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Abstract. The article is devoted to the development of a new approach to the
series expansion of iterated Stratonovich stochastic integrals with respect to
components of a multidimensional Wiener process. This approach was proposed
by the author in 2022 and is based on generalized multiple Fourier series in
complete orthonormal systems of functions in Hilbert space. In the previous
parts of this work, expansions of iterated Stratonovich stochastic integrals of
multiplicities 1 to 6 were obtained. At that, the expansions were constructed
using two specific bases in Hilbert space. More precisely, Legendre polynomials
and the trigonometric Fourier basis were used. In this paper, expansions of
iterated Stratonovich stochastic integrals of multiplicities 1 to 4 are obtained
on the base of arbitrary complete orthonormal systems of functions in Hilbert
space. Sufficient conditions for the expansion of iterated Stratonovich stochastic
integrals of arbitrary multiplicity are formulated in terms of trace series. The
results of the article will be useful for construction of strong numerical methods
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with orders 1.0, 1.5 and 2.0 (based on the Taylor-Stratonovich expansion) for
Ito stochastic differential equations with non-commutative noise.

Key words: iterated Stratonovich stochastic integral, iterated Ito stochastic
integral, Ito stochastic differential equation, multidimensional Wiener process,
generalized multiple Fourier series, mean-square convergence, expansion.
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1 Introduction

Let (€2, F, P) be a complete probability space, let {F;, ¢t € [0,T]} be a nonde-
creasing right-continous family of o-algebras of F', and let w; be a standard m-
dimensional Wiener stochastic process, which is Fi-measurable for any t € [0, T']
and has independent components ng) (1=1,...,m). Consider an It6 stochastic
differential equation (SDE) in the integral form

t

ot
X = X + /a(XT,T)dT + Z/Bj(XT,T)dWS:j), xo=x(0,w), we (1)
0 =10
Here x; is the n-dimensional stochastic process satisfying (Il). The functions
a, B; : R" x [0, T] — R" guarantee the existence and uniqueness up to stochas-
tic equivalence of a solution of () [I]. The second integral in () is the Ito6
stochastic integral. Further, x( is Fy-measurable and M{|xo|2} < oo (M de-
notes a mathematical expectation). We also assume that xy and w; — w( are
independent when ¢ > 0.

Consider the following families of iterated It6 and Stratonovich stochastic
integrals:

T to
T[] fiin) — / Ur(te) ... / n(t)dwy, . dwi, (2)
t t
T x 12
T B — / i (ty) - .. / Yi(t)dwy . dwi, (3)
t t

where (1), ..., Up(T) [ T] = R, i, ig =0,1, ..., m, w =7,
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[ |

denote Ito and Stratonovich stochastic integrals, respectively.

It is well known that the stochastic integrals (2) and (3) play an impor-
tant role when solving It6 SDEs numerically using Taylor-Ito and Taylor—
Stratonovich expansions [2]-[14]. From the other hand, 1t6 SDEs have many
applications, which explains the relevance of the problem of their numerical
solution [2]-[13].

Note that ¥1(7),...,¥e(7) =1, 41,...,1, = 0,1,...,m (the case of classical
Taylor—It6 and Taylor—Stratonovich expansions) [2]-[8] and (1) = (¢t — 7)%,
q=0,1,...(l=1,...,k), i1,...,i9x = 1,...,m (the case of unified Taylor—Ito
and Taylor—Stratonovich expansions) [9]-[14].

This article is Part III of the work devoted to a new approach to the series
expansion and mean-square approximation of iterated Stratonovich stochastic
integrals (3)) ([I5] and [16] are Part I and Part II of the mentioned work, re-
spectlively).

We also note other approaches to the mean-square approximation of iterated
It6 and Stratonovich stochastic integrals (2)) and (3]) [2]-[5], [17]-[36].

2 Preliminary Results

2.1 Expansion of Iterated Ito Stochastic Integrals of Arbitrary Mul-
tiplicity k£ (k € N) Based on Generalized Multiple Fourier Series

Converging in the Mean

Suppose that 1(7),...,Up(T) € Lo([t,T]). Define the following function
(Volterra—type kernel) on the hypercube [t, T]" :

wl(tl)--'wk(tk)7 1 <...<ty
K(tl,...,tk): ) (4)
0, otherwise

where t1,....t € [t,T] (k> 2) and K (t1) = 91(t1) for t; € [t,T].

Assume that {¢;(x)}52, is a complete orthonormal system (CONS) of func-
tions in the space Lo([t,T]). It is well known that the generalized multiple
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Fourier series of K (t1,...,t) € Ly([t, T]") is converging to K (t1,...,t;) in the
hypercube [t, T]* in the mean-square sense, i.e.

lim HK — K =0,
Piye-ry D — 00 Lg([t,T]k)
where

1/2

11y / Pl b dn |

Ky, ..o tlv"' Z ZCM ]1H¢Jl tl

Jj1=0 Jk=0
Cjoir = / (1, ... Hqﬁjl t)dt; . . (5)

is the Fourier coefficient.
Consider the partition {7;}7, of [t,T] such that

t=1<...<7w=T, Ayv= max Ar; =0 if N =00, A7j=7j11—7;.
0<j<N-1
(6)

The following theorem marked the beginning of a systematic study of the
problem of strong approximation of iterated Ito and Stratonovich stochastic
integrals (2) and (B) that have been most fully studied to date in [14].

Theorem 1 [I1] (2006), [12]-[16], [37]-[52]. Suppose that 1(T), ..., Yi(T)
are continuous nonrandom functions on [t,T]| and {¢;(x)}32, is a CONS of

continuous functions in the space Lo([t,T]). Then

J[w(k)]g,ltmik) Li 1p£Ii>oo Z Z Cly.oin (H C]

77777 Jj1=0 J&=0

where J[w(k)]g’lt"'i’“) is defined by ), i1,...,ix=0,1,...,m, Lim. is a limit in

the mean-square sense,

GkZHk\Lk, sz{(ll,...,lk)l ll,...,lkZO, 1,...,N—1},
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Lp={(,...,lk): L,....0,=0,1,...,N=1; [, #1, (9 #r); gr=1,...,k},

T
(= [ ¢i(r)dw!?
')

are independent standard Gaussian random variables for various i or j (in the
case when i # 0), Cj,. j s the Fourier coefficient ({l), AW%) = W%)H — W%)
(1t =0,1, ...,m), {Tj}j.vzo is a partition of the interval [t,T] satisfying the
condition ().

A number of generalizations and modifications of Theorem 1 can be found
n [14], Chapter 1 (see also bibliography therein).

Let us consider corollaries from Theorem 1 (see (7)) for k= 1,...,5 [11]
(D7) _
g =Lim, Zochcj (8)
1

p1 D2
JW(Q)]%ZQ :p}zl)zgloo ZZC]2jl< J1 Jz — L=y 1 J2}> (9)

1=0 j2=0

o pr P2 P3 '
J[w(:s)]%ltwm B P1 }92lprgn—>oo Z Z Z 0333231 ( J1 SJ2 CJ(;3)_

Jj1=0 j2=0 j3=0

(i3) (1) (i2)
_1{1'121'27&0}1{]'1:]'2}@33 o 1{i2:i37&0}1{j2:j3}<j11 - 1{2'122'37&0}1{]'1:]'3}@22 )’ (10)

J[w(ll)]gf,lt' W - 71_”17]9?:00 Z ZCM J1 (H Cj

=0 ja=0
— L =iy 20115, Jz}ng Cy4 e Liiy=ig201 145, 33}CJ Cy4)
~ Lm0y L= G 6 = Liminro) Limi G C4
Lot (5=, Gy — Lisminro) Liismin G G+
T L =i20) L i=jo) Lis=iat0y Lga=iay + Lin=ia0y Ligi=jn) Lio=iaz 0} Lgo=j) +
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+]‘{i1=i4750} 1{j1=j4} 1{1'221'3750} 1{j2j3}) ) (1 1)

JW(5)]§£,1£ ) = llpﬁgoo Z Z Cis...in (H CJ

..... i
Loy LG GG — Lo L€ G -
—1g i1 1y, ]4}@2 ng CJ(5 ) — L =is201 14, 15}4} C33 C}(f)—
“Liminr0) Lm0 G = Limitoy Limin GG G~
—Lgi—is20y 1), ]5}<] st C(4 V- Liis=isz01 14 J4}CJ Cz CJ(SS)_
—Lyi—is 200 15, 15}4}1 Ch Cj(4 - Liiy=is201 1), ]5}C]1 CJ2 C](§3)+
+L im0y Lo ity Lismin G+ Linmioor Limint Lismiviot L gsmint G+
L girmi0) Lo L iamioro) L=t G+ Linmisor Lgimio inminioy L gamint G+
+L ity L= L inmioro) Liamint G+ Linmisior Limio Liamiviot L gimint G+
+L im0y L L inmisro) Liamint G+ Lozt Limin Linmiviot L gamint G+
+ 1451200 L 1=y Lm0} Lot G+ Liinmioior 1= Liiomisoy Lmin G+
+L im0y Lo ity Liamin G+ Linmioror Lgimio Lisminiot L gsmint G+

+1{i2:i3¢0}1{j2=j3}1{i4=i5¢0}1{;'4:;'5}4}(?) + 1{i2=i4¢0}1{j2=j4}1{i3=i5¢0}1{j3:j5}5§f1)+

(1)
+1{i2=i5750} 1{j2=j5} 1{1'322'4750} 1{j3=j4}Cj1 ) ) (12)

where 14 is the indicator of the set A.

