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Abstract. This work contains a review of some important results on a known
two predators - one prey system. We also add essential new numerical results
on multiple attractors. We consider the case when the predators coexist. We
distinguish two possibilities. The first is when the dynamics is well described by
the dynamics of a one dimensional map. We discuss the main behaviour of this
map. For small parameter regions the map can have two attractors but no more
than two. We give a numerical example, when these two attractors exist in the
original three-dimensional model. The second case is when this model map is
not working and something like spiral chaos often occurs. We give numerical
results showing that in this case there can be at least four different attractors
and discuss the behaviour of these.
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1 Introduction

We consider a known system of n predators and one prey originally represented
in [3, 4, 5] and generalized in [9]. In [11] it is shown how to rewrite it into the
form
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x′i = Φi(s)xi, Φi(s) = mi
s− λi
s+ ai

, (1a)

s′ =

(
h(s)−

n∑
i=1

Ψi(s)xi

)
s, h(s) = 1− s, Ψi(s) =

1

s+ ai
, (1b)

where i = 1, ..., n. The system is considered only for non-negative variables and
all parameters are positive.

We consider the case when n = 2, and we use the notations x = x1 and
y = x2.

It is proved ([9, 2]), that in this case the set defined by V < 1, where
V = x

q1
+ y

q2
+ s, qi = 1 + mi + ai −mi λi, is positively invariant and absorbes

all solutions, where the system is defined.

Conditions for extinction of one predator and coexistence of both can be
found in [9, 11]. A numerical overview of the behaviour of the system for
different parameters can be found in [11].

In some case the dynamics of the system is qualitatively well modelled by
a one dimensional map originally introduced in [2] and considered in [1, 10].
When this is not possible we often observe spiral-like attractors, even if up
to now there is no proof how they are related to the known spiral chaos by
Shilnikov.

If the one dimensional map works then there will be cyclic behaviour be-
tween the sum of predators x+ y and the prey s. If not the behaviour is more
complicated.

We claim the one dimensional model is a good model, because all properties
in the system and the dynamics of the map are observed in both and there is
some correspondence in the sense that to any such system there are some maps
modelling it and to any map there are some systems exposing similar behaviour.
One of our aims here is to explain the main ideas of earlier works without going
into technical details, in order to make it easier to understand for the reader.
The other is to present new numerical results on multiple attrators.
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2 The model map

Assuming λi, ai small (for example λi, ai ≤ 0.1), λ2
λ1
< 1 but not too small

and mi not too small, the dynamics can be qualitatively well described by the
dynamics of iterates of a map f in the Kryzhewicz form defined as

f(x) = b+ x− k

1 + ex
. (2)

The map has been studied in [7]. Here we shortly present some results
known about this map refering to the same source for details.

We consider the map in the parameter region {(b, k)|k < b < k/2, k <
−4} for other parameters either the behaviour of iterates is simple or there
is an equivalent map to it in this parameter region. Here the map has two
critical points and the Schwarzian is negative so there are no more than two
attractors. Let b1 = 2xc− 1− exc, where xc is the positive critical point, which
is a minimum. We restrict ourselves even more to parameters in the region
P0 = {(b, k)|b1 < b ≤ k/2}, because outside this region there is a globally
attracting interval, where the map behaves like a known unimodal map with
only one critical point. In this region there are two attractors, but only for
narrow parameter regions. But it is known that they cannot be periodic both
with periods less than four. Also there cannot be more than one two periodic
orbit and three periodic orbits only appear in pairs, either one stable and the
other unstable or both unstable.

It is natural to define standard three intervals for symbolic dynamics, where
the map is monotonic. We denote by Im the interval (−∞,−xc], by I0 the
interval [−xc, xc] and by Ip the interval [xc, ∞). Further intervals Ij0 j1 j2, ...jp
consist of points such that x ∈ Ij0, f(x) ∈ Ij1 and f i(x) ∈ Iji, i = 0, 1, ....

We say that a p-periodic orbit is of type j1 j1 j2, ... jp, where each ji is one
of m, 0, or p, and ji = m, if xi ≤ −xc, ji =0, if −xc ≤ xi < xc, and ji = p, if
xi ≥ xc.

