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Abstract. We provide a mathematical completion of L.Faddeev’s hypothesis1

of the Higgs mechanism without using the Higgs field (Higgs bosons) by using
the IQM theory of individual particles. So, we demonstrate mathematically,
basing on the IQM gauge theory, that during each interaction of a given mas-
sive particle with the bosons (during which this particle changes its energy,
momentum and speed), the Goldstone ”Mexican hat” potential obtained from
particle’s Lagrangian density, appears without necessity to introduce the Higgs
bosons.

Keywords: Quantum Mechanics, Aharonov-Bohm effect, Massive bosons,
Electromagnetism.

1Ludwig Faddeev called himself a mathematical physicist whose main interest was in quantum theory. He
believed that the aim of mathematical physics is making discoveries in fundamental physics while using mathe-
matical intuition. He saw Mathematical Physics and Theoretical Physics as competitors although he acknowl-
edged that different methods could be used in either discipline. Faddeev was convinced that physics solved
all the theoretical problems in chemistry, thus ’closing’ that science. He believed that mathematics will create
the ’unified theory of everything’ and ’close’ physics as well, which can be seen as quite a radical opinion. He
believed that the more physics uses mathematical methods, the more fundamental this science becomes. He also
claimed that there is only one most important unsolved problem in physics: the microscopic description of the
structure of matter. He said that physics will be ’finished’ for him when the theories of gravitation, relativity
and quantum mechanics will be put together into one solid theory.
(From https://mathshistory.st-andrews.ac.uk/Biographies/Faddeev Ludwig/ ):
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1 Introduction to the Mass Gap Conjecture in Yang-

Mills Theory

In early 1954, Chen Ning Yang and Robert Mills [12] extended the concept of
gauge theory for abelian groups, e.g. quantum electrodynamics, to nonabelian
groups to provide an explanation for strong interactions. The idea was set
aside until 1960, when the concept of particles acquiring mass through symme-
try breaking in massless theories was put forward, initially by Jeffrey Goldstone,
Yoichiro Nambu, and Giovanni Jona-Lasinio. The current version of the orig-
inal Yang-Mills idea is a theory that is known as quantum chromodynamics.
This is a model of the fundamental interactions (and therefore all energy in the
universe) which proposes that all matter and energy is composed of quarks and
their opposites (antiquarks). These interactions are thought to be mediated
by the exchange of massless energy bosons called gluons. In effect, in physics,
classical Yang-Mills theory is a generalization of the Maxwell theory of electro-
magnetism where the chromo-electromagnetic field itself carries charges. As a
classical field theory it has solutions which travel at the speed of light so that
its quantum version should describe massless particles (gluons).

In order to show these properties of a long-range action of photons, for the
electromagnetic field in the vacuum region (where the 4-electric current vector
J = 0), expressed by a contravariant 4-potential vector (gauge field),

A4 = (A0,A1,A2,A3) = (φ(t,−→r )
c ,
−→
A (t,−→r ))

where A0 = φ
c and φ is a scalar potential and

−→
A = A1e1 + A2e2 + A3e3 is a

3-dimensional vector potential, such that the electric and magnetic forces in SI

system are
−→
E = −∇φ − ∂

−→
A
∂t and

−→
B = ∇ ×

−→
A , relatively. So, we obtain the

D’Alembert homogeneous equation for each component Aj of the electromag-

netic 4-vector potential gauge field �Aj ≡ 1
c2
∂2Aj
∂t2 − 4Aj = 0, whose solution

is a wave function which propagates with the speed of light, so that this elec-
tromagnetic gauge field is mediated by the massless bosons (photons). In 1935
Yukawa [13] found a relation between the mass of the intermediate particle (a
boson) and the range of interaction, based on Yukawa potential (used for the

strong and weak nuclear forces), U(r) = −g2

r e−
r
L , where for the mass m0 of this

particle, L = k
m0

, and g and k are two scaling constants. In the case when
the mass is equal to zero (of the photons), L 7→ ∞, this potential becomes the
long range Coulomb potential of QED. It is easy to verify that if we change the
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D’Alembert homogeneous equation above, by a new term, that is by

�Aj ≡
1

c2

∂2Aj
∂t2

−4Aj = − 1

L2
Aj (1)

we obtain the massive, short distance, solution proportional to e−
r
L . It is easy

to verify that Klein-Gordon quantum equation corresponds to this extended
equation (1) with L = ~

m0c
(so called Compton wave length). This equation

reduces to D’Alembert homogeneous equation for a massless field Aj when
m0 = 0. In effect, Proca [14] extended the Maxwell equations in QFT to
massive spin-1 (vector) bosons (massive photons), by extending the Lagrangian
by the massive term

∑
j

1
2

1
L2AjAj, in the following total Lagrangian density,

L = −1

4
FkjF

kj − 1

c

∑
j

JjAj +
1

2L2

∑
j

AjAj (2)

where Fkj = ∂kAj − ∂jAk are the components of covariant (and F kj of con-
travariant) field-strength tensor, and hence −1

4FkjF
kj represents the Maxwell

Lagrangian (gauge), so that for the source free case, when Jj = 0, we ob-
tain the Proca equation (the Euler-Lagrange equation obtained from the Proca
Lagrangian above)

�Aj ≡ 1
c2
∂2Aj
∂t2 −4Aj = − 1

L2Aj + ∂j
∑

k ∂
kAk,

which in the case whenm0 = 0 reduces to the massless Maxwell field in equation.
The Proca Lagrangian (2) is not invariant for the gauge transformation because
of the presence of the massive term, and by taking the divergence of the Proca
equation we obtain that if m0 6= 0 then

∑
k ∂

kAk = 0 (the Lorenz gauge field
conditions), so that the Proca equation (2) reduces to equation (1) with the
massive, short distance, solution proportional to e−

r
L , as in the case of the

Klein-Gordon equation (which is defined for 0-spin particles and not for 1-spin
particles as are photons and all other vector bosons).

However, the postulated phenomenon of color confinement in the current
Statistical Quantum Mechanics (SQM), where you can only have massive bound
states of gauge fields, forming massive particles through their binding energy
E = mc2. This is ”mass gap”. This is especially important because the inter-
action of the gauge fields (called gluons in QCD) and quarks prevent any free
gluons/quarks from ever being seen on their own. The evidence that the mass
gap in the SQM is real comes from renormalization group calculations of the
strength of various interactions; simulations in lattice QCD.

So, Yang-Mills SQM theory proposes the existence of this mass gap in
relation to the strong interactions of elementary particles. Classical versions
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of this theory describe gauge fields with no mass that propagate at the speed of
light (see the D’Alembert homogeneous equation above for the electromagnetic
gauge field), that is, in such a gauge theory the bosons has to be massless as are
the photons in the gauge theory of electromagnetic force. The SQM describes
every particle as a certain kind of wave so the mass gap is a major contradiction
between the two versions of Yang-Mills theory. One of the most important
results obtained for Yang-Mills theory is asymptotic freedom. The relevance
of this result is due to the fact that a Yang-Mills theory that describes strong
interaction and asymptotic freedom permits proper treatment of experimental
results coming from deep inelastic scattering.

Yang-Mills theories met with general acceptance in the physics community
after Gerard ’t Hooft, in 1972, worked out their renormalization. Renormaliz-
ability is obtained even if the gauge bosons described by this theory are mas-
sive, as in the electroweak theory, provided the mass is only an ”acquired” one,
generated by the Higgs mechanism which we will consider in next in the math-
ematically simpler case of the electromagnetic quantum field theory (QFT).

In particle physics, elementary particles and forces give rise to the world
around us. Physicists explain the behaviors of these particles and how they
interact using the Standard Model. Initially, when these models were being
developed and tested, it seemed that the mathematics behind those models,
which were satisfactory in areas already tested, would also forbid elementary
particles from having any mass, which showed clearly that these initial models
were incomplete. As explained previously, in 1964 three groups of physicists
almost simultaneously released papers describing how masses could be given to
these particles, using approaches known as symmetry breaking. This approach
allowed the particles to obtain a mass, without breaking other parts of particle
physics theory that were already believed reasonably correct. This idea became
known as the Higgs mechanism.

The simplest theory for how this effect takes place in nature, and the theory
that became incorporated into the Standard Model, was that if one or more of
a particular kind of ”field” (known as a ”Higgs field”2) happened to permeate

2Higgs published the first explanation of his particle in 1964. The ”Higgs field” is believed to fill the entire
known universe and endows all matter with mass. This ”explanation” has been proposed by the team of
Englert and Robert Brout, a deceased colleague, who first suggested how elementary particles get their mass by
interacting with an invisible field that fills up all of space. Particles that interacts strongly with the ”Higgs field”
have more mass, and vice versa. But such a hypothesis would generate enormous problems during the creation
of our universe [22] by having universe-killing potential. In effect, the rapid inflationary period immediately
after the Big Bang nearly 13.7 billion years ago would have thrown our early universe into chaos, the universe
would have collapsed as the ”Big Crunch”.
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space, and if it could interact with elementary particles in a particular way, then
this would give rise to a Higgs mechanism in nature. In the basic Standard
Model there is one field and one related Higgs boson; in some extensions to
the Standard Model there are multiple fields and multiple Higgs bosons. This
theory is not fully proven also after the famous experiments in CERN, 2012,
and still up to this moment there is no according that these experiments really
found Higgs bosons instead of other composite particles [34]:

”Physicists have spotted the Higgs boson performing a new trick, but one that
brings us no closer to understanding the workings of fundamental particles...
However, despite the work of thousands of researchers around the world, nobody
has been able to figure out exactly how it does that or why some particles are
more massive than others.”