Let us consider a generalization of (8)—(I2)) to the case k € N and also to
the case of an arbitrary CONS in the space Lo([t,T]) and ¥y (7), ..., (7)) €
Lo([t, T1).

Theorem 2 [14] (Sect. 1.11, 1.14), [43] (Sect. 15, 18), [44]. Suppose that
V(7)o Yk(T) € Lo([t, T]) and {¢;(x)}52, is an arbitrary CONS in the space

Lo([t, T]). Then the following expansion:
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| /2]
J[w(k)]gz,lt“ = lim Z Z Cjc (H Z "X

P1y--sPE—200

71=0 Jx=0
r k—2r
qu
X Z H 1{Z925 17 19257&0}1{]925 1 1925} H CJ (13)
({{91.92} {92, _ 1g2r}} {a1, o)) =1 =1

{91,92,--:92r —1,92r+91 s+ 2 —2p }={1,2,...,k}

that converges in the mean-square sense is valid, where [x| is an integer part of
a real number x, the sum in the second line of the formula (I3) means the sum

with respect to all possible permutations of the set

({{917 92}7 SRR {927“—17 g27‘}}? {qla SRR Qk—2r}), (14)

braces mean an unordered set, and parentheses mean an ordered set, {g1, go, - - -,
G2r—1, 920, Q1 - - Qeor} = {1,2,.. . k}; [] def Y def 0; another notations are
0 0

the same as in Theorem 1.

2.2 Stratonovich Stochastic Integral

Let My([t,T]) (0 <t < T < 00) be the class of random functions &(7,w) & &

[t,T] x © — R, which satisfy the following conditions: £(7,w) is measurable
with respect to the pair of variables (7,w), & is F,-measurable for all 7 € [t, T1,
&, is independent with increments w,, o — W, for s > 7, A > 0, and

T
/M{({T)Q}dr<oo, M{(&)?} < oo forall 7€t T).

t

We introduce the class Q4([t, T']) of Ito processes 77@, relt,T,i=1,...,m

of the form T _
" +/a8ds+/bsdw§i> w. p. 1, (15)
' '

where (a,)?, (bs)* € My([t, T]) and lim |\/|{|b — b, \4} = 0 for all 7 € [¢t,T]. The

second integral on the right-hand 81de Of (IH) is the Ito stochastic integral. Here
and further, w. p. 1 means with probability 1
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Let C*Y(R, [t,T]) (t > 0) be the space of functions F(x,7) : R x [t,T] — R
with the following property: these functions are twice differentiable in x and
have one derivative in 7. Moreover, all these derivatives are uniformly bounded.

The mean-square limit

«T

N-1
1 , , :
i S8 (5 () +00.) o ) (w, —wi) # [ R w16
J=0 t

is called [53] the Stratonovich stochastic integral with respect to the component
wl (I =1,...,m) of the multidimensional Wiener process w,, where {Tj}j-vzo
is a partition of the interval [t, T'| satisfying the condition ([@]).

It is known [53] (also see [2]) that under proper conditions, the following
relation between Stratonovich and Ito stochastic integrals holds:

« T T T
. . 1 OF
[ Pl naw? = [ Pl maw s S1 [ G mbar - an
x
t t t
w. p. 1, where 14 is the indicator of the set A and i,[ =1,...,m.

A possible variant of conditions under which the formula (I7) is correct,
for example, consists of the conditions 7" € Qu([t, 7)), F(',7) € My([t, T)),
F(x,7) € C*(R,[t,T]), wherei=1,...,m.

Note that if F'(x,7) = Fi(x)F5(7), then the smoothness condition F'(z,7) €
C*YR x [t,T]) can be weakened. Namely, it suffices to replace the condition
with respect to 7 by continuity with respect to this variable.

In Sect. 3.3, we will also consider another definition of the Stratonovich
stochastic integral.

2.3 Expansion of Iterated Stratonovich Stochastic Integrals of Ar-
bitrary Multiplicity & (kK € N) Under the Condition on Trace

Series

In this section, we recall Theorem 3 (see below) from [15] (Part I of this work)
on the expansion of iterated Stratonovich stochastic integrals (3]) of arbitrary
multiplicity k£ (k € N) and introduce some notations.

Consider the unordered set {1,2, ..., k} and separate it into two parts: the
first part consists of r unordered pairs (sequence order of these pairs is also
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unimportant) and the second one consists of the remaining k& — 2r numbers. So,
we have (compare with (I4))

({igl; 92}7 R {927‘—17 g27‘:t}7 {gla ceey qk—27}‘})7 (18)
pa\rg 1 pa;fc 2
where {91,992, .-, 921,92, q1, - - - Q—2-} = {1,2,...,k}, braces mean an un-

ordered set, and parentheses mean an ordered set.

Let us call (I8)) a partition of the set {1, 2, ..., k}. Further, we will consider
sums with respect to all possible partitions (I8) (also see (I3)).

Consider the Fourier coefficient

T to
Clpoit = /wk(tk)%(tk)---/wl(tl)%(tl)dtl---dtk (19)

corresponding to the Volterra-type kernel (4l), where {¢;(x)}32, is a CONS in
the space Ly([t,T]). At that we suppose ¢o(x) = 1/+/T —t.

Denote
def

(g~ ()

Lito L1

def /¢k tr ¢]k tk /wl—i—l ti+1 ¢]l+1 tl‘f'l /wl b wl 1(tl)

Clivooivrijiii—zin

X /¢l—2(tl—2)¢jl_2(tl—2)---/¢1(t1)¢j1(t1)dt1---dtz—zdtltz+1---dtk =

tiyo ti41

= VT /@/Jk tr) i (tr) - /@/Jm tre1) @y (ty) /¢z )1 (tr) o () ¥

X /wl—2(tl—2)¢jl_2 (tl_Q) e / ¢1 (t1>¢j1 (t1>dt1 .. -dtl—thltH—l .. .dtk, (20)
t t

i.e. (20) is again the Fourier coefficient of type (I9) but with a new shorter

multi-index ji ... 7141072 . .. j1 and new weight functions 1 (7), ..., ¥_o(7),
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VT =t (T) (7)), Yioa(7), ..., Yr(7) (also we suppose that {l,l — 1} is one
of the pairs {g1, 92}, . .., {g2r_1, gor} (see (IX))).

Let
def

Cleodirrdigigi—s-in

(J1d)~im
tiya tiy1

dgc/¢k(tk)¢jk(tk).../¢l+1(tl+1)¢jl+1(tl+1)/wl(tl)¢l—1(tl)¢jm(tl)x

t to
X /@bl_g(tl_z)gﬁle (tl_z) - / Un (tl)qul (tl)dtl coodtodtit .. dty, = (21)
t t

= C_1]'1c---jl+1jmjl—2---j1 (Jm =0,1,2,.. -)7

i.e. Cy iivijmirs.jr i again the Fourier coefficient of type (I9) but with a new
shorter multi-index jx ... jix1Jmji—2 - - - 71 and new weight functions ¥ (7), ...,
Ui—o(T), Vi1 (T)Wi(T), Yrsa(7), ..., ¥r(7) (also we suppose that {I — 1,1} is one
of the pairs {g1, 92}, ..., {92:_1, g2} (see (IX))).

Let
def

q#91,92,-92r—1,92r

=X X X Y G

jg2r,1:p+1 jg2r,3:p+1 j93:p+1 jgl =p+1

(22)

Jg1= 0929509271 =92,

Introduce the following notation:

1 (0] (0]
Si {Cﬁkp.)..jq...jl } = 5 Moa=ga1+1) > >
Q¢91,92,---792r71,92r ngT_lzp-i-l j927‘—3:p+1
o (0] (0 ¢] o
DYDY DY DY G

Jagi11 =P+ Jgy_3=p+1 Jgs=pP+1 jg, =p+1

(j92ljg2l—1 )m(')ngl :jggv"'ajggrflzjggr

Note that the operation S; (I =1,2,...,7) acts on the value
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~(p)
Cirdgeii (23)
qF91,925-+:92r—1,92r
as follows: S; multiplies (23)) by 14, g, ,+1}/2, removes the summation
Jggy_1=p+1
and replaces
Cltoi (24)
Jo1=Jg25 3 J92,—1 I g2,
with
Clti (25)
(Jag1dagy—1 ) )sdar =dag - sJaz,—1 =Jaz,

Note that we write

Cj = Cjk...jl )

(jglng)m(');jglzjgz (jgljgl)m(')ajglzjgg

k--J1

Clti

(jgljgg)m(')v(j!]?,jgz;)m(')’jgl :jgz ’jg3 :j94

= Cjk---jl

Y
(jgljgl)m(')(jggjgg)m(')ngl :j!]Q 7jg3:jg4

Since (253) is again the Fourier coefficient, then the action of superposition

S1Sm on (24)) is obvious. For example, for r = 3

555,84 CW

]k---jq---jl

Q#glag%“'agi"ngﬁ

3
1
- ? H 1{9282925—1+1}Cjk...j1 :

s=1 (jggjgl )m(')(jgﬂgg)m(')(jgﬁj% )m(')ngl =Jg9:J93=Jg4Ja5=Jgg
~(p) _
93513 Cje i =
Q#gl 925-+-,95,96

https://doi.org/10.21638,/11701 /spbu35.2024.206 Electronic Journal: http://diffjournal.spbu.ru/ 84