After symbol p we can get only the symbolm, and the number of consequtive
m is limited by n, the smallest number such that fn(−xc) > −xc. The fact
that 0 < f ′ < 1 on intervals Im and Ip implies that there are long intervals
for iterates fn of the function, where f ′ < 1 thus making restrictions on the
number of periodic orbits of a given period n.

An example, where the model map works for the original system and the
original system has a three periodic and a four periodic attractor we find for
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a1 = 0.08798, a2 = 0.001038, λ1 = 0.1, λ2 = 0.0014532, m1 = m2 = 1.

3 Estimates used for construction of the model map

In the case the model map is working, we can prove the existence of a positively
invariant set of the type Ω = Ω1 ∪ Ω2 ∪ Ω3 ∪ Ω4, where

Ω1 is defined by the inequality s ≤ ε λ2, V < 1 and ε < 1,

Ω2 is defined by the inequality x < εx, y < εy, ε λ2 ≤ s ≤ 1− εs,
Ω3 is defined by the inequality s ≥ 1− εs, V < 1, and

Ω4 is defined by the inequality s′ < 0, x+ y > d(y/x, s), V < 1.

The function d is usually complicated, chosen so that s′ < 0, V < 1 at the
point (x, y, s) for which x+y = d(y/x, s). It is supposed that εx, εy, εs are small
enough. Small εx and εy implies that s′ > 0 in Ω2. We also suppose that d is
chosen so that the dynamics is described in the following way. Any trajectory
starting on the surface S defined by x+y > d(y/x, s), s = ε λ2, V < 1, enters Ω1

(where x, y decrease), from which it enters Ω2 (where s increases), from which
it enters Ω3 (where x, y increase), from which it enters Ω4 (where s decreases)
until it again hits S. Thus there is a well defined Poincaré map on S. This map
is essentially one dimensional because of strong contraction in one direction and
we try here to explain (without heavy technical exact and mathematically strict
estimates) why the map defined in (2) is a good approximation to the Poincaré
map. We look at approximations of the trajectory in each of the sets Ωi. We
suppose the map is defined on a line a x + b y = u0 in S, where a, b ≈ 1. We
know this is very realistic. We wish to explain as simple as possible the main
technical details given in the original work [2] and the modification of it in [1].

We use the following notations for points on the trajectories, where it enters
the next region. The initial point is given by coordinates (x0, y0, ε λ2). The
point of leaving Ω1 and entering Ω2 is denoted by (x1, y1, ε λ2), the point of
leaving Ω2 and entering Ω3 is denoted by (x2, y2, 1 − εs), the point of leaving
Ω3 and entering Ω4 is denoted by (x3, y3, 1 − εs). The final point on S again
is denoted by (x4, y4, ε λ2). The variable for the model map will be v = ln(yx)
and we use the notations vi = ln( yixi ).

Outside region Ω there is only simple dynamics or trajectories entering Ω.
Similar estimates in the corresponding two dimensional predator-prey system
are obtained in [6, 8]
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The idea of the estimates in the four regions is simple, just calculate elemen-
tary integrals under assumption that some coordinates are zero in some terms.
To get strict estimates is much more harder, even not possible in some parts and
there is a need for additional assumptions or the results get only asymptotic
values. Anyhow here we only discuss the main ideas. Using approximations in
each of the four regions we get estimates for next vi in terms of the previous
one and the parameters. At the end we combine all these estimates in order
to get the final model map in the variable v0. Here first the main ideas shortly
and after that more details.

In region Ω1 we assume s = 0 in x′, y′ and s′

s .

In region Ω2 we assume x = y = 0 in s′.

In region Ω3 we assume s = 1 in x′, y′.

Region 4 is more complicated. We give some details of the integrations here.

Behaviour in Ω1. To explain the estimate in Ω1 we use the integration
techniques introduced in [2]. We use ds

dx = h(s)−Ψ1(s)x−Ψ2(s)y
Φ1(s)

s
x .