In the years since the ”Higgs field” and boson were proposed as a way to
explain the origins of symmetry breaking, several alternatives have been pro-
posed that suggest how a symmetry breaking mechanism could occur without
requiring a Higgs field to exist. Models which do not include a Higgs field or a
Higgs boson are known as Higgsless models, as Faddeev model considered and
completed by the IQM theory in this paper. In these models, strongly inter-
acting dynamics rather than an additional (Higgs) field produce the non-zero
vacuum expectation value that breaks electroweak symmetry.

Noted theoretical physicist Stephen Hawking has been convinced that the
Higgs boson would not be found, as he had hoped that a more ”elegant” mech-
anism would be found that could explain how particles have mass. It seems
that the negation of necessity for the existence of Higgs boson is unpopular in
the main stream of physicians.

A number of problems for the existence of Higgs scalar zero-spin bosons
and every-present ”Higgs field” are addressed in, for example [23]. In effect,
the model of strong and electro-weak interactions supplemented by the gravita-
tional interaction and the presence of higher compactified dimensions (Kaluza-
Klein, as in my approach), between micro-island particle’s metrics, in which
all dynamic ”Higgs fields” are eliminated, can provide a natural framework for
description of elementary particle fundamental interactions as it was supposed
for example in [24, 25, 26, 27, 28, 29, 30, 23, 31, 32] but with different ideas.
The fact that the compactified extra dimensions can be used for producing the
spontaneous symmetry breaking without Higgs boson has been studied in a
number of papers (see, for example [33]).
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1.1 Higgs Mechanism and Spontaneous Symmetry Breaking

The weak interaction is short-ranged (range around 10−15cm) and, in the sta-
tistical quantum mechanics (SQM), it is explained by the mechanism of the
spontaneous symmetry breaking and hence it predicts the massive bosons (W±

and Z). In this case, fermions can exchange three distinct types of force carriers
known as the W+, W−, and Z massive bosons. In 1968, Sheldon Glashow, Ab-
dus Salam and Steven Weinberg unified the electromagnetic force and the weak
interaction by showing them to be two aspects of a single force, now termed the
electro-weak force. According to the electro-weak theory, at very high energies,
the universe has four field components whose interactions are carried by four
massless gauge bosons (each similar to the massless photon). However, at low
energies, this gauge symmetry is spontaneously broken down to the U(1) sym-
metry of electromagnetism. In the SQM theory, this symmetry-breaking would
be expected to produce three massless bosons, but instead they become inte-
grated by the other three fields and acquire mass through the Higgs mechanism.
These three boson integrations produce the W+, W−, and Z bosons of the weak
interaction. The fourth gauge boson is the photon of electromagnetism, and
remains massless.

The aspects of gauge symmetries are based on the field transformations
ϕ 7→ eiθϕ where θ is a constant in the case of global and a function on
time-space r4 = (t,−→r ) of local symmetries. The complex phase of a field
does not appear as a measurable quantities, so that the states described by a
different complex phase are physically the same and differ only in mathematical
description, so that the global U(1) symmetry, with eiθ ∈ U(1), is a gauge
symmetry. There is a well known theorem related to the global symmetry
breaking: Goldstone theorem, which tells that every broken generator of a
global symmetry group has a corresponding massless Goldstone boson (with
spin zero). Let us consider a thin rod with circular cross section, in Fig.1,
and apply a force F on the end points of the rod. If the force F is small,
nothing happens. However, if F exceeds a critical value F0, the rod bends in a
plane which it chooses at random as shown in Fig.1. The symmetric (unbent)
configuration becomes unstable when F > F0, and the new ground state is
unsymmetric. Also, there are infinitely many possible new degenerate ground
states, which are related by a rotational symmetry. The rod can only, of course,
choose one of them, but the others are all reached by a rotation without causing
any energy. So we obtained the typical restatement of Goldstone theorem.

Notice that this is valid also when ϕ is the 3-D wave-packet field Ψ =
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Figure 1: Compressed rod

e−iϕTΦ of an individual particle (in IQM theory for individual particles [2, 3, 4],
complementary to the SQM theory), because the de Broglie pilot-wave phase
ϕT is derivable from the particle’s real positive distribution function Φ(r4).

Let us consider a simple filed theory example: broken U(1) symmetry. A
general Lagrangian for a single complex scalar field ϕ has the form (in what
follows we will use Einstein convention for the sum above the indexes, in order
to make simpler the presentation and explanation of the main concepts),

L = ∂kϕ∂
kϕ− V (ϕϕ) (3)

where the first term is the kinetic component of the Lagrangian, invariant under
global U(1) transformations, and V (ϕϕ) is the potential invariant under trans-
formation as well. Let us show that V is indeed a potential density component
of the Lagrangian density L = T − V , where T is its ”kinetic” component.
In fact, from the Lagrangian density (3), we obtain the conjugate moments of
the complex field ϕ and ϕ, Π = ∂L

∂(∂0ϕ) = ∂0ϕ, Π = ∂L
∂(∂0ϕ) = ∂0ϕ. So, we can

define the Hamiltonian density by H = Π∂0ϕ + Π∂0ϕ− L = T + V and hence
to verify that V (ϕϕ) is the potential component of this Hamiltonian density.
Note that the first (kinetic) component of Lagrangian is set in the way that
it generates the Klein-Gordon term �ϕ ≡ 1

c2
∂2

∂t2 −4ϕ during derivation of the
Euler-Lagrange equation of motion.

So, for V (ϕϕ) = (iµ)2ϕϕ, where µ = 1
L = m0c

~ , we obtain that derived
Euler-Lagrange equation of motion is equal to the Klein-Gordon equation for
the 0-spin massive particles. Thus, such a kinetic term of the Lagrangian will
be present in the whole Higgs theory, by modification only of the potential term
V (ϕϕ), so that the Euler-Lagrange equations will be some kind of modifications
of the ”massive” component (m0c

~ )2ϕ of the Klein-Gordon equation. Let us now
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Figure 2: Goldstone ’Mexican hat’ potential

consider the potential due to Jeffrey Goldstone [15, 16],

V (ϕϕ) ≡ (iµ)2ϕϕ+ λ(ϕϕ)2 = −µ2ϕϕ+ λ(ϕϕ)2 (4)

where µ and λ > 0 are real constants, so that the ground state is degenerate
as represented by Fig.2, with minimum of V obtained for the ϕ such that
ϕϕ = V 2

0 ≡
µ2

2λ . The minima of this system are thus degenerate; there are
multiple states with the same ”vacuum-expectation value” energy 〈ϕ〉0 = V0.
The different orientation in the complex plane define different states and we have
right to chose one of them as ground state, say Re(ϕ) = V0 and iIm(ϕ) = 0,
that is, the ground state ket |0〉 = V0 + i · 0.

The orientation of these states is comparable to the direction of alignment
of the spin in the ferromagnet. For the spontaneous symmetry breaking each
of the ground state orientations in this complex plane has an equal chance
to be the ground state of the physical system (analogously to the direction
of the plain defined by the compressed rod in Fig.1), and the ground states
are related to each other by the U(1) symmetry of the Lagrangian. For this
Goldstone potential, the Lagrangian density (3) is invariant under global U(1)
symmetry, where Q is the conserved charge for the field ϕ,

ϕ 7→ eiQθϕ (5)

In the SQM field theory, the oscillations around the ground states or ’vacuum’
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correspond to the real particles. Let us consider now the perturbation,

ϕ = (V0 + η(r4)) eiξ(r4) =
1√
2

(v +
√

2η(r4)) ei
ε(r4)
v (6)

around the ground state, where η and ξ are real functions with, for v =
√

2V0,
ε(r4) = vξ(r4) and η(r4) two fluctuation fields, such that 〈ε〉0 = 〈η〉0 = 0 (so
that 〈ϕ〉0 = 1√

2
v = V0). This perturbation above can be defined as a local

symmetry U(1) transformation,

ϕ(r4) 7→ ϕ(r4) eln[(V0+η(r4)/ϕ(r4)]+iξ(r4) (7)

so by substitution in (3) we obtain:

L = (∂kη∂
kη − (4λV 2

0 )η2 − (4λV0)η
3 − λη4) + λV 4

0 + (V0 + η)2∂kξ∂
kξ

There is no mass term for the ξ field, so that this field represents the massless
Goldstone boson (by changing ξ, i.e., angular displacement, we do not change
the potential V and hence the energy of ϕ). In fact, a perturbation in the ϕ2

direction in Fig.2, i.e., in the angular displacement direction, does not face any
resistance since the energy in the adjacent state is the same. Note that the
massive term (a quadratic term) in Lagrangian above, (4λV 2

0 )η2, demonstrate
that the filed η(r4), a perturbation in the ϕ1 direction in Fig.2 which changes
the potential V and energy of the field ϕ, is massive with mass mη =

√
4λV 2

0 ,
and hence also ϕ is massive.

As shown above, in the spontaneous global U(1) symmetry breaking, we
obtain massless Goldstone bosons. In fact, Goldstone theorem [17] holds only
for global symmetry framework. From the general global U(1) transformation
(5), it holds that the charge Q is its generator. Although the Lagrangian is
invariant under this transformation, the ground state is not invariant under it,
and an infinitesimal θ transforms from (5) like

|0〉 7→ eiQθ|0〉 ≈ (1 + iQθ)|0〉 6= |0〉
and hence, from Q|0〉 6= 0, Q is the broken generator in this global U(1) symme-
try. Thus, in this simplest global U(1) case, we have only one broken generator
Q, and this corresponds to the massless Goldstone boson (the filed ξ, because
global transformation (5) is a particular case of the transformation (7) when
η(r4) = 0 and ξ(r4) = Qθ.
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1.2 Gauge Invariance and Local Symmetries

A key innovation of the 20th century was Herman Weyl’s invention of gauge
theory, in which a global physical symmetry is replaced by a local one; the arbi-
trary phase in Hamiltonian-based quantum wave function becomes a function
of time-space, a change that requires the existence of the electromagnetic gauge
field. Weyl’s gauge method, where the global symmetry is transformed into a lo-
cal one, applied to the Standard-Model symmetry group SU(3)×SU(2)×U(1),
is enough in the SQM theory to yield the strong, weak and electromagnetic in-
teractions.