Differential Equations and Control Processes, N. 2, 2024

Y

1 (0.]
:ﬁl{%:gﬁl}l{gz:gﬁl} Z Cjk...jl

jgs =p+l1 (jgzjm )m(')(jgﬁjg{) )m(')ngl :jgg ajg3 :jg4 7jg5 :jgg

Q#glagQr"agfngﬁ }

1 O O
5 Lo=gs 1) Y. > i

jgl =p+1 jg5 =p+1

5 {c“

(jg4j93)m(')ajgl :jgg ajg3 :jg4 ajg5 :jgﬁ

Theorem 3 [15] (also see [14], [16], [49]-[51]). Assume that the continuously
differentiable functions 11(7), ..., Yx(7) : [t,T] = R and the CONS {¢;(x)}3%,
of continuous functions (¢o(x) = 1//T —1t) in Lo([t,T]) are such that the

following conditions are satisfied:

1. The equality

s S to

1
§/¢ﬁm%mmn:El/%@mﬁg/@ﬁmmmﬁm@ (26)
t 7=07% t
holds for all s € (t,T], where the nonrandom functions ®1(7), ®2(7) are con-
tinuously differentiable on [t,T] and the series on the right-hand side of (26))

converges absolutely.

2. The estimates

/ W (s)
/¢j(7)¢1(7)d 1/2+a /¢J )@(7)dr| < jl}?—i—a’

\1’2(8)
Z /(132 7)o (T / Q1(6)p,(0)dodr| < %

J=p+1%
hold for all s € (t,T) and for some a,, B > 0, where ®1(7), Po(7) are continu-

ously differentiable nonrandom functions on [t,T], j,p € N, and
T T

/ﬁ@ﬁ<w,/wmﬂw<w

t t
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2
=0
4#91,925--,92r—1,92r

holds for all possible g1, go, ..., 921,92 (see (A8)) and ly,ls,...,1l; such that

3. The condition

p
) ~(p)
oY (sses e,

J1sedgseJ=0
4791925927 —1,92r

liloy ... lg € {1,2,...,r}, lp > 1y > ... > g, d=0,1,2,....,7r — 1, where
r=1,2,...,[k/2] and

hedgeedn

S,S, ... S, {C@)

def =
et Ap)
Jk--Jq---J1
q#£91,92,---,92r—1,92r

Then, for the iterated Stratonovich stochastic integral of arbitrary multiplic-

ity k

4791,92,--92r—1,92r

for d = 0.

« T x b2
JH )i / Urte) . .. / dr(t)dwi™ . dw™ (27)
t t
the following expansion:
(i1...ix) - (i1)
* k)i(21...2 . 7
J W =Lim Y OCjk...jllIIij (28)
J1yeJk= =

that converges in the mean-square sense is valid, where

T ta
Clpoit = /wk(tk)%(tk)---/wl(tl)%(tl)dtl---dtk (29)
t t
18 the Fourier coefficient, l.i.m. is a limit in the mean-square sense, i1, ..., =

0,1,...,m,
T
= [ ox(ryiwt
t

are independent standard Gaussian random variables for various i or j (in the

case when i # 0), wl = 7.

Futher, we will see that Condition 1 of Theorem 3 is fulfilled.
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2.4 Expansions of Iterated Stratonovich Stochastic Integrals of Mul-
tiplicities 1 to 6. The Case of Legendre Polynomials and Trigo-

nometric Fourier Basis

In this section, we recall several theorems on the expansion of iterated Strato-
novich stochastic integrals (B]) of multiplicities 3 to 6 that we obtained in [15],
[16] (Parts I and II of this work) using Theorem 3. In addition, we recall the
expansion of integrals (B]) of multiplicity 2 (old result) [14] (Sect. 2.1.2, 2.8.1).

Theorem 4 [14] (Sect. 2.1.2, 2.8.1). Suppose that {¢;(x)}32, is a CONS
of Legendre polynomials or trigonometric functions in the space Lo([t,T])
and ¥1(7),¥o(T) are continuously differentiable nonrandom functions on [t, T].
Then, for the iterated Stratonovich stochastic integral J*[)? ]m? (i1,i9 =
0,1,...,m) defined by [B)) the following relations:

p
J*[w ] (i1i2) _ pl m. Z Cjzjlcj(fl)cj(;2)7 (30)

jl,jQZO

(31)

2
M (J*W 2122 Z C]2]1Cj . ) <

J1,J2=0

s Q

are fulfilled, where i1,i9 = 0,1,...,m in BQ) and i1,io = 1,...,m in 31,
constant C' is independent of p; another notations are the same as in Theorem 1.

Note that an analogue of Theorem 4 for the case k = 1 follows from (§]).
Theorem 5 [14], [13], [49]-[51]. Suppose that {¢;(z)}32, is a CONS

of Legendre polynomials or trigonometric functions in the space Lo([t,T)])
and Y1 (71),0a2(7),03(T) are continuously differentiable nonrandom functions

n [t,T]. Then, for the iterated Stratonovich stochastic integral J*[w(?’)]g’ltm?’)

(41,142,933 = 0,1,...,m) defined by [B)) the following relations:
- (2) )
J*[w ] e 1p1—>I£ . Z 333231 Jl 322 sts ) (32)
2.j5=
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2
* 111213 13 C
M (J [ T Z 013]211 jl ]2 C]3 )> < — (33)

J1,J2,3=0 P

are fulfilled, where i1,i9,i3 = 0,1,...,m in B2) and i1,i2,i3 = 1,...,m in [B3),
constant C' 1s independent of p; another notations are the same as in Theorem 1.

Theorem 6 [14], [15], [49]-[51]. Let {¢;(z)}32, be a CONS of Legendre poly-
nomials or trigonometric functions in the space Lo([t,T]) and 1(7), ..., ¥5(7)
be continuously differentiable nonrandom functions on [t,T|. Then, for the it-
erated Stratonovich stochastic integrals J*[1)!) g’lt"'u), J*[ap®) g’lt“'i"’) (i1,...,15 =
0,1,...,m) defined by [B)) the following relations:

p
T ®) G- :1]5% Z G (k=4,5),  (34)

.....

2
P
% 11...0 i1 7 C
M (J [ — 5 Cjk...hc}l)...c;:)) < (k=4,5) (35)

are fulfilled, where iy,...,i5 = 0,1,...,m in B4) and i1,...,i5 = 1,...,m in
Ba), constant C' does not depend on p, € is an arbitrary small positive real
number for the case of CONS of Legendre polynomials in Lo([t, T]) and e = 0
for the case of CONS of trigonometric functions in Ly([t,T)); another notations

are the same as i Theorem 1.

Theorem 7 [14], [16], [49]-[51]. Suppose that {¢;(x)}32, is a CONS of
Legendre polynomials or trigonometric functions in the space Lo([t,T]). Then,

for the iterated Stratonovich stochastic integral of sixth multiplicity

(1) / / dwl) .. dw(® (36)

the following expansion:

R

.....
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that converges in the mean-square sense is valid, where i1,...,1¢=20,1,...,m,

T to
Cj6---j1 - /(rbja (tG) .. / Qb]l (tl)dtl R dtﬁ,
3 t

another notations are the same as i Theorem 1.

2.5 Connection Between Iterated Stratonovich and Ito Stochastic

Integrals of Arbitrary Multiplicity & (k € N)

Introduce the following notations:

l
1.1k )[S1,-er,81]  def
YU ] el 2 H Lisy=isg a0} X

q=1
sl+3 Sl+2
/¢/€ t/{ / 77bSH-2 Sl—|—2 / djSl s1+1 ¢5l+1( SH—I)
o1 bs1+3 Loy 42
/wsl 1 sl 1 /¢51+2 51—|—2 /wsl s1+1 wsl—i-l( 51+1)><

51 +1

/ 77b51 1 51 1 /¢1 tl dwtl . d 281 1 dtsl+1d tls:_-;?) o

Cdwy dt dw, Y, (37)

ts)+2

where (sq,...,51) € Agy,

Apy = {(Sl,...,Sl) D5 >8-1+1,...,8 >s +1; sl,...,slzl,...,k—l},
(38)
[=1,2,...,[k/2],i1,...,9x = 0,1,...,m, [x] is an integer part of a real number
x, 14 is the indicator of the set A.
Let us formulate the statement on connection between iterated Stratonovich

and It6 stochastic integrals (B) and (2)) of arbitrary multiplicity & (k € N).
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Theorem 8 [54] (1997) (also see [11]-[14], [37], [52]). Suppose that 11(T),
., Ur(T) are continuous nonrandom functions at the interval [t, T]. Then, the
following relation between iterated Stratonovich and Ité stochastic integrals (3]

and (2)) is correct:

[k /2]
J*[¢ ] ’Ll ’Lk — ’Ll Zk + Z Z J[¢ ] Zl ’Lk ..... 81] W, p 1’
(ST ..... 81 GAkT
(39)
where iy, ...,1,=0,1,...,m and > is supposed to be equal to zero.
0

Note that the condition of continuity of the functions i1(7),...,¥%(7) is
related to the definition (I8) of the Stratonovich stochastic integral that we use
(see [14], [52] for details).