Integration along the trajectory from (x0, y0, s0) to (x1, y1, s1), where s0 = s1

gives 0 =
∫ s1
s0

Φ1(s)
s h(s)ds =

∫ x1
x0

(
1
x −

Ψ1(s)
h(s) −

Ψ2(s)
h(s)

y
x

)
dx. From y

x = Φ1(s)
Φ2(s)

dy
dx follows∫ x1

x0
dx
x =

∫ x1
x0

Ψ1(s)
h(s) dx+

∫ x1
x0

Ψ2(s) Φ1(s)
Φ2(s)h(s) dy.

For s ≈ 0 we get Ψi(s) ≈ 1
ai
, Φi(s) ≈ −λimi

ai
, h(s) ≈ 1 from which follows

ln(
x1

x0
) ≈ x1 − x0

a1
+

λ1m1

λ2 a1m2
(y1 − y0)

Further because x1, y1 ≈ 0 we obtain

ln(
x1

x0
) ≈ −x0

a1
− λ1m1

λ2 a1m2
y0

Further from x1
x0
≈ e−

λ1m1 t
a1 and y1

y0
≈ e−

λ2m2 t
a2 follows y1

y0
≈
(
x1
x0

)γ
and y1

x1
≈

y0
x0

(
x1
x0

)γ−1

, where γ = m2 λ2 a1
m1 λ1 a2

. With notations vi = ln
(
yi
xi

)
we get v1 ≈ v0 +

(γ − 1)(−x0
a1
− λ1m1

λ2 a1m2
y0).

If we choose x0 and y0 from the straight line x0 + y0 = u0 and observe
y0
x0

= ev0 we obtain x0 = u0
1+ev0 and y0 = u0 e

v0

1+ev0 and

v1 ≈ v0 +
(1− γ)u0

a1 (1 + ev0)

(
1 +

λ1m1

λ2m2
ev0
)

.
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Behaviour in Ω2. Next we look at estimates in Ω2. The main idea here is
to neglect the terms x

s+a1
and y

s+a2
in the expression for s′. We use the notations

A1 = λ1+a1
a1+a21

, A2 = λ1
a1
, A3 = 1−λ1

1+a1

B1 = λ2+a2
a2+a22

, B2 = λ2
a2
, B3 = 1−λ2

1+a2

Kx(s) = m1 + A1 ln(s+ a1)− A2 ln(s)− A3 ln(1− s)
Ky(s) = m2 +B1 ln(s+ a2)−B2 ln(s)−B3 ln(1− s).

In these notations we get ln
(
x2
x1

)
≈ Kx(s2)−Kx(s1) and ln

(
y2
y1

)
≈ Ky(s2)−

Ky(s1) and as final estimate in v

v2 ≈ v1 +K, K = Ky(s2)−Ky(s1)−Kx(s2) +Kx(s1)

.

Behaviour in Ω3. For estimates in Ω3 we use s ≈ 1 we get Φi(s) ≈
− (1−λi)mi

1+ai
implying

v3 ≈ v2 + (α− 1) ln(
x3

x2
), α =

m2

m1

(1− λ2)(1 + a1)

(1− λ1)(1 + a2)

.

Behaviour in Ω4. The estimates in Ω4 are more difficult to explain in an
easy way and we just use adding a constant K4 so that v4 ≈ v3 +K4

Adding all estimates for vi and supposing x3
x2
≈ x0

x1
we get the form (2) for

the estimating model map, where

b = K +K4 + (γ − α)u0
λ1m1

λ2 a1m2
, k = (γ − α)

u0

a1

(
1− λ1m1

λ2m2

)
.

One example of graphs showing some similarity is shown in figure 1. We
conjecture that for any such map there are some systems with the same be-
haviour, with parameters not differing much from those used to get the model.