It is well known the relativistic invariance or Poincare symmetry and the
internal symmetry based on the Lie group U(1) symmetry of phase transfor-
mations (the conservation of matter and, dually, of electric charge for Dirac
equation). Analogously, we can consider the isospin symmetry SU(2) (used
for the electroweak force interactions) and the flavour symmetry SU(3) of the
strong force interactions. All of them are continuous global symmetry trans-
formations (they give rise to conserved currents and charges as described by
Noether’s theorem, that is, they presuppose that, at least in principle, we can
measure all the components of a field Ψ at all points −→r in space at the same
time.

However, here we have to consider the theories which are invariant if the
symmetry operations are performed locally where the transformation parame-
ters are dependent on local space coordinates (for example, if the rotation angle
θ of Lorentz transformation is not constant for all infinitesimal pieces of matter
Φm = ΨΨ, but is dependent on its space position −→r , that is, the rotation angle
is a function θ(−→r )). A gauge theory is a theory where the action is invariant
under a continuous group symmetry that depends on time-space and such local
symmetries introduce these gauge fields to the theory which mediate a force.
Let us consider, for instance, the internal phase transformation, when θ is not
a constant phase, but depends on space position −→r , and when we require that
the Lagrangian density L in equation (22) be invariant under such local smooth
changes of phase:

Ψ|(t,−→r ) 7→ Ψ′|(t,−→r ) = eiθ(
−→r )Ψ|(t,−→r ) (8)

However, since the Lagrangian density L is invariant under global internal sym-
metry when θ is constant, it is not invariant under local phase transformations
given by (8). The problem is that the derivatives of the field Ψ does not trans-
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form like the field in (8). In fact we have for j = 1, 2, 3 that:

∂jΨ|(t,−→r ) 7→ ∂jΨ
′|(t,−→r ) = ∂j[e

iθ(−→r )Ψ|(t,−→r )] = eiθ(
−→r )[∂jΨ + iΨ∂jθ(

−→r )] (9)

If we want to consider the phase transformations θ(−→r ) that differ from a point
to point, we have to define a connection that specifies the mode how we suppose
to transport the phase of Ψ from r4 = (t,−→r ) to r′4 as we travel along some path
γ. Let us consider the infinitesimal transport r′4 = r4 + δr4 = r4 +

∑3
i=0 δqiei,

so that with this infinitesimal transport we have the change of Ψ:

δΨ|r4
= Ψ|(r4+δr4) −Ψ|r4

(10)

This problem is analog to the problem of the derivation of a vector field W, with
a vector at a point p = r4, wp = W(p) =

∑3
j=0wjej, along a particular curve

lying in a given manifold in the differential geometry. In contrast to differential
geometry, the vector field Ψ are not vectors in the tangent space (plane) of
a manifold, but belong to an ”internal” vector space V (like isospin, flavor,
etc..) and hence the local transformation (8) can be considered as a time-space
dependent change of the basis in V and hence it is a passive transformation.

We require that the physics do not depend on the local choice of the basis,
so that the differentiation has to be defined based on the change of Ψ (or Ψ)
relative to the parallel transported Ψp, so we have δΨ|r4

= Ψp|r′4 − Ψ|r4
. In

this case we have no Christoffel symbols Γjik, but an imaginary term −iαAk(r4)
where Ak(r4) is a suitably chosen vector field (an element of the Lie algebra
belonging to the gauge group element, for example for the unitary group3,
eiθ(r4) ∈ U(r4)) and α is a coupling constant. Thus, analogously to the case
used for definition of covariant derivative in General Relativity, we have,

δΨ|r4
= (iα

∑
k

Ak(r4)dqk)Ψ|r4
and DΨ|r4

=
3∑

k=0

(∂k − iαAk(r4))Ψ|r4
dqk (11)

with the gauge covariant derivative at point r4,

Dk = ∂k − iαAk(r4), k = 0, 1, 2, 3 (12)

(we denote by D′k the covariant derivative at a point p = r′4 and A′k the k-th
component of a 4-vector field

A = (A0,A1,A2,A3)

3Historically, while trying to explain the quantum effects of electrodynamics, it was found that Quantum
Electrodynamic (QED) could be explained by a U(1) Abelian gauge theory. Yang and Mills then generalized
this Abelian U(1) gauge theory to the non Abelian gauge theory case (with the self interactions).
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at a point r′4). From the fact that we want that the Lagrangian den-
sity becomes invariant under the covariant derivatives, i.e., D′kΨ|r′4 = (∂k −
iαA′k)(eiθ(r4)Ψ|r4

) = eiθ(r4)(∂k − iαAk)Ψ|r4
= eiθ(r4)DkΨ|r4

, we obtain that Ak
should transform like

Ak(r4) 7→ A′k(r′4) = Ak(r4) +
1

α
∂kθ(r4) k = 0, 1, 2, 3 (13)

Consequently, we conclude that we can promote a global symmetry to local
(i.e., gauge) symmetry (for example, from U(1) into U(r4)) by replacing the
standard derivative operators ∂k by the covariant derivative operators Dk. The
standard model of elementary particles, which is based on the concept of local
gauge invariance, has shown to be very successful theory. Let us consider a
parallel transport at finite distances, for example in the case of the Abelian
symmetry group U(1), from the initial point r4 into the final point r′4, so that
an infinitesimal parallel transport along a finite curve γ(r4, r

′
4) is given by (11)

which formally may be integrated

Ψp|r′4 = eiα
∫
Ak(z)dzkΨ|r4

(14)

In fact, for infinitesimal transport, by taking the Taylor approximation, we ob-
tain Ψp|r′4 = Ψp|(r4+δr4) ≈ (1 + iα

∑
kAk(r4)dqk)Ψ|r4

= Ψ|r4
+ δΨ|r4

.
Remark: There is a subset of configurations of material fields Ψ that changes
only because of the presence of the gauge field. They are geodesic configura-
tions which satisfy the equation DkΨ = 0 for k = 0, 1, 2, 3, which is equivalent
to linear equation ∂kΨ = iαAkΨ.
�
Let as consider now a local symmetry framework for U(1) transformation (which
introduces the gauge 4-vector potential field Aj and covariant derivative Dk in
the place of partial derivative ∂k), which has a parameter θ(r4) that depends
on time-space, in the gauge theory for the electromagnetism. The gauge boson
in this model becomes massive through spontaneous symmetry breaking of the
photon. For the stable massless bosons we have the long range electromagnetic
force. A situation in which photons are massive is, for example, in a super-
conductor where U(1) gauge (local) symmetry is spontaneously broken. The
Higgs mechanism (in the original case of the non-Abelian gauge theories such as
SU(2)× U(1) gauge symmetry that describes the electroweak interaction, this
mechanism allows the W± and Z bosons to be massive) explains how a field
with an (asymmetric) non-zero ground state can be source of massive gauge
bosons. The Lagrangian for the Higgs field Ψ, in the case of electromagnetism,
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with a U(1) gauge symmetry has the following form [16],

L = −1

4
FkjF

kj +DkΨDkΨ− (iµ)2ΨΨ− λ(ΨΨ)2 (15)

where the first term is that of the electromagnetic gauge theory of photons
with the gauge 4-potential vector Aj 7→ Aj + 1

α∂jθ and covariant derivative
Dk = ∂k − iαAk, as introduced in (12). This Lagrangian is invariant for the
local transformation Ψ|r4

7→ eiθ(r4)Ψ|r4
, i.e., the gauge field Aj interacts with

the field Ψ in such a way that the Lagrangian is invariant (local symmetry)
under the gauge transformations of Ψ and Aj. By considering now the same
perturbation of Ψ around the ground state, Ψ = (V0+η(r4)) eiξ(r4), and plugging
it in L in (15), we obtain:

L = (−1

4
FkjF

kj+α2V 2
0 AkAk)+(∂kη∂

kη−4λV 2
0 η

2)+(V 2
0 ∂kξ∂

kξ−2αV 2
0 ∂kξAk)+c.c

(16)
where c.c are the rest of cubic and quartic terms and the first two terms in the
parenthesis compose the Proca Lagrangian (2) of massive photon in the case of
electromagnetic source-free case (Jj = 0). To see particle’s content, only the
quadratic terms in this Lagrangian are interesting. The term α2V 2

0 AkAk in this
case when V0 6= 0 shows that the gauge field Aj now has become massive, due
to its interaction with the constant part V0 of the Higgs field Ψ. The component
η(r4) of the Higgs field Ψ is massive due to term 4λV 2

0 6= 0, while ξ(r4) seems
to be massless. However, ξ(r4) is not physical particle but a function that has
results from the freedom to ”pick a gauge”. This freedom can be used to set
ξ(r4) = 0, so that Ψ = V0 +η(r4), and this choice of gauge is called the ”unitary
gauge”. We have eliminated Goldstone field ξ by taking advantage of the gauge
invariance. This is what the current SQM theory means the Goldstone boson is
”eaten” by the gauge field. To verify that indeed Ψ = V0 +η(r4) defines a gauge
field, it must be noted that this can be achieved by a gauge transformation with
θ(r4) ≡ −ξ(r4), that is:

Ψ|r4
7→ e−iξ(r4)Ψ|r4

, Aj(r4) 7→ Aj(r4) +
1

α
∂jξ(r4) (17)

However, with this ”pick a gauge” fixing, ξ(r4) = 0, the gauge symmetry is
removed from the Lagrangian. The field Ψ no longer have the freedom to
transform under gauge transformation, because the one representation Ψ =
V0 + η(r4) is fixed.

