condition
∇ ·
−→
A = 0 but also the Lorentz gauge potential condition ∇ ·

−→
A + 1

c2
∂φ
∂t = 0.

Thus, the system of two equations (68) is reduced only to the vector-potential
wave equation:

(−∇2 +
1

c2

∂2

∂t2
)
−→
A = 0 (69)

Hence, if it would be a non trivial identity with zero, then we would have that
the vector potential field

−→
A is mediated by the long-range photons which are

emitted from the accelerated electrons in the solenoid (we recall that also if
the speed of free electrons in the solenoid’s current is constant, from the fact
that their orbit in the solenoid is a circle, all electrons in the solenoid’s current
have a constant acceleration with direction toward the center of the solenoid)
and then become massless photons able to propagate by the speed of light as a
cylindrical wave.
Let us show that this is not the case here, so that the mediated bosons for
the field

−→
A are massive and slow short-range photons [17], which generate the

electrostatic field of each electron (in its rest-frame).
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So, let us show that (69) is not the wave equation of massless photon’s prop-
agation with the speed of light. Let us control its first term with Laplacian
operator, given in the solenoids cylindrical coordinate system with the center
in the center of solenoid,

∇2−→A = (∇2Ar −
Ar

r2
− 2

r2

∂Aθ

∂θ
)er + (∇2Aθ −

Aθ

r2
+

2

r2

∂Ar

∂θ
)eθ +∇2Azez (70)

so, from (45), we obtain:

∇2−→A = (∇2Aθ − Aθ
r2 )eθ = ((1

r
∂
∂r(r

∂Aθ
∂r ) + 1

r2
∂2Aθ
∂θ2 + ∂2Aθ

∂z2 )− Aθ
r2 )eθ

= (1
r
∂
∂r(r

∂Aθ
∂r )− Aθ

r2 )eθ = (∂
2Aθ
∂r2 + 1

r
∂Aθ
∂r −

Aθ
r2 )eθ = eθ

ΦB
2π ( ∂

2

∂r2 + 1
r
∂
∂r −

1
r2 )1

r

= 0.
Also the second time-derivation component of the wave-equation (69) is equal

to zero, because the vector
−→
A is time-invariant, and hence this wave equation

does not represent the propagation of the massless photons with the speed of
light. Thus, the intermediators for the vector-potential field

−→
A can only be the

massive and slow short-range photons, irradiated by electrons in the solenoid.
Let us show that the non-wave vector potential

−→
A (r, θ) = Aθ(r)eθ, given in

this cylindrical coordinate system with the center in the center of the solenoid,
outside this solenoid (for r > r0, where r0 is the radius of the solenoid) is
really the statistical consequence of the short-range photons generated by the
free electrons inside this solenoid that propagate with a velocity −→v s = vseθ,
with a constant speed vs. We consider that the natural interference of the free
electrons inside the solenoid (their mutual repulsion) can be neglected w.r.t.
the external source-filed that generates the electric current inside this solenoid.
Thus, the density of the free electrons in this solenoid is constant, so that for
any small angle δθ = π

n , where n >> 1, the number of free electrons in this
solenoid’s section is N > 1. We denote the electrostatic potential generated
by a free electron (w.r.t. its rest-frame) in the solenoid’s section at the angle
θ+α by φ+α, while that in the section at the angle θ−α (symmetrically to the
observed angle θ) by φ−α.
From the fact that all free electrons in the solenoid’s current move with a
constant speed −→v s = vseθ, there is no any electrostatic potential (φ = 0)
generated by them (in our frame with cylindrical coordinate system), but only

the vector potential
−→
A generated by superposition of all moving electrostatic

potentials of each individual free electron of the current. We consider that
r − r0 >> d, where d is diameter of the wire of the solenoid, so that all N free
electrons in a given section large the infinitesimal angle δθ = π

n , for n >> 1, are
practically at the same distance from the observed point (r, θ), and that inside
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this sector δθ all N free electrons practically propagate linearly with constant
speed vs. Hence, from (72)5, for the discrete set of angles α = jδθ, 0 ≤ j ≤ 2n,
so that 0 ≤ α ≤ 2π covers the whole solenoid, we obtain:

−→
A (r, θ) =

2n∑
j=0

(Nφ+α)

c2
vse+α =

Nvs
c2

n∑
j=0

(φ+αe+α + φ−αe−α) (73)

Consequently, from the fact that the electrons with φ+α and φ−α are at the
same distance ρ =

√
(r − r0)2 + r2

0 sin2 α from the observed point (r, θ), both
of them we will denote by the same Coulomb potential φ(r, α) = ke

e
ρ and,

from the fact that e+α + e+α = 2 cosαeθ, so that for any 0 ≤ α = jδθ ≤ π,
φ+αe+α + φ−αe−α = φ(r, α)(e+α + e+α) = 2φ(r, α) cosαeθ, the (73) reduces to

−→
A (r, θ) = (

2Nvs
c2

n∑
j=0

φ(r, α) cosα) eθ = Aθ(r)eθ (74)