2.6 Multiple Wiener Stochastic Integral With Respect to Compo-

nents of a Multidimensional Wiener Process

For further consideration, we will need the multiple Wiener stochastic integral
with respect to components of a multidimensional Wiener process (generaliza-

tion of the multiple stochastic integral from It6’s famous work [55] (1951)).

Consider the following step function on the hypercube [t, T]*
N-1
(I)N(tla s 7t/€) - Z all...lkl[Tll,Tll+1)(t1) R 1[le,le+1)(tk)7 (40>

where a;, ;. € R and such that a;, ;, = 0 if [, = [, for some p # ¢,

1 ifreA
1a(7) = ,
0 otherwise

N=23,..., {Tj}j.vzo is a partition of [¢,T] satisfying the condition ([l).

Let us define the multiple Wiener stochastic integral for ®x(t1, ..., ;) [55]

N-1
J/[CI)N]gf’lt"'Zk) déf Z al1---lkAW7(-fll) e AW%’:)’ (41)
Iy i =0
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where AW%) = W(?ﬂ - W%), 1 =0,1,...,m, wl = 7.

It is known (see [56], Lemma 9.6.4) that for any ®(ty,...,t;) € Lao([t, T]")

there exists a sequence of step functions ®y(t1,..., ;) of the form (40) such
that
lim [ (@t ) — Pt te) dty . dty = 0. (42)
[t,T]*

We will define the multiple Wiener stochastic integral for ®(ty,...,t;) €
Ly([t, T]¥) by the formula [55] (see [14], Sect. 1.11 for details)

Tl E L, J@]ry =

N—o0
N-1
=lim. l Zl: Oall,,,lkAwglﬂ L Awl, (43)
Tyeeey k=

where ®n(t1,...,t;) is an arbitrary function of the form (4Q) satisfying the

condition (), Aw!) =wil, —wl) i=01,.  m w =7

We note the following estimate for the multiple Wiener stochastic integral:

. 2
M {(J’[cp}%l;- k)) } < Ck H(I)Hiz([t,T]k) ) (44)

where ®(t1,...,t) € Lao([t, T|*), the constant C} depends only on k.
In [14] (Sect. 1.11) or [52] (Sect. 1.11) the following equality:

Jelg = 3 / / O(ty,. .., t)dwl) . dwH w.p 1 (45)

is proved, where permutations (¢, ...,t;) when summing are performed only
in the values dwgl) oo dwgi’“). At the same time the indices near upper limits
of integration in the iterated stochastic integrals are changed correspondently
and if ¢, swapped with ¢, in the permutation (¢1, ..., %), then i, swapped with

iy in the permutation (i1, ...,4). In addition, the multiple Wiener stochastic
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integral J'[®];} Ui-ik) ig defined by (@3) and

/ / (t1,... dwg ) .dwgi’“)

is the iterated [t0 stochastic integral.
Using (45)) and Theorem 5 from [44], we obtain the following theorem.

Theorem 9 [14] (Sect. 1.14), [44]. Suppose that {p;(x)}52, is an arbitrary
CONS in the space Lo([t, T]). Then the following representation:

[k /2]

‘]I[¢j1' ¢]k 11 & HCJ Z

k—2r

x Z H {igy, = Z925#0} Ugge 1= Jag } H CJ (46)

({{g1-92}s--{92r—1,927 1} {15 a9, })  5=1
{91.92:-:92r—1,92¢+41 -G —2p }={1,2,...k}

is valid w. p. 1, where iy,...,1, = 0,1,...,m, J'[¢;, ... 0;lr “ W) g defined by

(@3)), [x] is an integer part of a real number x, [ | e, > o, another notations
0

0
are the same as in Theorems 1, 2.

Combining Theorems 2 and 9 we get the following theorem.

Theorem 10 [44]. Suppose that {¢;(x)}3%, is an arbitrary CONS in the
space Lo([t,T]) and Y1 (7), ..., Ye(T) € Lo([t, T]). Then the following equality:

JW ]Zl " = 11m Z ZCM A - Qi Zl o (47)

=0 Jjx=0
is valid w. p. 1, where iy, ..., = 0,1,....m, J'[¢; ... ¢l i) e defined by
@3) and J[p* ] Ui-it) has the form @); another notations are the same as in

Theorems 1, 2.
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3 Main Results

3.1 Generalizations of Expansion of Iterated Stratonovich Stochas-
tic Integrals of Arbitrary Multiplicity k£ (k € N) Under the Con-

dition on Trace Series

Suppose that (1), ..., ¥x(7) € Lao([t, T]). Denote

[k /2]

21 2 112 Spyeeny S1 def Tk 212
k+§3 ZI W]l & Fep )0 4

where > is supposed to be equal to zero; another notations are the same as in
0
Theorem 8 (see Sect. 2.5).

Theorem 11 [14], [49]-[51]. Suppose that the CONS {¢;(x)}3y (do(x)

= 1/\/T —t) in Ly([t,T]) and ¥1(7),..., k(1) € Lo([t,T]) (Wi(m)i_1(T) €
Lo([t, T]) (I =2,3,...,k)) are such that the following condition:

w%mZ ; >

Jx=0

X

qF91,92,-,92r—1,92r

oo D) G —~

Jg1 =0 Jg2r—1=0

min{pg, ,pg, } min{pg, | ,Pgy, }
X

Jg1= 92509271 =92,

=0

1 T
_5 H 1{9212921—1+1}Cjk...j1
=1

(49)

is fulfilled for allr = 1,2,...,[k/2]. Then, for the sum J*[{)* ] (i1...ix) of iterated
Ité stochastic integrals defined by (A8)) the following expansion:

ﬁwwwzhﬁwz Z%ﬁﬂg (50)

..... Jj1=0 J&=0
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that converges in the mean-square sense is valid, where C} 15 the Fourier co-

k---J1

efficient (29), 1.i.m. is a limit in the mean-square sense, i1, ... i = 0,1,...,m,

T
= / ¢;(r)dw!”

are independent standard Gaussian random variables for various i or j (in the

case when i # 0), wl = 7.

Proof. Let us find a representation of the expression

Z ZCM ﬁHCJ

Jj1=0 Jx=0

that will be convenient for further consideration.

From (@) we obtain w. p. 1

k
[T = 76y, .. o)™
=1

[k/2] r k—2r

o Z Z H 1{i923—1: igzs#o}l{jgzs—lz Jggs ¥ H Cj(;ql)
=1

({H{g1-92}s--{92r—1,927 1} a1 vap_or}) 5=1
{91:92;--92r—1,92r:41,--- g — 2, }={1,2,....k}

(51)

By iteratively applying the formula (5I]) (also see (8)—(12)), we obtain the
koo

following representation of the product [] Cj(l”) as the sum of some constant

=1
value and multiple Wiener stochastic integrals of multiplicities not exceeding

k :
J/ _ (41...7k)
HCJ (B, - byl ™+

[k/2]

+ Z Z H {igy, 1= gy, 5&0}1{].92571: ngs}X

r=1 ({{g1.92}:---{92r—1.927}}:{a1,-qp_2,}) s$=1
{91.92:-:92r—1:921,q1 - @ — 2 }={1,2;....k}

(igy gy o,)
XJ/[¢qu Ce gquk_gr]T,tl F w. p. 1, (52)
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where J'[gy, ... ¢, Jve o) S for = o,

Multiplying both sides of the equality (52) by Cj,. ; and summing over
J1y sk, We get w. p. 1

b1 Dk
Z Z C]k J1 H Cj Z .. Z Cjk---j1 J/[¢j1 . ¢jk] (1...9x)

Jj1=0 Jx=0 Jj1=0 Jx=0
P P [k/2] r
DD Chi ) > [, =, 0
J1=0 J&=0 r=1 ({{o1, 92} ----- {92r—1,927 3} {a1 - ap—2r ) =1

{91,925+-920—1,92r:91 -9 — 2y }={1,2,....k}

Zq QT)
Xl{j?stlz ngs}J/[¢jQ1 ) ¢qu QT] " w. p. 1. (53)

Implementing the passage to the limit lim. in (53) using Theorem 10,

P1;e-PE—200
we obtain w. p. 1

1 g {gn—mo Z Z CJk J1 H CJ - ]gé,ltmik)"‘

Jj1=0 Jjr=0

[k/2]

* Z Z H ligy, = gy, #0} X

r=1 ({{g1.92},-{92r— 192r}} {a1, a5 _o2r}) S=1
{91,92:---92r—1,92¢:91 -0 — 2, }={1,2,....k}

g T)
X lim, Z Z% 311_[1{]9251 IR CACTI T, QT] 2l (54)

) de el
Jj1=0 J&=0

Without loss of generality, let us temporarily set p; = ... = pr. = p. We

have

D r
. Zq 2r)
Lim. Z Cjk"'jl H 1{].92571: jgzs}l{igzsflz igzs#O}J/[¢jq1 ) ¢jqk QT] - -