For this ”unitary gauge”, the Lagrangian density (16) becomes equal to:

L = (−1

4
FkjF

kj + α2V 2
0 AkAk) + ∂kη∂

kη − (4λV 2
0 )η2 + c.c (18)
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Thus, by substitution η(r4) = Ψ|r4
− V0, we obtain the following Lagrangian

density:

L = (−1
4FkjF

kj + α2V 2
0 AkAk) + ∂kΨ∂

kΨ− (4λV 2
0 )(Ψ− V0)

2 + c.c
This Lagrangian now clearly shows that the ”Higgs field” Ψ|r4

is a massive
field. There is no massless particles in this theory, because ξ(r4) has completely
disappeared from the Lagrangian and the gauge field of the 4-vector electro-
magnetic potential is massive as well (mediated by the massive photons) as
follows from the quadratic term α2V 2

0 AkAk with mass mA = αV0 6= 0 which Ak
has acquired.

This mechanism, by which spontaneous symmetry breaking generates a
mass for a gauge boson, was explored and generalized to the non-Abelian case
by Higgs, Kibble, Guralnik, Hagen, Brout and Englert, and is now known as
the Higgs mechanism.

The role of the ”pick a gauge” fixing in the breakdown of the Goldstone the-
orem can give insight into the position of gauge (local) symmetry breaking w.r.t.
global symmetry breaking. In current ensemble interpretation of the statisti-
cal theory of the Standard Model (SQM), three massless Goldstone bosons are
generated, which are absorbed to give masses to the W± and Z gauge bosons.
The remaining component of the complex doublet becomes the Higgs boson- a
new fundamental scalar (0-spin) boson.
Remark: Such a solution with this ”pick a gauge” can not be used if we con-
sider Ψ as the particle’s wave-packet of the energy density, where the complex
component is the particle’s pilot-wave which can not be a constant for the mas-
sive particles (only for the massless bosons it is constant phase). Thus, for the
massive bosons theory provided in Section 3 we need an alternative approach
to the Higgs mechanism.

2 Fadeev’s Interepretation of the Higgs Mechanism

The question of the Higgs field’s existence has been the last unverified part
of the Standard Model of particle physics and, according to some, ”the central
problem in particle physics”. In the Standard Model of SQM, the Higgs particle
is a boson with no spin, electric charge, or color charge. It is also very unstable,
decaying into other particles almost immediately. It is a quantum excitation
of one of the four components of the Higgs field. A number of authors [11,
19, 20, 21] have been suggested, and Higgs himself, that the Higgs mechanism
can be described without spontaneous symmetry breaking, in a gauge invariant
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independent way, from the fact that the Higgs mechanism relies on the zero
ground state value of the Higgs field.

The procedure used previously to describe the Higgs mechanism, uses an
explicit ”pick a gauge” fixing, by requiring that Ψ|r4

= V0 + η(r4), thereby set-
ting the imaginary part of ψ to zero. But this gauge fixing gets rid of the gauge
symmetry and thus obscures the meaning of gauge symmetry breaking. How-
ever, Higgs demonstrated in the 3rd paper on the mass of gauge bosons in 1966
that the Higgs mechanism can be described in an alternative gauge-invariant
way, that is, in the gauge independent accounts of the Higgs mechanism. This
procedure for SU(2)×U(1), leaving U(1) symmetry in the Lagrangian, is given
recently in [9, 11, 19], but for the conceptual understanding of the role of gauge
symmetry the U(1) model (of electrodynamics) is sufficient, as follows. The
starting point is again the U(1) gauge invariant Lagrangian for Ψ4 theory as in
equation (15). Here the set of fields (Aj,Ψ) is transformed to the set of new
fields (Bj,Φ, ξ) by

Ψ|r4
≡ Φ(r4) eiξ(r4), Bj(r4) ≡ Aj(r4)−

1

α
∂jξ(r4) (19)

where Bj(r4) is the 4-vector potential field and ξ(r4) and Φ(r4) ≥ 0 are real
scalar fields. These transformations look similar to the transformations in (17)
that determined the ”pick a gauge” fixing, but are not the same. The difference
is that now ξ(r4) is one of the variable fields. While in (17) after gauge fixing,
the gauge transformation can not longer be applied to fields, now the gauge
is not fixed and gauge transformation can be applied to the fields. Thus a
transformation Ψ 7→ Ψ′ = eiθ(r4)Ψ and the gauge transformation Aj 7→ A′j =
Aj + 1

α∂jθ is transformed into

B′j = A′j − 1
α∂jξ

′ = Aj + 1
α∂jθ −

1
α∂jξ

′ eiθΨ = Ψ′ ≡ Φ′eiξ
′

These transformations imply that Bj(r4) and Φ(r4) are invariant under U(1),
while ξ′(r4) = ξ(r4) + θ(r4), that is:

B′j(r4) = Aj(r4)− 1
α∂j(ξ

′(r4)− θ(r4)) = Aj − 1
α∂jξ = Bj(r4)

Φ′(r4) = eiθΨe−iξ
′
= e−iξΨ = e−iξΦ(r4) eiξ = Φ(r4)

From the transformation ξ′(r4) = ξ(r4) + θ(r4) it follows that the field ξ is a
pure gauge variable. It is only one in the set of new fields that is not gauge
invariant. Thus, the Lagrangian in (15) can be rewritten in terms of the new
fields

L = −1
4BkjB

kj + (∂kΦ + iαBkΦ)(∂kΦ− iαBkΦ)− (iµ)2Φ2 − λΦ4

where Bkj = ∂kBj−∂jBk. The field ξ(r4) does not appear in this description; it
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was factored out. So, all fields in this theory are now invariant under the U(1)
transformation, the U(1) symmetry has no grip now and the ground state of
the system is no longer degenerate. To describe now the perturbation around
the ground state Φ0 = V0, the field Φ(r4) is rewritten as Φ(r4) = V0 + η(r4),
with η(r4) a variable field, so that L reduces to

L = (−1
4BkjB

kj + α2V 2
0 BkBk) + (∂kη∂

kη − 4λV 2
0 η

2) + c.c
which is equal to that of the ”unary gauge” Lagrangian in (18), obtained for
the Higgs mechanism with spontaneous symmetry breaking. The Lagrangian
contains the massive photon Bj(r4) and the massive component η(r4) of the
”Higgs field” Φ(r4) = V0 + η(r4) (we will show in in Section 4 that this real
scalar field can be substituted by the real positive density Φ =

√
Φm of the

particle’s rest-mass energy-density Φm). The model is renormalizable from the
gauge invariance of the Lagrangian L (a proof for this is established by ’t Hooft
at 1970).

Thus, this approach where spontaneous gauge symmetry breaking has no
role, is more general and guarantee the renormalization, but also well suited for
the IQM field theory of the particles developed in [2, 3, 4]. Both approaches,
that earlier, based on the spontaneous symmetry breaking, and this new one
based on the gauge invariant Higgs mechanism, have one crucial element in
common: the non-zero vacuum expectation value of the field Φ(r4). The fun-
damental question that previous work for the Higgs mechanism did not answer
is why and how the ”Higgs field” has a non-zero vacuum expectation (average)
value

∫
ΨΨdV =

∫
Φ2dV = 〈Φ2〉. In Faddeev paper [11], he writes:

”Thus, one way or another we see, that the nonzero expectation value for
the Φ2 can be invoked without the Higgs potential. The fundamental question
remains, is the origin of the excitations for the field Φ. In both interpretations
the most natural answer is massless scalar - analogy of dilation in the first
interpretation or kind of Goldstone model in the second. I hope, that more
experienced phenomenologist can consider seriously this hypothesis.”

My answer is that Φ is the excitation field with Φ2 = Φm, where Φm(r4) =
Ψ(r4)Ψ(r4) is the rest-mass energy-density of an observed massive particle with
the complex wave-packet field Ψ(r4), for which the potential term of the La-
grangian density, (only) during the interaction with a boson, explained in Sec-
tion 4, obtains the form of the Goldstone ”Mexican hat” potential.
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3 Basic Equations and Interaction Processes in the IQM

Theory

Quantum mechanics, based on the Schrödinger equation is an epistemic statis-
tical theory, here denominated as Statistical Quantum Mechanics (SQM), to
differentiate it from the new part of the ontological quantum theory, provided
in [2, 3] and [4], denominated Individual particles Quantum Mechanics (IQM).
Both of them are necessary components of the quantum theory, as are the Clas-
sical Mechanics for Individual objects (ICM),based on the Newton equations,
Hamiltonian-Jacobi equations or the Euler-Lagrange equation of motion of in-
dividual objects) and the Statistical Classical Mechanics (SCM), based on the
Liouville equations.

In the IQM theory there is a deeper specification of the state of the particle,
and in this approach to completion provided in [2], these states are specified by
the energy-density distributions of a given particle in the Minkowski time-space.
Such an ontic state, also not fully accessible (non fully observable by the mea-
surements, and/or with non accessible small compactified higher-dimensions
for the electric charge (5th timelike dimension with the coordinate q4 = ct4)
and spin (6th spacelike dimension with the coordinate q5), for example), has
to represent the complete description of an individual elementary particle, in
order to be able to compute from it all properties of a particle as its rest-mass,
position, speed, momentum, total energy, etc...