That is, we demonstrated that the vector potential
−→
A has no radial component,

as expected, and Aθ(r) = 2Nvs
c2

∑n
j=0 φ(r, α) cosα corresponds to that defined by

the magnetic flux in (45) for r > r0.
Note that each short-range photon has an angular speed as well caused by the
angular speed of the free electrons in the solenoid. So, the cloud of short-
distance photons emitted/absorbed by the free electrons in the solenoid has an
radial movement from and toward (returning phase) the center of solenoid, but
also this rotation around the solenoid which generates a vortex of short-range
photons. The radial movement of the photons of this dense cloud has no effect
to the electrons in the beams, because they have impact on them from both
sides (emitted/returned photons) with the same radial momentum quantity.
But the angular momentum of the vortex of the short-range photons in this
vortex is only in one direction: so its effects on the left-hand and right-hand

5The vector-potential is obtained [17] as the effect of the movement of the electrostatic scalar field φ defined
in the rest-frame,

−→
A 1 =

φ

c2
−→v (71)

that is, as the flux of the electrostatic scalar field (defined in a rest-frame). So, the direction of
−→
A is equal to

the direction of the velocity −→v . If we consider a general case, that the current
−→
j is composed by n > 1 charged

particles, each one with its electrostatic potential φj moving with the speed −→v j , by superposition we obtain
that the resulting 3-D vector potential generated by this current is equal to

−→
A =

n∑
j=1

φj
c2
−→v j (72)

that is,
−→
A is a result of moving of the electrostatic potentials of the charged particles.
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sides of the electron-beams around the solenoid are very different, and this ex-
plains the Aharonov-Bohm effect.
So, we have the collisions of the two fluids: the vortex fluid of the massive short-
range photons emitted from the solenoid (intermediators for the electromagnetic

vector-potential
−→
A ) and the fluid of the coherent beam of the electrons outside

the solenoid. In the two-fluid hydrodynamics the superfluid (Magnus force is
not the only force on the vortex transverse to its velocity) there is also a trans-
verse force between the vortex and quasiparticles moving with respect to the
vortex. The transverse force from rotons was found by Lifshitz and Pitaevskij
[21] from the quasiclassical scattering theory and also Iordanskij [22] revealed
the transverse force from phonons. Then it was demonstrated that the Lifshitz-
Pitaevskij force for rotons and the Iordanskij force for phonons originate from
interference between quasiparticles which move past the vortex on the left and
on the right sides with different phase shifts, like in the Aharonov-Bohm effect.
So, let us consider in details such effects of the collisions between the vortex of
massive low-speed short-range photons around the solenoid and an individual
electron passing near to this solenoid vortex.
When the solenoid is ’on’, the speed of the electron is −→v (t) = vx(t)e1 + vy(t)e2,
where vx(t) ≈ v0 is electron’s longitudinal speed and vy(t) its time-dependent
transverse speed when the solenoid is ’on’. Consequently, we have the trans-
verse force F = m0

dvy(t)
dt acting on an individual electron (caused by the col-

lisions with the massive photons generated by the accelerated electrons in the
solenoid). This transverse is asymmetric (w.r.t. the left/right electron-beam
components around the solenoid) and experimentally demonstrated [18, 19, 20].
The word force is a label to describe a transfer of momentum between two ob-
jects: from the massive photons which creates a vortex around the solenoid and
an individual electron which passes close to this solenoid.
In hydrodynamics, such a flow pattern is called a vortex tube, a vortex line,
or simply a vortex. Thus, as noted in [23], the Aharonov-Bohm effect of the
transverse force is similar to the classical hydrodynamics Magnus force (The Ior-
danskij force [22] is related to the acoustic Aharonov-Bohm effect). The analogy
between wave scattering by vortex and electron scattering by the magnetic-flux
tube (the Aharonov-Bohm effect) was studied in classical hydrodynamics for
water surface waves (the acoustic Aharonov-Bohm effect).
The scattering of the electrons from the vortex of massive photons (quantum

intermediators of the electromagnetic potential vector
−→
A ), emitted from the

solenoid (by generating a kind of a superfluid), is analog to the scattering of
phonons by the vortex in the hydrodynamics [23]. In fact, the formula (56) in
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[23], representing the quasiclassical solution φ of the sound equation, is formally
similar to the rest-mass energy wave packet Ψ of an electron in the IQM, where

~ω corresponds to the electrons total energy and ~
−→
k to its momentum; The

variation of the action δS, due to interaction with the circular velocity from
the vortex along quasiclassical trajectories, corresponds to the variation of the
phase ~δθR used here in our IQM theory of Aharonov-Bohm effects:

”Using this solution in the momentum balance one obtains the equation of
vortex motion, which contains the Iordanskii force. The momentum transfer re-
sponsible for the Iordanskii force occurs at small scattering angles where a phe-
nomenon analogous to the Aharonov-Bohm effect is important: an interference
between the waves [here: the electron’s rest-mass energy density wave-packets]
on the left and on the right from the vortex with different phase shifts after
interaction with the vortex.”
From page 3 in [23].
However, the relationship with Aharonov-Bohm effects presented in [23] (Sec-
tion 7) is given in the statistical Schrödinger equation SQM framework, while
here this work is done in the IQM classical deterministic mechanics framework.
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[6] Majkić Z., Completion and Unification of Quantum Mechanics with
Einstein’s GR Ideas, Part II: Unification with GR, Nova Science Pub-
lishers, New York, ISBN:978-1-53611-947-3, September, 2017
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