.717"'7]](}:0 s=1
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p

p
= 1151_}%' Z Z Ciy.in

J1s-sdqse-5d=0 jgl ,jgg,...,j92T71:O
4791925927 —1:92r

X

J91= Jggrd99, 1 = T,

T
!/ . ) (iq1"'iqk_gr) .
X H 1{7;92571: Z.-(725 ;AO}J [¢.7q1 e ¢]qk72r T;t -
s=1

p p
= l.i.m. E E Cjk---jl -
p—oo . . . - P ; —
J1s-dqs- 0 =0 ]gl 5.7937"'7.]_!]27«,1:0 ‘791_ ‘792"”7‘7927“71_ '7927“

47#91:92+--:92r—1:92r

14
S or H 1{9212921—1+1}Cjk---j1 X
=1 (jgzjm)m(')---(jgzrjgzr_l)m(')ngl: jg27---ng2r,1: jgzr

- (igy gy )
X H 1{igzs—1: L9y, #O}J,[¢j¢h T ¢ij72r]T7qtl T
s=1
. ¢ 1
+lpl—>ro% Z ijk“,jl X

J1seeosdgesd=0 (jgzjgl )m(')'-'(jgzrjggr_l)m(')ujgl = j92 7"'7j92T_1 = jggr

4791925927 —1,92r

T T
, (igy gy 5)
X H 1{i925_1: Z'QQS 7&0} H 1{9252925—1+1}J [quql tt ¢jqk72T]T7t - (55)
s=1 s=1
p p
= L.im. E E Cjk---jl -
J1seesdgssJ =0 ]gl 5.7937"'7.]_!]27«,1:0 ‘791_ ‘792"”7‘7927‘—1_ '7927‘

4791:925--92r—1:92r

1 T
_y H 1{9212921714-1}0]'1@---]'1
=1

(j!]Qj!]l )m(')"'(jQQTjgzr—l )m(')ng = j92 7"'7j92T_1 = ngT

,
(igy iy, _y.)
X H 1{1'92571: Lgy, ¢O}J/[¢jq1 T ¢ij—2r]T7qfl Tt
s=1
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1 d Zl’L Spy...yS1
s=1

where goi1 2 s i = 1,2,...,r, 1 = 1,2, [k/2], (sr,...,51) € Ag,

J[w(k)]g}t"'i’“)[s””"sl] is defined by (B7) and Ay, is defined by (38), g1, g, ...,
Gor—1, 9or as in ([I8), ¥1(7),...,Ur(1) € Lo([t,T]), wi(T)i—1(T) € Lo([t,T])
(I =2,3,...,k); another notations are the same as above.

Let us explain the transition from (B3) to (B56). We have for go = ¢1 + 1,
o 9or = g1+ 1

p
. 1
ITID DR

X
1 sersdgsensifg=0 U2 o1 ) () UgapJane 1))y = Gy reosdog, 1= Jo,
q7#91:92:-+:92r—1:92r
r )
! qu 2r/
X H 1{292571: by 5&0}‘] [¢JQ1 ) ¢]qk 2r o
s=1
p
1 L Z C
= —1.1.1m. k-] x
21" p_)oo Jk---J1

F1eeerliqe il =0 (j92j91)m0"'(j92rj92r71)mo’jgl: Jgg r+3Jag, 1= Jag,

q#91,925-92r — 1,92

: 0 " Zq 27“)
X H 1{1'92571 = iQQs #O} (C(g )) J/ |:¢qu ) ¢]qk 2r . -
s=1

. . - -
B ?lpl—}o{l} Z Z H 1{1'92571: igzs;éO}X

1@ oIk =0 Jmy sdmg e Jmg,_ =0 5=1
q47#91:925--:92r—1:92p

XCjk---j1 X

(jggjgl)mjml (]ggrjgzr 1)m]m2r 1’191 1927 7-]g27« 1 jggr

< (0O O

Jmq >Jms

(igy gy o,)
[qutn T quqk_gr]T,t =
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1 p p

B ylpl—}o% Z Z H 1{i925—1: 29 A0} X

j17...,jq,...,jk:0 jml’jm:i""ijTfl:O s=1
4791925927 —1:92r

XCjk---jl :
(jgzjgl )mjml"'(j92rj92r—1)mjm2r—l’jgl: j-‘lz""’jgzr—lz jng
(00...04g, ..ig, )
X Jl[¢jm1 ¢jm3 e ¢jm2r—1 ¢j‘Z1 U ¢jqk72r T = (57)
1 (k) (i1-wik) [Srsenr51]
— ?JW ]T’t w. p. 1, (58)

where notations as the same as in (B56). The transition from (57) to (58) is

based on Theorem 10.

Using the estimate (44)), we obtain that the condition

p p
lim > > Cii -
p—o0 — o . L . .
Foeeesigsessdg=0 Jay5Jgg s+ +3Jgap_1=0 J91= Jggrdgg,._ 1= Jgg,

4791925927 —1:92r

1 2
_y H 1{9212921—1+1}Cjk---j1 =0
I=1 (92991 ) () (Gggy Tgor -1 )M )sdgy = Jagseedigy, 1= Jay,
(59)
implies that
p p
l.im. E E Cjk---jl o
pP—00 . X 2 o= 4 1 = 9
F1reeen, Gqsees: j,=0 jgl a]g37"'7]92r_1:0 .]91_ .]923--.3.792T_1_ jggr
q#91:925--92r—1,92r
1 r
_7 H 1{9212921—1+1}Cjk-"j1 %
=1 (.792]91)m(')"'(]!]ergQrfl)m(.)’]gl: J9g9750950_1 = J9g,
T . .
< TT L= 0 -, D =0 (60)
{192571: 7’925 #O} ]ql e ]qk—QT T’t - ’
s=1
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where r = 1,2, ..., [k/2]. Obviously, we can omit the condition p; = ... =p; =

p in the above consideration.

Further, note that

Z A917937---792r71 =

({{g1.92}:--192r— 1g2T}} {a1,--a— zr}) go=g1+1,93=¢g2+1,....92,=g2,—1+1
{91,92:-92r—1,92r01 @27 }={1,2,...k}

= A

(Sryeey81)EALr

81,825..-58p) (61)

where Ay, g0 g0 1y Asios..s, are scalar values, goj1 = 85, @ = 1,2,...,r, 17 =
1,2,...,[k/2], Ay, is defined by (3).
Let us return again to the condition py, ..., pr — oo instead of the condition

pL=...=pr =p— oo. Using (BA), (59), (60) with obvious changes and (54),
(1)), we have

llp{fioo Z ZCjk J1 HC_]

Jj1=0 Jx=0

[k/2]

RS SR L R

)
(Sr,...,Sl)GAk7T

w. p. 1, where J[W’f)]gf’lt---ik)[Srv---’sl] is defined by (B7) and Ay, is defined by (38]).
Theorem 11 is proved.

Now suppose that 11(7),...,9x(7) are continuous functions at the interval

[t,T]. Then by Theorem 8 we have

3 3

where J*[¢)(*) gf}t"'ik) is the iterated Stratonovich stochastic integral (3] and
J* [y *) “ ) s the sum of iterated It6 stochastic integrals defined by (48)).

Thus, we obtain the following theorem.
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Theorem 12 [14], [49]-[51]. Assume that the continuous functions 11(T),
- Uk(7) at the interval [t,T] and the CONS {¢;(x)}7y (¢o(x) = 1/VT — 1)
in the space Lo([t,T]) are such that the following condition:

,1};,{;002 Z Z

J1=0 Jq=0 Jx=0

X
qF91,92,-,92r—1,92r

oo DY G _

Jg1=0 Jg2r—1=0

min{pgl 7pg2 } min{pggr_l apng }
X

Jg1= D925 D927 1 =92,

1 T
o H 1{9212921—1+1}Cjk---j1 -

2
=1 (]qzqu )m(')“'(jgzrjgzr_1 )m()’]ql = j92 ""’jggr,l = ngT )

(62)
is satisfied for all r = 1,2,...,[k/2]. Then, for the iterated Stratonovich sto-

chastic integral of arbitrary multiplicity k

« t
J*w(k)]gf’lt"'ik) :/ ¢k(tk)~-~/ n(t)dwy, . dw
t t

the following expansion:

RIGTEER TS o0 SURS 1 O

Jj1=0 J&=0

that converges in the mean-square sense is valid, where C} 15 the Fourier co-

k---J1

efficient (29), 1.i.m. is a limit in the mean-square sense, i1, ...,i; =0,1,...,m

T
(= [ ¢i(r)dwl?
']

are independent standard Gaussian random variables for various i or j (in the

case when i # 0), wl = 7.

Note that the condition of continuity of the functions i1(7),...,¥g(7) is
related to the definition (I6]) of the Stratonovich stochastic integral that we
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use. Theorem 12 can be generalized (at least for kK = 2 (see Sect. 3.4)) to the
case U1(7), ..., (7)) € Lo([t, T)]) if instead of the definition (I6) we use another
definition of the Stratonovich stochastic integral (see the definition (I01I) below).