It was shown [1, 7, 8, 2, 10] that, generally, any massive particle can be
defined in the Minkowski time-space (we will not use the real higherdimensional
expressions but only its reduced forms to the 4-D representation) with the
signature (+,−,−,−), by the complex wave-packet

Ψ = Φ(t,−→r )e−iϕT (20)

where −→r = q1e1 + q2e2 + q3e3 (for the 3-D Minkowski space orthonormal basis
vectors ej, with ej ·ej = −1 for 1 ≤ j ≤ 3 and e0 ·e0 = 1 for the time-coordinate
q0 = ct) composed by two sub components: by the shape Φ(t,−→r ) of particle’s
body that is a real function which defines the real rest-mass energy-density
Φm ≡ ΨΨ = Φ2(t,−→r ) ≥ 0, and by the de Broglie ’phase (pilot) wave’ with

phase ϕT (t,−→rT ) = −1
~St0=0, where St0=0 =

∫ t,−→rT
0,−→r0

L(t′,−→r ,−→v )dt′ is the Hamilto-

nian principal function for the initial particle’s position (t0,
−→r0) and the current

position at t ≥ 0 (its barycenter) at −→rT (t) ≡ 1
1Φ

∫ −→r Φm(t,−→r )dV , and particle’s

Lagrangian at time t′, L(t′,−→r ,−→v ) = −E − −→v−→p where E is particle’s total
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energy and −→p its canonical (conjugate) momentum, and 1Φ ≡
∫

Φm(t,−→r )dV
is the particle’s invariant energy (equal to rest-mass energy m0c

2 for massive
particles and energy E0 of a boson, measured in the frame in which massive
source of this boson is in rest).

Thus, for a free (non accelerated) particle which propagates with constant
speed v and momentum p, so that−→v−→p = −vp, with barycenter position−→rT (t) =
−→r0 +−→v t, we obtain that the phase change linearly in time t ≥ 0,

ϕT (t) =
E − pv

~
t (21)

When a particle propagates in the vacuum with constant speed −→v it has
the time-invariant spherically-symmetric distribution [6], Φm = K√

r
, where

r = ‖−→r − −→r T‖ is the distance from its barycenter −→rT , corresponding to
particle’s hydrostatic equilibrium where each infinitesimal amount of parti-
cle’s material body Φm(t,−→r ) is in rest w.r.t. particle’s barycenter. However,
generally, during an acceleration each infinitesimal amount of energy-density
Φm(t,−→r ) moves with a different speed −→w(t,−→r ) w.r.t. the group velocity
−→v (t) = d

dt
−→rT (t) = v1e1 + v2e2 + v3e3, with v = ‖−→v ‖ =

√
v2

1 + v2
2 + v2

3, of
particle’s energy-density wave-packet and it is shown [2] that is,satisfied the
following relationship −→v (t) = 1

1Φ

∫ −→w(t,−→r )Φm(t,−→r )dV , so we can introduce

the variation-velocity of the particle’s matter flux −→u (t,−→r ) = −→w(t,−→r ) − −→v (t)
at each space-time point (t,−→r ) inside particle’s matter (where Φm(t,−→r ) > 0).
As shown in [2], during an inertial propagation when the particle is in a hydro-
static equilibrium, we have that Φm is spherically symmetric around particle’s
barycenter with −→u (t,−→r ) = 0 in every point inside particle’s matter, so that ev-
ery infinitesimal amount of Φm propagates with the constant wave-packet group
velocity −→v . Only during the particle’s accelerations we have that −→u (t,−→r ) 6= 0,
so that particle’s body changes dynamically its shape in time.

In the assumption [2] of the topology of the matter of an elementary massive
particle, the wave-packet do not undergo a spreading, also when it changes its
matter density distribution (i.e., its energy-density Φm), and tends to its stable
stationary spherically symmetric distribution during inertial propagation in the
vacuum. That is, the matter has some internal self-gravitational autocohesive
force analogously to the peace of perfect fluid in the vacuum, so that at any
instance of time, the 3-D space topology of particle’s matter distribution, and
consequently its compressible energy-density Φm is simply connected, closed,
continuous and differentiable.

In what follows, for the Cartesian coordinate system, ∇ = e1
∂
∂x+e2

∂
∂y+e3

∂
∂z
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is the gradient (for x ≡ q1, y ≡ q2 and z ≡ q3) so that the Laplacian is defined
by 4 = −∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 (we are using positive-time metric signature
(+,-,-,-)).

The Lagrangian density L of a particle [2], is given by

L =
~
1Φ

(−∂ϕT
∂t

ΨΨ +
i

2
(Ψ∂0Ψ−Ψ∂0Ψ−Ψ−→w∇Ψ + Ψ−→w∇Ψ)) (22)

with previously introduced speed of particle’s matter/enegy density Φm(t,−→r )

−→w(t,−→r ) = −→v (t) +−→u (t,−→r ) (23)

and with derived Euler-Lagrange equation of motion

∂Ψ(t,−→r )

∂t
= −ωpΨ(t,−→r ) +−→w(t,−→r )∇Ψ(t,−→r )− 1

2
(∇ · −→u (t,−→r ))Ψ(t,−→r ) (24)

where ωp = ∂
∂tϕT .

Thus, each massive elementary particle satisfies the following Noether’s conser-
vation laws:
Analogously to the Euler first equation of fluid dynamics (continuity equation),
which represents the conservation of mass, here we have the analog equation
for the conservation of matter (that is of the particle’s rest-mass energy),

∂Φm(t,−→r )

∂t
+∇ · (Φm(t,−→r )−→w(t,−→r )) = 0 (25)

It holds also for bosons when they become unstable after an initial ’space ex-
plosion’ and, consequently, assume the massive particle behavior and a finite
but non-zero energy-density volume in open 3-D space. We need that the body
of the particle Φm provides also the physical internal pressure P (t,−→r ) (which is
a non-geometrical property) in order to guarantee the hydrostatic equilibrium
of the massive particles. The hydrostatic equilibrium of an massive elementary
particle demonstrated that the body of this particle Φm is a material substance
[6], which is fluid and elastic, and which can not be reduced to the time-space
geometry.

Hence, in this IQM theory [2] for individual elementary particles based on
energy-density wave-packets, the point-like particles are only the stable-state
bosons when they propagate with speed of light in the vacuum, and with their
energy-density distributed in higher compactified dimensions [3]. In Section 2.7
in [2], dedicated to the 3-D radial expansion of the bosons w.r.t. the direction
of particle’s propagation, to the tunneling and reflections, has been considered
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the cylindrical expansion of the massive boson with energy density Φm (that is,
during the unstable boson’s states where the variation-velocity −→u (t,−→r )) 6= 0.
The real physical hyperdimensional representation of the massless bosons
energy-density, for a given instance of time t, for the Euclidean space point
−→r = −→r0 + −→c t, is given by Φm = Φ2(r4, t4, q5) = σ(q5) δ(

−→r − −→r0 − −→c t) where,
σ(q5) = 1Φ

L , with the length of the 6th dimension is L = 4πR5, denotes the
constant energy-density distributed in 6th dimension with radius R5.

Thus, by integration of this hyperdimensional density over 6th dimension
with coordinate q5, from [3] we obtain the common point-like 4-D representation
of the massless boson’s energy-density in the 4-dimensional Minkowski time-
space by the Dirac function (note that its pilot-wave phase is ϕT = 0),

Φm(t,−→r ) = 1Φδ(
−→r −−→r0 −−→c t) (26)

where 1Φ is a constant (equal to a total energy E = pc of a boson in the
frame where the source of this boson is in the rest), which is consequently only
mathematically correct point-like representation of the massless boson. In fact,
now the total energy, for a given time-instance t, can be obtained by integration
in the ordinary 3-D space, by E =

∫
ΦmdV = 1Φ

∫
δ(−→r − −→r0 − −→c t)dxdydz =

1Φ · 1 = 1Φ. However, it is not physically correct, because we would have an
infinity density of energy Φm in the single point of the boson’s barycenter −→r =
−→r0 +−→c t. In such case, the Schwarzschild radius rs would be greater (or equal)
than the radius of the point (boson’s barycenter) which is zero, so that the
boson would become a black hole, which does not correspond to physical facts.
Note that this fact can’t happen in the case when we are using the complete
6-D expression for the wave-packet, where Φ2(t,−→r , q5) = σ(q5)δ(

−→r −−→r0 −−→c t)
is also physically composed expression where the energy density is only σ(q5)
and there exists only in the 6th dimension and not in M 4, and hence the Dirac
’function’ δ in the Minkowski time-space M 4 defines only the position of the
boson and not its energy-density. In effect, by the integration in 6-D time-space
of boson’s energy density, its total energy is E =

∫
Φ2(t,−→r , q5)dq1dq2dq3dq5 =∫

σ(q5)(δ(
−→r −−→r0 −−→c t)dV )dq5 =

∫
σ(q5)dq5 = 1Φ.

So, from (26) the volume of the massless boson in the ordinary 3-dimensional
space is equal to zero. Only in such conditions a particle can travel with the
maximal possible speed of light. But the matter/energy of the boson exists
also in such conditions: it is uniformly distributed only in the spacelike sixth
dimension (used for the spin) where it propagates with a constant speed v5.
Consequently, the hidden matter of a boson in the compactified higher dimen-
sions results in zero rest-mass in the ordinary flat Minkowski time-space and
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explains why the boson can propagate with maximal possible speed. During
this massless stable-state, the gravitational anti-black-hole barrier acting in the
boson’s barycenter (in 3-D space) does not permit the leaking of the matter
from 6th into ordinary 3-dimensional space.