Finally we observe that b < k (b > 0) leads to extinction of predator y (x),
thus giving better extinction conditions than in [9, 2]

4 Multistability when the model map not working

The map (2) can have no more than two attractors. But when the model map is
not working there can be even more. In figure 2 we find detected periodicities of
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Figure 1: Graph of model map and comparison with behaviour in the original system for
λ1 = 0.1, λ2 = 0.016, a1 = 0.1, a2 = 0.012, m1 = m2 = 1 and ε = 1, u0 = 1.2. Blue for real
original map and red for model map. We have chosen K4 ≈ 1.77.

intersections of attractors with s = λ2, s
′ < 0. We see that regions overlap. For

example when a1 = 1, a2 = 0.0155, four regions overlap, two different for four
periodicities and one for three periodicity and the general for simple periodic
attractor. In figure 4 we see parameter regions for the existence of three of
the attractors and how these regions overlap. Except for these three a simple
one-periodic is present in large parameter regions.

Intersections of the basins of the attractors with s′ = 0 are shown in figures
5 and 6.

Action of Poincaré map on the points of the periodic attractors is shown
in figure 7. We observe that for the Poincaré map on s′ = 0 one four periodic
attractor of s = λ2, s

′ < 0 for the Poincaré map becomes five-periodic.

We have also found unstable periodic orbits of periods three, four and five.
We give some estimates of the eigenvalues of the Jacobian matrix of the Poincaré
map at the period orbits (u = ln(s)):

� stable fixed point at v = −3.302, u = −2.727, eigenvalues of Jacobian
matrix are about −0.56± 0.35 i

� stable 3-periodic point at v = −2.523, u = −2.47, eigenvalues of Jacobian
matrix are about −0.22 + 0.28 i

� three periodic, unstable node at v = −3.517, u = −2.07916, eigenvalues of
Jacobian matrix are about 0.05 and 2.25

� stable 4 -periodic at v = −1.9788, u = −2.54457 eigenvalues of Jacobian

https://doi.org/10.21638/11701/spbu35.2023.102 Electronic Journal: http://diffjournal.spbu.ru/ 18
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Figure 2: Detected periodicities of attractors in the case λ1 = 0.3, λ2 = 0.2, m1 = m2 = 1.
Horiontal axis corresponds to a1 and vertical to a2. Yellow – 3 periodic, red - 4 periodic, blue
- 6 periodic, magenta – 8 periodic. Everywhere one periodic.

matrix are about −0.2± 0.2 i

� unstable 4 -periodic at v = −2.1, u = −2.69 eigenvalues of Jacobian matrix
are about 2.4 and 0.025

� stable 5-periodic at v = −4.266, u = −1.4125 eigenvalues of Jacobian
matrix are about -0.76 and -0.08

� unstable 5-periodic at v = −3.524, u = −4.138 eigenvalues of Jacobian
matrix are about -0.005 and 7.2

In figure 8 we show a bifurcation diagram of the behaviour of the ratio of the
predators chosing a1 as bifurcation parameter and keeping all other parameters
constant. The four periodic jumps to the 3-periodic to the left and to the 1-
periodic to the right. The five periodic jumps to the 4-periodic to the left and
to the 1-periodic to the right. We observe that the five-periodic has period four
when chosing the Poincaré map on s = λ2 instead of on s′ = 0.
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Figure 3: Four attractors in the case λ1 = 0.3, λ2 = 0.2, a1 = 1, a2 = 0.0155, m1 = m2 = 1.
Green for four periodic, yellow for five periodic, red for three periodic, blue for simple one
periodic. We used the following logaritmic coordinates for the initial values on the attractors:
(-0.0595, -1.91, -1.61) for simple period,
(0.0945, -3.707, -1.609), for three periodic,
(0.0886, -8.9188, -1.609) for the five periodic and
(-0.1716, -2.8988, -1.609) for the four periodic one.

Figure 4: Some parameter regions for some periodic attractors of periods 3,4,5 and 6. Notice
that there are many other such regions we do not see here.
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Figure 5: Basins of attractions of the four attactors in figure 3 with correponding colours.
Used intersection with part of surface s′ = 0 < s”. Black points corresponds to points on the
attractors themselves.

Figure 6: Magnifications of the basins of attractions of the four attactors in figure 5
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Figure 7: The order of mapping one periodic point to another for the Poincaré map, they seem
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[10] Osipov A V, Söderbacka G, Poincaré map construction for some classic two
predators - one prey systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg,
27, (2017), no 8, 1750116, 9 pp.
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