Theorem 13 [14], [49]-[51]. Suppose that the CONS {¢;(z)}32, (¢o(z)

= 1/\/T —t) in Lyo([t,T]) and ¥1(7),..., k(1) € Lo([t,T]) (Wi(m)i_1(T) €
Lo([t, T]) (1 =2,3,...,k)) are such that the condition

2
p
lim Y- <Sllslz...sld{Cjﬁf?,_jq_,_jl }) =0  (63)
pmree 4#91,92,--92r—1,92r

et e
holds for all possible g1, go, - .., 921,92 (see (A)) and ly,ls,...,1l; such that
liloy .. lg € {1,2,...0r}, I > 1y > ... > g, d=0,1,2,....,7 — 1, where
r=1,2,...,[k/2] and

.]k---jq---jl

S.S, ... S, {C@

def =
et o)
Jk-Jq---J1
q#91,925---,92r—1,92r

for d = 0. Then, for the sum J*[)* ] (iv...ix) of iterated Ito stochastic integrals
defined by ([A8) the following expansion:

q791,92,--92r—1,92r

k

Ty IZ;L'?O Z Cioa [T

..... jko =1

that converges in the mean-square sense is valid, where Cj,_j, s the Fourier co-

efficient (29), 1.i.m. is a limit in the mean-square sense, iy, ... i = 0,1,...,m,

T
— [ omawt?
t

are independent standard Gaussian random variables for various i or j (in the

case when i # 0), wﬁ” = 7; another notations are the same as i Theorem 3.

Proof. Step 1. First, we prove that

X0
E Cliodissjiiiromdsstitisroogs = 0 (64)

71=0
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or
p

oo
E Cli sttt odortijomtogt = — E IR A Y ¥ N (65)

J1=0 Ji=p+1
where ] —1 > s+ 1.
Our proof of (64) will not fundamentally depend on the weight func-

tions 1(7), ..., Yx(7). Therefore, sometimes in subsequent consideration we
set Y1(7),..., (7)) = 1 for simplicity.
Using Fubini’s Theorem, we have (see [15] (Part I of this work) for details)

Cloiordidior dssrfifot ot =

tiy2 tit1

/%k tk) - /%H tiv1) /% t) /% (ti-1)
]H@SH (te) ]ﬂ% / By (ta)

/¢]1 t1)dty ... dts_qdtsdtsyy ... dt_qdtidtyy ... dty, =

s+1
/¢j5+1 s+1 /gb]z /gb]s 1 ls— 1 /Qb]l tl dtl dts 1dt X
/¢js+2 S+2 /gbjz 1 tl 1 /gb]z tl /¢jl+1 tl—i—l
s+1

. / (bjk (tk)dtk codtpgdtdt; g .. dtgao | dts =

tk—1

s+1
/¢Js+1 s+1 /gb]z /gb]s 1 ls— 1 /Qb]l tl dtl dts 1dt X

Gjg_y. .71(t)
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/ijl tl /¢jl+1 tl—l—l / ¢jk tk dtk dtl—l—l X
ls41 tk—1

7

ij Jl+1(tl)
s+3
X /gb]l 1 tl 1 /¢j5+2(t8+2)dt$+2 . --dtl—l dtl dts—i—l —
S+1 s+l J
\ Qi ---J’s:rz (trts+1) /
s+1
/(fbjS+1 s+l /¢Jl Js 1,,,j1(t5)dt5><
X /gbjl b ij---jl+1(tl)sz,l...jsH(tl,t5+1)dtldts+1. (66)

terl

Applying the additive property of the integral, we obtain

le—l---js+2 (tlv t8+1) =

s+3
/ ¢]l 1 tl 1 / ¢js+2 (t5+2)dt5+2 codbo =
S+1 s+l
S+4 s+3
/¢Jl 1 tl 1 /¢]5+3 s5+3 /¢js+2 s5+2 dts+2dts+3 dtl 1—
S+1 s+l
s+4 ts+1
/¢3l 1 tl 1 /¢]s+3 s+3 dt8+3 dtl 1 / ¢]s+2( s+2>dts+2
S+1 s+l t
d
Z h Ji—1- Js+2 q](z 3 Js+2 (ts"'l) d < 00. (67)

m=1
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Combining (66) and (67), we have

p
E :Cjk---lerljljlfl---jerljljsfl---jl =

J1=0
d s+1
Z /¢]5+1 S+1 q]l 1- ]S+2 S+1 /gb]l js 1]1(t5)dtsx
=1
< / bt Hyy o ()RS ()t | (68)

ts-l—l

Applying the generalized Parseval equality, we obtain

ts+1

Z / ¢Jz(t )GJS 1 31 dt /¢Jz tl Tk ]l+1(tl)h§lz 3+2(tl)dtl -
=0 o
T

- / 1{T<ts+1}st—1---j1 (T) ' 1{T>ts+1}ij---jl+1(T)hg'?j)l...jsﬁ (T)dT = 0. (69)

t

From (68) and (69) we get

p

Z Clteeietfifiotodssififomtodt. =
51=0
d s+1
= - Z /¢js+1 s+1 q]l 1. _7 +2 S+1 Z /gb_]l .]s 1...j1 (ts)dtsx
m=1 p+1
>< / O () H g ()RS (t)dtidt | (70)

ts+1

Suppose that {¢;(x)}72, is an arbitrary CONS in Lo([t,T]) and ®4(7),
®o(7) € Lo([t, T]). Then we have

T

> asmmirr [ s

t s
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T 2 T 2
1 (0.9]
< B Z 1{T<S}¢j(7-)¢1(7-)d7- + 1{T>S}¢j(7-)q)2(7-)d7- -
j=0 t t
1 2 9 1
— [+ [ a3 < 5 (1910 sy + 192l o) = € < 0.
t s
(71)
This means that the estimate (7I]) can be applied to the series
00 terl
Z /@z(t )st 1- 31 dt /¢Jz tl Jk- ]l+1(tl>h§l)1 j+2(tl)dtl .
jl:p+1 t terl

Using the above result, Lebesgue’s Dominated Convergence Theorem and

(66)—(68), (70), we have

p

E :Cjk RIRY IR ¥ N

ji=p+1lm=1

00 d bsa
- Z Z ( ¢js+1 s+1 q]l 3 _7+2( S+1) / gb]l( ) Js— 1]1(t5)dt5><
T

X ¢Jz tl Tk ]z+1(tl)h§l i Js g(tl)dtldts+1 -

s+1

- = E : Cjk---jl+1jljl71---jerljljsfl---jl' (72)

Ji=p+1
The equality (72)) implies (64)), (63).
Step 2. Further, let us prove that

]ZO/¢2(t2)¢j(t2)/¢1(t1)¢j(t1)dt1dt2 = %/%(ﬂ%(ﬂdr, (73)

where {(bj(x)}]o.io is an arbitrary CONS in the space Ls([t,T]) and v1(7),
Ua(7) € Lo([t, TY).
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Let us list some useful facts that we will need further in this section.

Proposition 1 ([59], Theorem 8.1). Let K : Lo([t,T]) — Lo([t,T]) be an

- /T K(r,5)f(s)ds

where K(T,s) is a continuous function on [t,T] x [t,T]. If, in addition, K is a

integral operator defined by

trace class operator then
T
trK = /K(s,s)ds, (74)

where trace trK is defined as a series of singular values s;(K) of K.

Proposition 2 ([39], P. 71). Let

T

®1) (1) = [ Krs)p(s)s

t

the kernel K(t,s) is continuous on [t,T] x [t,T] and satisfies the condition
|K (T, 82) — K(7,81)| < Cls2 — s1]", (75)

where 0 < o < 1. If, in addition, K is a Hermitian operator and o > 1/2, then

K s a trace class operator.

Suppose that A : H — H is a linear bounded operator. Recall [58] that A
has a finite matrix trace if for any orthonormal basis {@(m)};io of the space H

the series

Z (A, &)y (76)
=0

converges, where (-,-), is a scalar product in H. Note that the series ([76)
converges absolutely since its sum does not depend on the permutation of the
terms of the series (76) (any permutation of basis functions ¢;(z) forms a basis
in H) [58].
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Proposition 3 ([59], Theorem 5.6). Let K : H — H be a trace class

operator. Then

trh =3 (Ad; 65)y (77)
j=0
for any orthonormal basis {@(w)};io of H.
Consider an integral operator K’ : Lo([t,T]) — Lo([t,T]) defined by the

equality

T
(K'f) (r) = / K'(r, 5)(s)ds,

where the continuous kernel K'(7, s) has the form (see [14], Sect. 2.1.2)

Ua(t)i(t2), t1 >t
Ui(t)a(te), t1 <ty

K'(ty,t0) = (t1,t0 € [t,TY),
where 11 (7),19(7) are continuously differentiable functions on [¢, T7.

Note that (see [14], Sect. 2.1.2)
| K (ta, 52) — K'(t1, 51)] < L (Jta — ta] + |s2 — s1]) (78)

where L < oo and (t1, s1), (t2, s2) € [t, T]?.