We consider the vacuum as the perfect 3-dimensional space symmetry where
each possible direction of the propagation has the same physical conditions.
Thus, the propagation of the particles in the vacuum is inertial and the par-
ticle propagates along GR geodesics with constant speed as a stable particle4.
The asymmetry due to the presence of an infinitesimal inertial particle in flat
Minkowski spacetime is purely circumstantial, because the spacetime is consid-
ered to be unaffected by the presence of this particle. However, according to
general relativity, the presence of any inertial entity disturbs the symmetry of
the manifold even more profoundly, because it implies an intrinsic curvature of
the spacetime manifold, i.e., the manifold takes on an intrinsic shape that dis-
tinguishes the location and rest frame of the particle. Note that, from the fact
that the stable bosons have no matter/energy in the ordinary 3-dimensional
(open) space, the stable bosons do not generate any local time-space curva-
ture, differently from the fermions. Thus, the local time-space neighborhood
of a massless boson is always a locally flat Minkowski time-space, differently
from the fermions (and also unstable massive bosons). The fact that the sta-
ble bosons have no any curved island-metrics in the ordinary 4-dimensional
time-space, results in missing of any physical resistance of the neighborhood
time-space to their propagation (differently from the massive particles with
energy-density present in the 4-dimensional time-space and, generated from it,
curved micro-island metrics). Consequently, they propagate with maximal pos-
sible speed in the ordinary 4-dimensional time-space. Thus, the bosons have the
point-like 4-dimensional structure corresponding to their position (barycenter),
but physically their total energy-density is Φm(q5) = σ(q5) = 1Φ

4πR5
= const.

But there are the situations when a stable, stationary, boson becomes ex-
cited for a short interval of time, as in the situations when the space symmetry
during its propagation is sharply broken. Thus, the time-space boundary condi-
tions for the particle’s propagation are drastically changed, by considering that
particle’s wave-packet is a time-space perturbation and, if such a perturbation
meets another perturbation, it changes its form. These events we analyzed in
details for the phenomena of refraction and ’wave-behaviors’ of an individual

4Such a 3-D space symmetry during an inertial propagation of a massive particle causes a spherical symmetry
of its stable energy-density distribution Φm = K√

r
, for r ≤ r0 in a sphere with a radius r0
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photon [2]. In all these situations a photon may change its momentum, direc-
tion of propagation and its velocity, without changing its total energy, because
these ’interactions’ are not based on collisions with another particles (as Comp-
ton effects, or annihilations), but on instantaneous 3-D space expansions of their
geometric wave-packet scalar field Φ in the presence of a local sharply broken
space symmetry. These are strong General Relativity effects correlated with
the particle’s ’micro-island’ curvature metrics, caused by a dynamical changing
of the boundary conditions in the local space around this particle.

The interactions between any two wave-packets (particles) can be obtained
only by their local collisions. In dependence on their energy and velocities, they
can produce a kind of Compton’s effects (elastic collisions) in which they survive
the collisions by changing their momentum and energy (with the conservation
of total momentum and energy), or they can produce a total fusion with a
possible creation of the new stable particles (in Feynman’s diagrams).

Thus, for any two massless bosons with the Dirac function energy-
distributions, it is impossible to have the collisions during their stable states,
but only when they are excited and involved in their temporary 3-D ”spatial
explosions”. Such 3-D spatial explosions can happen also when two stable
particles are at a very small mutual distance, during which the ideal spatial
symmetry for a free particle in the vacuum does not hold more for both of
them. The bosons have a physical role as the intermediators between the mas-
sive particles (that have the rest-mass and the 3-D volume Vt greater than zero),
that is, they are a quantum-source that generates the fields (the phenomena
as electromagnetic fields are the statistical results of actions of a high number
of photons). In the case when the bosons are massless (long range interactions
as for massless photons) then we have no the significant interference between
themselves. This situation can be obtained at the quantum level only if the col-
lisions between photons, for example, are practically improbable. Consequently,
a number of photons can coexist in the same small 3-D region of space without
any significant direct interference between them, heaving contemporarily the
collisions with fermions which have the rest-mass and volume Vt greater than
zero. Also in such a situation, we can have the rare cases of the interference
between the photons. In normal situations, these interferences statistically can
be neglected, while in the cases of very strong field interactions (when the local
density of photons is extremely high) these inter-boson’s interactions are sig-
nificant. Thus, we have the following assumption:
Interaction-dynamics Assumption: The interactions between the bosons
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and fermions are realized always between two non-point like particles. That
is, between a massive fermion and a massive unstable boson with a small but
finite energy-density volume Vt.
�
It is demonstrated in [18] that in the IQM theory for a given individual par-
ticle, the total gauge 4-potential Aµ = (A0,A1,A2,A3), in the 4-vector form

Aµ = A0e0 +
−→
A g, where

−→
A g = A1e1 +A2e2 +A3e3, for particle’s wave-packet

Ψ = Φe−iϕT with the time-dependent canonical momentum −→p and total energy
E(t,−→r ,−→p ) (equal to the Hamiltonian), is given on particle’s barycenter (i.e.,
the trajectory) by

A0(t,
−→rT ,−→p ) = − 1

α
(
E(t,−→rT ,−→p )

~
− i∇ ·

−→u (t,−→rT )

2
),

−→
A g(
−→p ) =

−→p
α~

(27)

(where the time-component A0 is a complex value) and hence we can consider
how the parallel transport at finite distances works, along a particle’s path
(of the particle barycenter) from the initial point rT = (t,−→rT (t)), at the time-
instance t, into the final point r′T = (t′,−→rT (t′)) at the time instance t′ = t+4t,
for any finite time interval 4t > 0. From the fact that the parallel transport
along a finite particle’s trajectory γ(r4, r

′
4) is given by (14), we have that

Ψ|r′T = eiθΨ|rT = eiα
∫
γ
Ak(z)dzkΨ|rT (28)

where the local phase transformation θ, which from (27) is a complex value, is
obtained by the path integral:

θ = α

∫
γ(rT ,r′T )

Ak(z)dzk = α

∫ t′

t

(A0(τ,
−→rT (τ)))+

3∑
j=1

vj(τ)Aj(τ,−→rT (τ)))dτ (29)

Consequently, by the path integration of the phase along the particle’s trajec-
tory, we obtained the following result [18]:

Proposition 1 The gauge 4-vector potential of the particle’s filed Ψ = Φe−iϕT

satisfies:

d

dt
ln Ψ|(t,−→rT (t)) = iα(A0(t,

−→rT (t))) +
3∑
j=1

vj(t)Aj(t,−→rT (t))) (30)

A ’parallel transport’ (28) of this particle’s filed along a finite curve of its
barycenter γ(rT , r

′
T ), from the initial point rT = (t,−→rT (t)) into the final point
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r′T = (t′,−→rT (t′)), where t′ = t +4t for a finite time interval 4t > 0, produces
the following local complex-phase transformation (29):

θ = −ϕT |r
′
T

rT
− i ln Φ|r′TrT = −ϕT |r′T + ϕT |rT − i ln Φ(r′T ) + i ln Φ(rT ) = −i ln Ψ|r′TrT

(31)

In next section we will apply these results of the IQM theory of an indinvidual
particle to Higgs mechanism.

4 Gauge Invariant Higgs Mechanism without Higgs

Field in the IQM theory

The Higgs mechanism describes how the (general) gauge field Aµ =
(A0,A1,A2,A3) can be massive. First of all, from this equation, the gauge
field on the particle’s trajectory (a world line in the Minkowski time-space),
that is, in the points (t,−→rT (t)) ∈M 4 is expressed by the observed massive par-
ticle complex field Ψ, so that this gauge field at least at the particle’s barycenter
is always massive field. Hence, the bosons of this gauge field when become very
near to the moment of the collision with this observed massive particle (that
is, to the particle’s barycenter) must be in an unstable massive-boson’s state.
In this way, the interaction-dynamics assumption in previous Section (that the
interactions between the bosons and fermions are achieved only by massive
states of these bosons) is confirmed. The second important fact is that the
Higgs mechanism is always presented during such interactions of fermions and
bosons (i.e., the emission/absorbption of bosons). So, the Goldstone potential
V (ΨΨ) must be implicitly contained in the gauge theory of interactions for the
particle’s field Ψ and its Lagrangian.

Let us show that it is indeed so, and that the interaction of any massive
particle field Ψ with any gauge-field boson (their collision), which modifies par-
ticle’s pilot-wave phase ϕT (i.e., its total energy and momentum) and hence its
path (trajectory), is a manifestation of the Goldstone ”Mexican hat” potential.
Here we will demonstrate that in this new IQM theory for an individual massive
particle, we have the following facts:

1. The mathematical concept of the ”spontaneous symmetry breaking” here
is replaced by the physical concept of the 3-D symmetry breaking of a
massless (Goldstone) boson into a massive boson, when this boson col-
lides (interacts) with this massive particle represented by the rest-mass
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energy density wave-packet Ψ. Physically, the interactions between a bo-
son (an intermediate particle of a given quantum field) with a massive
particle happen always with the previous 3-D symmetry breaking for the
boson’s propagation (just before the collision with this massive particle).
The perfect 3-D symmetry for a boson’s propagation we have only in the
conditions when it is enough far from the other massive particles, so that
in the vacuum it has a stable form of a massless boson which propagates
with the speed of light.

2. Thus, we do not need any kind of the ”Higgs field”, as supposed in the
SQM theory in order to provide the mass to the Goldston massless bosons.
In the IQM theory, it is exactly the rest-mass energy wave-packet Ψ of a
given fermion, which interacts with the bosons of the gauge fields, and the
rest-mass of such fermion is equal to m0 = 1

c2

∫
ΨΨdV . The short-range

bosons are massive bosons. However, also the ordinary massless bosons,
before the impact with a massive particle, become massive (caused by the
3-D symmetry breaking on their trajectory), and hence any interaction
between a fermion and boson happens always in the condition when this
boson is in massive unstable state (thus with 3-D volume of their energy
density).