Let us substitute t; =ty = 7 into (78))

|K'(,82) — K'(7,51)| < L|sy — s1]. (79)

Thus, the condition ([78) is fulfilled (o« = 1). Further, using Fubini’s Theo-

rem, we have
T to
(Ko, ) gy = [ belta)ut) [ nltr)ote)dendts+
t t
T

" / b (t2)y (1) / bolty) () dtydty = / b () (t) / (L) (t2) oty +

t
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T ta
+ / Vo (t1)z(t1) / 1(t2)y(t)dtadty = (K'y, )1 07y, - (80)

The conditions of Proposition 2 are fulfilled. Then, K’ is a trace class

operator. Since the kernel K'(t1,t5) is continuous, then by Propositions 1 and

3 (see ([74)) and ([77))) we obtain

T T
> (K65 0y = [ K(s,9)ds = [wrpvalds. ()
71=0 t t

Combining (80) and (R1l), we get

/@/12 t2)dj (t2) /¢1(t1)¢j1(t1)dt1dt2+
=0 \%

J1=

/wl t2) ¢y, (t2) /% t1) g, (t)dtdty /¢1 )ba(s (82)

where {¢;(z)};Z is an arbitrary CONS in the space Ly([t, T]) and 1(7), ¢2(7)
are continuously differentiable functions on [t, T.

Let us substitute (7)) = (1 — ) and ¥y (7) = (1 — )™ (I,m = 0,1,2,...)
into (82))

- T to
(ta — 1)y, (ta) [ (t1 — )", (t1)dt dto+
(e ]
+ / (ta — )", (t2) / (ty — 1) gy, (t1)dtydty | = / (=) (r —t)™dr, (83)

where [,m =0,1,2,...

The equality (83]) was obtained in [57] using other arguments. In addition,
the formula (83) was used in [57] to obtain (73)).

Consider this approach [57] in more detail. Since the equality (83) is valid

for monomials with respect to 7 — t (7 € [¢,T]), it will obviously also be valid
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for Legendre polynomials that form a CONS in the space Lo([t,T]) and finite

linear combinations of Legendre polynomials.

Let 1 (1), (1) € Lao([t, T]) and ¢\ (7), ¥\ (7) be approximations of the
functions 11 (7), 15(7), respectively, which are partial sums of the corresponding

Fourier—Legendre series. Then we have (see (83]))

T t
/¢§q)(t2)¢j(t2)/¢§p)(t1)¢j(t1)dt1dt2+
t t

/% (t2)d;(t2) /% (t1)p,(t1)dt1dts /l/Jl dr. (84)

Let us fix ¢ in ([84]). The right-hand side of (84) for a fixed ¢ defines (as a
scalar product in Ly([t,T])) a linear bounded (and therefore continuous) func-
tional in Ls([t,T]), which is given by the function @/JSJ). The integral operator
(which corresponds to the matrix trace on the left-hand side of (84))) is a trace
class operator (see [57]). The matrix trace of the mentioned operator (on the
left-hand side of (84])) is also a linear bounded (and therefore continuous) func-
tional (in the space of trace class operators [58], [59]) which can be extended

to the space Lso([t,T]) by continuity [60].

Let us implement the passage to the limit lim in (84])

p—00

Z /@/’;q)(t?)fbj(@)/¢1(t1)¢j(t1)dt1dt2+

Jj=0 t

T
+ [ Pi(t2)gi(t2) % (t1);(t1)dt1dts Uy (1 % dr, (85)
Josos y

where ¢ € N. Recall that @/12 (7') is a partial sum of the Fourier-Legendre
series of any function v (7) € Lo([t,T]), i.e. the equality (85) holds on a dense
subset in Lo([t, T']). The right-hand side of (85) defines (as a scalar product in
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Lo([t, T])) a linear bounded (and therefore continuous) functional in Ly([t, T1),
which is given by the function ;. On the left-hand side of (8H) (by virtue
of the equality (85))) there is a linear continuous functional on a dense subset
in Ly([t,T]). This functional can be uniquely extended to a linear continuous

functional in Lo([t,T]) (see [61], Theorem 1.7, P. 9).

Let us implement the passage to the limit lim in (85

gq—0o0

/@/12 t2)0;(t2) /@/11 t1)@;(t1)dt 1 dto+

Mg

<.
Il
o

/% t2)d;(t2) /¢2 t1)@;(t1)dtidts /@/11 Yo (T (86)

Applying Fubini’s Theorem to the left-hand side of (8(]), we obtain (73).

Step 3. Under the conditions of Theorem 13 we prove that

o Z Cjk---lerljljljlfQ---jl (87)

GG i

& 1
E :Cjk---jzﬂjljljlﬁ---jl - ECjk---jl

51=0

(88)

> 1
Z Cjk---]’lJrljljljlfQ---jl - icjk---jl :
j— ()~ ()

Denote

-1 to
le—z---j1 (tl—l) - / wl—2(tl—2)¢jl_2 (tl—Q) cee / ¢1 (t1)¢j1 (tl)dtl coodte.
t t

Using Fubini’s Theorem and ([73]), we obtain

50 50 T ti4o
ZCjk...jHljljljl,g...jl = Z/@/Jk(tk)quk(tk) e / Vo1 (tiv1) i, (tr1) X
jl:() jl:O t t
tiy1 t
X /M(U)%(h)/¢z-1(tl—1)¢jl(tz—1)le_2...j1(t1—1)dtl—1dt1dtz+1---dtk =
¢ t
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—Z/¢z t) ;. (1) /@/Jz 1(t-1) @5, (t1-1) Cj ...y (B2 ) dby 1 X

J1=0"%

></¢l+1(tz+1)¢jl+1(tl+1)---/lbk(tk)sﬁjk(tk)dtk---dtz+1dtz =

o T
— %Z/@bl(tl)¢l—l(tl)0ﬁ2---j1<tl)><
Ji=0 t

T
></¢l+1(tz+1)¢jl+1(tl+1)---/lbk(tk)sﬁjk(tk)dtk---dtz+1dtz =
te—1
w T 142
1
= EZ/W(%)%@(%)---/¢z+1(tl+1)¢jl+1(tl+1)><
jl:O t t

L1
1

Vi)Y (t)C,. g (t)dtidts - . dEy, = §Cjk...j1 :
4 (Jujo) ()

The equalities (88) and (87) are proved.

Step 4. Applying (65) and (R7) repeatedly, we get (see [15] (Part I of this
work) for details)

p

. gy _,)
lpl—>ro% Z Jk--J1 H 1{J925 1 3925}1{ 92517 igzﬁéo}‘]leql ¢3qk 2r =

JseJk=0 s=1

r
- H 1{2.92571 = Z14‘725 7&0} X
s=1

X
(.jggjgl)m(')"'(jggr.jgg,«,1)m(')ajgl .] aaaa .]ng 1 jng

p
_ 1
lel_}o% E ijk,_,jl

J1seedqsJf=0
47#91:925--92r—1:92r

: (g iay_y.)
X H 1{9252925—1+1}J/[¢jq1 tte quqk_zT]T,tl o +

s=1
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: ( )917927"'7927‘—17927‘(iq lq . 7")
+ H 1{i925—1: lgg, #0}1 1.Im. RTt PR = (89)

p—00

H {g2s=02s— 1+1}J[17/}( )](“ Zk)[sr,--.,81]+

p—00

+H1{¢g25,1: iy, 0311100 R;igl’g% i) (90)
=1

w. p. 1, where g9;_1 d:efsi, i=12....r,r=12...1k/2], (S,...,51) € A,
J[qp(k)](il---ik)[sra---vsl] is defined by (37) and Ay, is defined by (B38), and

Tt

_|_

q#91,92,-92r—1,92r

p
(p)gl,gg,...,ggrfl,ggr(iql...iq _ 7‘) r A
RT,t = Z ((_1) Cj%.)..jq...jl

G1semdqye i =0
4791:925--92r—1,92r

T 128 { Jke-Jg---J1

l1=1

+
q#£91,925--:92r—1,92r

~ +
q#91,92,-,92r—1,92r

X
4791,92,--92r—1,92r

, (iql...z’qki T)
X J [¢jq1 cen ¢jqk—2r:|T7t e

+(_1)1 Z ShSlz . 'Slr—l {Cj%.)..jq...jl

Il slp—1=1
l1>l2> >l q

The transition from (89) to (90) is explained in the proof of Theorem 12
(see the derivation of (58))).
By condition (63) of Theorem 13 we have (also see the property (44]) of the

multiple Wiener stochastic integral)
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gy oo 2
hm M {(R;{iiglag%“-agQr—laQQT( q1 qk2r)> } S

p—)oo
2
+
q#91,925--92r—1,92r

p
. ~(p)
SKlm o 3 ((0%...@...3-1
2
4791,92,--,92r—1,92r

J15--5Jqs-J=0
q7#91,92>--,92r—1,92r
2
+
q791,925--:92r—1,92r
2
=0, (91)
qF91,925--,92r 1,92~

+Z (Sll { JheeJgedn

l1=1

+ Z (511512{ SR

l1,lp=1
l1>1o

~(p)
+ Z (Shslz s Slrfl {Cjkp...jq...jl

ll l2 ..... T 1= 1
l1>12> >l q

where constant K does not depend on p.

Using (@0) and (9Tl), we obtain

| (iag gy _y.)
Lim. Z Cjk Ji H 1{](728 jg%}]-{igzs_lz iggs#O}J/[(fbjﬂ e (fqukfzr]Tatl =

p—00
.]17 7.]k 0

H Y | 1 e e N A W B (92)

where notations are the same sa in (00).