3. The Goldstone ”Mexican hat” potential V = µ2ΨΨ − λ(ΨΨ)2 is dynam-
ically generated always inside particle’s Lagrangian density (22), L =
~
1Φ

(−∂ϕT
∂t ΨΨ + i

2(Ψ∂0Ψ − Ψ∂0Ψ − Ψ−→w∇Ψ + Ψ−→w∇Ψ)) when we have an
interaction of this massive particle with a boson of a given field, with
µ2 ∼ ~ωp > 0 where ωp = ∂

∂tϕT . Such an interaction on particle’s tra-
jectory generates a positive parameter λ = |1d

dθR
δt | > 0, where d is the

rest-mass energy of the fermion in its barycenter (trajectory) and θR is
the phase shift of the gauge symmetry transformation (the phase changing
of the fermion’s complex wave-packet Ψ, caused by the collision of this
fermion with a massive boson of a given external field. The Lagrangian
density of free massive particle does not have Goldstone ”Mexican hat” po-
tential component, because in this case of constant particle’s speed λ = 0,
and this potential component is reduced to V = µ2ΨΨ.

4. The global symmetry of an individual massive particle corresponds to
the free particle, when it propagates with a constant speed, so that the
transformation under global U(1) symmetry (5) is Ψ 7→ eiQθΨ, cor-
responding to the time translation t 7→ t + 4t, with θ = −4t and
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Q = E−pv
~ . In fact, for a free particle, the rest-mass energy density does

not change w.r.t. its barycenter −→r T (t), i.e., Φm(t,−→r ) = Φm(−→r −−→r T (t)) =

Φ2(−→r −−→r T (t)) = K√
‖−→r −−→r T (t)‖

, with Ψ = Φ(4−→r ) e−iϕT = Φ(4−→r ) e−i
E−pv

~ t,

where 4−→r = −→r − −→r T (t). So, for the same point inside particle’s body,
we have that in the translated time t 7→ t+4t = t− θ,
Ψ|t = Φ(4−→r ) e−i

E−pv
~ t 7→ Ψ|t+4t = Φ(4−→r ) e−i

E−pv
~ (t−θ) = Ψ|t eiQθ.

So, each local symmetry transformation corresponds necessarily to a par-
ticle’s acceleration, caused by the interaction of this massive particle with
a boson of a given external field. Thus, for an individual particle in the
IQM theory, the global and local symmetry transformations have a clear
distinct physical meaning.

With this new IQM theory, we obtain a simplification of the Standard Model
with a diminution of number of basic elementary particles: we do not need the
Higgs bosons in our quantum theory, but each massless boson can be trans-
formed into a massive boson, in particular during the emission of the bosons
from a massive particle and during the absorption of the bosons, presented
in details in the case of electrically charged particles in [10]. Now, with the
dimensionally correct version of the Lagrangian density (22), we may rewrite
particle’s Lagrangian density for the normalized fields

ψ =
Ψ√
1Φ

(in order to have the direct relationship with the theory SQM and hence∫
ψψdV = 1 as for the wavefunctions in the SQM) and hence from (22) and

ωp = ∂
∂tϕT ,

L = ~[ i2(ψ ∂ψ
∂t − ψ

∂ψ
∂t − ψ∂−→wψ + ψ∂−→wψ)− ωpψψ].

So, from the fact that the Lagrangian density L = 0 (easy to verify), we multiply
it with −1 to be used in the following form in next

L = KT +
~ωp
2
ψψ (32)

where the first component KT = −~ i2(ψ ∂ψ
∂t − ψ

∂ψ
∂t − ψ∂−→wψ + ψ∂−→wψ) is kinetic

part. The second part in (32) is the potential V (ψψ) =
~ωp

2 ψψ and it will be
considered for the generation of the Goldstone ”Mexican hat” phenomena in
the form (4).

Let us consider a massive particle with normalized wave-packet ψ in an
inertial propagation up to the time instance t0 (with constant total energy E0,
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momentum p0 and speed v0). Then, in a small interval δt, it has an interaction
with an external field boson. So, during the open interval (t0, t0 + δt) it is an
accelerated particle, while after time t0 + δt it becomes again a free particle
with new constant total energy E ′, momentum p′ and velocity v. Thus, its
Lagrangian at t ≤ t0 and t ≥ t0 + δt is that of a free particle

Lfree = KT +µ2
0(ψψ), for t ≤ t0, and Lfree = KT +µ2

1(ψψ) for t ≥ t0+δt
where µ2

0 = ~
2ωp|t0 = ~

2
∂ϕT
∂t |t0 = ~

2
dϕT
dt |t0 = E0−p0v0

2 > 0 and

µ2
1 = ~

2ωp|t0+δt = ~
2
∂ϕT
∂t |t0+δt = ~

2
dϕT
dt |t0+δt = E′−p′v′

2 > 0.
From the fact that the rest-mass energy density of a free particle is that of its
hydrostatic equilibrium [6], we have that

ψ = Φ0(
−→r −−→r T (t)) e−iϕT = Φ0(

−→r −−→r T (t)) e−i
E0−p0v0

~ t, for t ≤ t0

ψ = Φ0(
−→r −−→r T (t)) e−iϕT = Φ0(

−→r −−→r T (t)) e−i
E′−p′v′

~ t for t ≥ t′ = t0 +δt

where Φ0(
−→r − −→r T (t)) = ( K

1Φ

√
‖−→r −−→r T (t)‖

)1/2 is that of the hydrostatic equilib-

rium. Thus, for a free particle we have no the ”Mexican hat” form of the
potential.

However, during the impact of the boson with this massive particle, in
the open interval of time (t0, t0 + δt), we have no more a free propagating
particle but two possible scenarios: acceleration or deceleration of this massive
particle during the collision with this massive boson. So, from Proposition
1 Section 3, we have that during this finite interval δt of time, the particle’s
wave-packet Ψ (thus also its normalization ψ) undergoes a local symmetry
transformation ψ 7→ ψ eiθ along its trajectory, such that the equation (31)
reduces to, θ = θR + i0 = −ϕT |t0+δt + ϕT |t0, from the fact that at t0 and
t0 + δt, the particle’s shape is equal to that of the hydrostatic equilibrium
Φ0(
−→r − −→r T (t)) = ( K

1Φ

√
‖−→r −−→r T (t)‖

)1/2, and hence, because of the free-particle

property at t0 and t0 + δt:

dθR
dt

= −dϕT
dt
|t0+δt +

dϕT
dt
|t0 (33)

By considering that on the particle’s trajectory (that is, in the particle’s
barycenter), we have invariant rest-mass energy density (see the limit com-
pressibility assumption in [6]), we define the positive constant:

d ≡ Φm(t,−→r T (t))

1Φ
= (ψψ)(t,−→r T (t)) > 0 (34)

During this extremely short interval of interaction δt, we have two possible
cases, for particle’s acceleration or deceleration:
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� Case 1, when dθR
dt < 0, we define λ = − ~

2d
dθR
dt , µ = µ1 and, from (33),

ω′p ≈
∂ϕT
∂t |t0 = ∂ϕT

∂t |t0 + dθR
dt , so that

~ω′p
2 = µ2 − λ

d ;

� Case 2, when dθR
dt > 0, we define λ = ~

2d
dθR
dt , µ = µ0 and, from (33),

ω′p ≈
∂ϕT
∂t |t0+δt = ∂ϕT

∂t |t0 −
dθR
dt , so that

~ω′p
2 = µ2 − λ

d .

Hence, for the time-interval of the interaction with the (massive) boson, the
non-free particle’s Lagrangian density, at particle’s trajectory r4 = (t,−→r T (t)),
becomes equal to

Lmh ≡ L|r4
= KT +

~ω′p
2

(ψψ)r4
= KT + µ2(ψψ)r4

− λ(ψψ)2
r4

(35)

with the Goldstone ”Mexican hat” potential with V0 ≡ −µ2

2λ = −
d

1−(
µ0
µ1

)
, in Case 1

− d
1−(

µ1
µ0

)
, in Case 2

that is, with V0 < −d, where d is normalized rest-mass energy density at par-
ticle’s barycenter. So, we can assume as particle’s ground state its initial hy-
drostatic equilibrium at t0, before its perturbation caused by an impact with a
boson, that is,

|0〉 = Φ0(
−→r −−→r T (t)) e−iϕT |t0 = ( K

1Φ

√
‖−→r −−→r T (t)‖

)1/2 eiQt, where Q = −E0−p0v0

~ .

From the general global U(1) transformation (5), it holds that the charge Q is
its generator. Although the Lagrangian is invariant under this transformation,
the ground state is not, and an infinitesimal θ = δt (which is a translation of
the time for a finite interval δt of a free particle, when particle does not change
its energy, momentum and speed, but only its pilot-wave phase ϕT which is
periodic with a period 2π, that is, represents the circular change of the angle
in direction ϕ2 in the Fig.2) transforms from (5) like

|0〉 7→ eiQθ|0〉 ≈ (1 + iQθ)|0〉 6= |0〉 (36)

and hence, from Q|0〉 6= 0, Q is the broken generator in this global U(1) symme-
try. In fact, after this global symmetry transformation for Qθ = −E0−p0v0

~ δt, we
obtain the new state of the free particle in the time instance t+ δt. Note that
this ground state |0〉 corresponds to the zero external potential in the vacuum,
where particle has an inertial propagation as a free particle. So, this state can
be called as ”vacuum state” of a given individual massive particle (as it is called
in the SQM) as well.
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Thus, in this simplest global U(1) case, we have only one broken generator
Q, but this does not correspond to the massless Goldstone boson. Instead, here
in IQM, it corresponds to the absence of any interaction of this particle with a
boson.
As in the SQM field theory, the oscillations around the ground state, or ”vac-
uum” (corresponding to the hydrostatic equilibrium of a free particle), corre-
spond to the real massive particle during its accelerations (with particle’s 3-D
expansion/compression around its spherically symmetric hydrostatic equilib-
rium). Let us consider now the perturbation

ψ′ = (V0 + η(r4)) eiξ(t,
−→r T (t)) (37)

around the ground state, where η and ξ (defined on the particle’s trajectory
−→r T (t)) are real functions. Thus, it corresponds to accelerated particle’s (nor-
malized) wave packet ψ′ = (V0 + η(r4)) e−iϕT |t, so that

ξ(t,−→r T (t)) = −ϕT |t (38)

where the momentum, velocity and total energy of this particle change in the
interval t0 < t < t0 + δt. It is easy to verify that, if we substitute ψ′ in the
Lagrangian density (35) on the particle’s trajectory, we obtain that η(r4) is
massive field (as expected from the fact that (V0 + η(r4) is the square root of
the particle’s rest-mass energy density), without a necessity to introduce the
new ”Higgs field”. The field ξ(t,−→r T (t)) results massless, but not because it
represents a massless Goldston boson. It is a massless field, because physically
it does not correspond to another particle, and its negative value corresponds
to the de Broglie pilot-wave phase of the observed massive particle ψ′ in the
IQM theory.

This perturbation above can be defined as a local symmetry U(1) transfor-
mation, for any time-space point r4 such that the ground state ψ|r4

= |0〉 6= 0
(of the free particle in its hydrostatic equilibrium),

ψ|r4
7→ ψ′|r4

= ψ|r4
eiθ (39)

where θ = θR + iθI = ξ(r4)− i ln[(V0 + η(r4)/ψ(r4)]

= ξ(r4) + ϕT |t0 − i ln[(V0 + η(r4))/Φ0(
−→r −−→r T (t))],

and hence θR = ξ(r4)+ϕT |t0, so that from (38), we obtain θR = −ϕT |t+ϕT |t0 as
expected from Proposition 1, equation (31), from t0 to t.So, this perturbation
corresponds physically to the perturbation of the particle’s rest-mass energy
density from its hydrostatic equilibrium during the interval of interaction time
t0 < t < t0 + δt.
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The freedom to ”pick up” the ξ(t,−→r T (t)) by (38) is based on the fact
that particle’s de Broglie phase ϕT represents the universal property of the
nature that the propagation of an object is governed by minimal action of its
Lagrangian L, and such principle remains invariant is we add to L any real
constant energy E0. Hence, we can use ξ(t,−→r T (t)) = −ϕT |t + E0

~ t, so that this
”pick up” means that we selected the value E0 = 0 to obtain (38).

Hence, any local symmetry breaking, which happens only during the col-
lision of a massive particle with a boson of an external field (this boson, if it
was previously massless, long-range, before the impact with this massive par-
ticles experiments a 3-D symmetry breaking on its trajectory during which it
becomes a massive boson, without requiring any ”Higgs field”) generates the
Goldons ”Mexican hat” potential on the particle’s trajectory. Moreover, we
have no any appearance of the Goldon massless boson, and hence we have no
physically any mysterious phenomena that it is ”eaten” by the gauge field to
become the massive boson. In the IQM, the W± and Z are ordinary short-range
massive bosons. They obtain their mass by the process of expansion of their
energy-density from the higher compactified dimensions into the ordinary open
3-D dimensions, and hence, from the massless boson with the zero 3-D volume
of their energy-density, they become massive (and so inertial) particles with a
small 3-D volume of their energy-density. Thus, we demonstrated the following
property for an interaction of a massive particle with some external field boson:

Corollary 1 During the interaction of a massive particle with a gauge vector
boson (its emission or absorption), in an extremely small time interval [t−δt, t],
the Lagrangian density L on the trajectory of this accelerated particle corre-
sponds to the Goldstone ”Mexican hat” Lagrangian Lmh, without introducing
any new auxiliary ”Higgs field”.

Proof : The previous derivation of the Goldstone ”Mexican hat” Lagrangian
in (35) from the particle’s Lagrangian density (32) during interaction with a
single boson during infinitesimal interval of time [t, t+ δt].
�
Let us see now how these results are correlated with the previously described
gauge invariant Higgs Mechanism which used the transformation of the original
fields (Aj,Ψ) into the set of Faddeev’s fields (Bj,Φ, ξ) in (19). From the fact
that our gauge theory is defined only for the time-space points of the barycenter
of the observed massive particle which interacts with bosons, we have to reduce
also the equations used in the gauge invariant Higgs mechanism theory to the
points lying on the particle’s trajectory only. So, in the equations in (19), the
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phase ξ(r4) ≡ ξ(t,−→r ) reduces to ξ(t,−→rT (t)) which is only a function of time
t, and hence we can set ξ ≡ −ϕT |t to the massive particle pilot-wave phase.
Thus, the ”Higgs field” Ψ in equation (19) reduces to the massive particle’s
field (wave-packet) Ψ|r4

= Φ(r4) eiξ(r4) = Φ(r4) e−iϕT .

From the fact that in our gauge theory introduced shortly in Section 3, the
gauge field Aj is a massive field (of massive bosons), also this new gauge field Bj
must be massive as required by the gauge invariant Higgs mechanism. But we
also obtained that the ”Higgs field” Ψ is not any new particular field, but only
the field of the observed massive particle’s wave-packet during its interaction
with the gauge-field bosons. In effect, we do not need any new particular ”Higgs
field” and hence we do not need the so called Higgs bosons.

In the IQM theory we obtained that the ”mass constant” µ is entirely
determined by the observed massive particle, while the positive constant λ

appears only during the collision of this massive particle (with its energy density
Φm) with a massive gauge-field boson which produces a modification of massive-
particle pilot-wave phase by the real component of δθ and the modification of
the energy-density distribution of observed particle by the imaginary component
of δθ (directly expressed by the components Aj of the gauge field). Thus, λ is
a coupling constant of the mutual interaction of this observed massive particle
and the bosons of the gauge field, and only in such an interaction we obtain the
famous Jeffrey Goldstone potential V (ΨΨ). So, the concept of ”spontaneous
symmetry breaking” can be substituted by a physical effect of the real 3-D space
symmetry breaking during the propagation of a boson, when the presence of a
massive particle on the boson’s trajectory breaks the perfect vacuum 3-D space
symmetry, and causes the 3-D space explosion of this boson during which the
boson’s energy-density is expanded from the extra compactified dimensions into
the ordinary 3-D space by causing the mass-fixation of this boson.

This is the explanation of the Mass gap conjecture in Yang-Mills theory. So,
the massive bosons W± and Z are the unstable states of the Goldstone massless
weak-force gauge bosons. From the fact that these bosons are massive when
they are emitted from the massive elementary particles and that in a very short
time are absorbed by them, in such a short interval of time of their propagation
they remain unstable short-range and hence massive during all their life-time.

In this new completed picture, the framework is different than in SQM:
the Lagrangian L in (22) is the sum of Lfree (of the free particle) and Lgauge,
and express the interaction of an individual massive particle with any individual
boson (of these four bosons defined by Lagrangian component Lgauge) at a given
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interval of time [t, t + δt], just during the emission/absorbtion of this boson.
Thus, the masses of the three bosons W+, W− and Z, computed by the SQM
Pauli-matrices based Lagrangian are that of this new framework, from the fact
that each rest-mass of these three bosons is invariant and remains equal also
in the moment of direct collision with the observed massive particle (source or
target object for these bosons). Thus, during this interval of time these massive
bosons do not reach a perfect 3-D symmetry of the propagation in the vacuum.
In the case of the photon there is a fundamental difference instead. In the SQM
Pauli-matrices Lagrange framework, the state of this photon is its definite state
after the electroweak interaction. That is, when the photon is relatively far from
its source (massive particle) and hence it is already transformed from its massive
unstable state into the ordinary stable massless photon (after an acceleration
to the speed of light) which propagates in the vacuum (far from other massive
particles) and hence in the conditions of the 3-D spatial symmetry. In the
new IQM framework, this photon is considered just in the moment when it is
emitted or absorbed, thus in its massive unstable state described by the Lgauge
component.

5 Conclusions

An individual massive particle which interacts with a given gauge massive bo-
son (during its emission or absorbtion), changes its pilot-wave phase ϕT by the
real component δθR(t) of phase transformation δθ(t,−→r ) caused by this boson’s
gauge field (in a local gauge symmetry of the Lagrangian), during this boson’s
emission/absorbtion, thus on the particle’s trajectory. The imaginary compo-
nent δθI(t,

−→r ) represents the modification of the distribution of the particle’s
energy-density during interaction with a boson.

This process is equal for any kind of interactions of the massive particles and
the gauge bosons. Thus, it is a general process where the Goldstone ”Mexican
hat” appears in the Lagrangian density which describes the interaction of the
massive particle’s field Ψ (so that there is no any new ”Higgs field”) with any
kind of vector bosons.

The Standard model in this completed theory is modified only by this fact
that this theory do not need the Higgs boson, and by the fact that also QM
for the particles, defined as the complex scalar fields Ψ = Φ(t,−→r )e−ϕT (wave-
packets with the pilot-wave phase ϕT , where Φm = Φ2 is the rest-mass energy
density in the 3-D space) is a deterministic theory as the classical mechanics.
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This physical process explains the Mass gap conjecture in Yang-Mills theory.

Acknowledgment: I am so glad that my work in quantum field IQM the-
ory has a direct connection with the work of Ludwig Faddeev. I will cite the
interview of Faddeev in 9 July 2015, when he was 81 years old, published by
YouTube (Delta Insitute for Theoretical Physics), ”The gosts of Ludvig Fad-
deev”,

”I think that the sting theory, for instance, did not show that it has future.
Unfortunately, well, the new generation of young people in America, they where
pressed very much by there own censors that they have to do only string theory...
Do what you want, if it is possible. As much as you want, as is possible. And
read lots.”

In fact, all my published papers and last three books by Nova Science,
cited here, are dedicated to this unsolved problem in physics, by developing the
complementary part of statistical QM for individual particles (the IQM theory),
that is, the microscopic description of the structure of matter.
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