Applying (B4]) for the case p1 = ... = pp = p as well as (61]), we obtain
p ko
e jh%_o Cei E G =
/2]

G +Z ST T e = @ (93

(Srv 751)€Ak r
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w. p. 1, where notations are the same as in Theorem 8 and j*[w(k)]glt“'i’“) is

defined by (48]). Theorem 13 is proved.

3.2 Generalization of Theorems 11-13 to the Case When the Con-
ditions ¢¢(z) = 1/v/T —t and ) (7)Y—1(7) € Lo([t, T]) (1 =2,3,...,k)
are Omitted

In this section, we will consider the following generalization of Theorem 11.

Theorem 14 [14], [50]. Assume that the CONS {¢;(x)}32, in the space
Lo([t, T]) and ¥1(7), ..., Yx(T) € Lo([t, T]) are such that

p1 Pq Pk

pl,..l.,iggl—mo ZZZ

J1=0 Jq=0 Jx=0

X
q#91,925-,92r—1,92r

oo Y G _

Jg1 =0 Jgp—1=0

min{pfn 7p92 } Inin{pg%u 1'Pgay }
X

Jg1=Dg2> 09271 =92,

1 r
o H 1{9212921—1+1}Cjk---j1 -

2
=1 (j92j91)m(')"'(jggrjgmafl)m(')ajgl .] aaaaa ngr 17 ‘792r>

(94)

forallr =1,2,...,[k/2]. Then, for the sum J*[)F )](Tt ) of iterated It6 stochas-
tic integrals defined by ([d8) the following expansion:

Tyt = Lim, >3 e Jlncj
J1=0 Jx=0

that converges in the mean-square sense is valid, where C} 15 the Fourier co-

k---J1

efficient (29), 1.i.m. is a limit in the mean-square sense, iy, ...,ip = 0,1,...,m,

T
— [ orawt)
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are independent standard Gaussian random variables for various i or j (in the

case when i # 0), w = 7.

Proof. To prove Theorem 14, we need to prove that under the conditions

of Theorem 14 the following equality:

X
(jggjgl )m(')"'(jggrjggr_l )m(')ngl = jg2 ----- ngrfl = jg%

p
: 1
o > 5

oo i =0
q#91:92:-++:92r—1:92¢

: gy _g,)
X H 1{7;92571: Z.925 ¢O}Jl[¢]ql ) ¢]qk 27‘] o =
s=1

—JW (i (95)

holds w. p. 1, where gs = g1 + 1, .., gor = gor 1 + 1, goi1 &= 83,0 = 1,2,...,7,

r=1,2,...,[k/2], (55,...,51) € Ap, J[p ] rinlsreil io qefined by (B7) and
Ay, is defined by (B8); also we put py = ... = p; = p in (O3) to simplify the

notation; another notations in (93] are the same as in Sect. 2.3, 2.5, 3.1.

Using the It6 formula, we obtain w. p. 1

tiya L1

/ () - /¢l+1t1+1/¢lt11¢11t11/¢12t12

tiy2 ti41 L1

/ (t) - /¢l+1tz+1 /¢zt11¢11t11dt11 /¢l2tl2

. / Yi(t)dwi L dwi P dwit) L dwi -
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tiy2 L1

/wktk /¢l+1t1+1 /¢l2t12 /wltllwzﬂfz )dt 1 | x

t;—2

/¢l 3(t1-3) /@/11 t1) alvvt21 . dwt“ 3)a’vvlg” 2 dwgu“). dwg ), (96)

where | > 3. Note that the formula (96]) will change in an obvious way for the
case t;11 = 1. We will also assume that the transformation (06) is not carried

out for [ = 2 since the integral

/ o ()00 (1)t

is an innermost integral on the left-hand side of (O6]) for this case.

[t is important to note that the transformation (96]) fully complies with the
classical rules for replacing the order of integration (Fubini’s Theorem) if we

replace all differentials of the form dwt(jj ) with dt; in (O0]).

Indeed, formally changing the order of integration on the left-hand side of

(@6)) according to the classical rules, we have

/T%ﬁk(tk) - 72¢l+1(tz+1) 71%(7511)%1@11) t/lll/Jm(tlz) o (97)

12
/@bl(tl)dwt( . dwtll 2)dtl_ dwt(uﬂ) 3 dwt(zk) _

t

42 L1 ti1
/ (tx) - /¢l+1 ti1) /% ty th1 : /M 2(t1—2 dwtl
L1
X /wl(tl—l)wl—l(tl—l)dtl—l th(ZHl dwt(zk) —
ti—2
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T li42 ti+1 ti41

:/W(M).../MH ti+1) /wl t)dw! /M o (tro)dw!?

tiy1

/ / tl 1¢l 1(tl 1)dtl 1 dwt”H dWEZk) _

T tiy2 L1 L1

_ / Gty ... / Gro(t) / Gt (frr) by / (1) dw ™

t

ti+1

Y1 (ti- Q)dwtll ’ th”“ ---th(,ik)_

ti—3

tiyo tiy1 ti1
/ (tx) - /¢l+1 ti41) /wl ty th1 : /QM 2(t1-2)
t;—o
(t ti1)dty | dwiPdwi™) L dwi =
Vi(ti1) 1 () dt g | dwy P dwy, W dwy S =
ti42 ti1 tiv1

/ (t) - /¢l+1tz+1 /¢zt11¢11t11dt11 /¢l2tz2

/ Ui (t)dwy . dwy Pdwyt L dwi -

tiy1

ti+2 tiy1 t1—2
/wktk /¢l+1t1+1 /¢l2t12 /wltllwzﬂfz dti—y |
ti_2
/ Wi_s(ti_3) / Gi(t)dwi L dw Y dwy P dwi Y dwY. (98)

Comparing the right-hand sides of (96]) and (O8) we come to the conclusion

that we got the same result.

https://doi.org/10.21638/11701 /spbu35.2024.206 Electronic Journal: http://diffjournal.spbu.ru/ 117



Differential Equations and Control Processes, N. 2, 2024

The strict mathematical meaning of the transformations leading to (98)) is
explained in Chapter 3 [14], at least for the case when ;(7),...,¥r(7) are

continuous functions on the interval [¢,T7].

Note that under the conditions of Theorem 14, the derivation of the formulas
(@6) and (98)) will remain valid if in (96)) and (O8) we replace all differentials of

the form dng ) with dt; (this follows from Fubini’s Theorem).

Temporarily denote J[w(k)]géjt...ik)[sr,...,sl] e gfjt...isl_1z’sl+2...isr_1z'sr+2...ik).
Let us carry out the transformation (Q6]) for the iterated Itd stochastic in-
tegral ][w(k)]g_{’lt"'isl*1i51+2-'-isrflierrQ-”ik) iteratively for sq,...,s,. After this, apply
Theorem 10 (see (47)) to each of the obtained iterated It stochastic integrals.
As a result, we obtain w. p. 1

r

(i1.isy—1isy 42 0sp 10yt ik)
[[¢(k)]Tjt 1-1%s1+2 Vspt2ethk) Hl{isq:i5q+17é0}x
q=1

- (k) d(il---7:5171i51+2---isrflierrZ---ik) . b= (k) d(il"'7;51717251+2"'i5r71i5r+2"'ik) -
X (I [V Y™ 7, -
T
= H 1{i8q:i5q+17’é0} X
q=1

P 2"
: § : ~(d)
X lpl_}o% E : le'-'jsl—lj51+2'-'jsr—1jsr+2-'-jk

jl1"'7j81—17jsl+27"-7jsr—lajsr-‘rQa"'ujk:O d:1

~(d)
le-'-jsl—ljsl+2-'-j5r—1j8r+2-'-jk X

, (i1l 1y 420 sy 15y 4200k
xJ [¢j1 e '¢jsl—l¢jsl+2 s ¢j8r—l¢jsr+2 s ¢jk]T,t Y ) (99)

where some terms in the sum ”

2

d=1

can be identically equal to zero due to the remark to (98]).
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Taking into account that the integrals f[@b(k)];,{(il"'isl_li””'"iST_liST”'"ik) and
the Fourier coefficients C’ are formed on the basis of the

sy —1Js 42+ Jsp—1Tsp+2---Jk

same kernels (the same apphes to the integrals I[y* ] Aoyl dormtor 20 04)

and the Fourier coefficients Cj@ a1 . ), as Well as a remark about
1-Jsy—1Jsqy42--Jsp—1Jsr+2---Jk

the relationship of the transformation (96]) based on the Ito formula and on the

basis of classical rules for replacing the order of integration (see the derivation

of (O8)), we obtain using Fubini’s theorem (applying the inverse transformation

from (O8) to (O7) in which all differentials of the form dng) are replaced with

dt;)

27‘
S i i = O i i | =
J1--Js1—1Js1+2+-Jsp—1)sp+2---Jk J1e-Jsy =151 42+ Jsp—1Jsr+2---Jk

d=1

—Cy , (100)

(ngjgl)m(')"'(jggrngTfl)m(')v‘]gl Jggr3Jgg, 1= Jag,.

where go = g1+ 1,.. ., gor = go,—1 + 1. Combining (9Q9) and (I00), we get w. p. 1

I[w(]{)](il...isl_1i51+2...i5T_1i5T+2...ik) .
Tt _

3

p

= Lim. > G

J1s--dq>2d =0
4791,925--92r—1:92r

X
(jggjgl)m(')---(jggrjggrfl)m(')ajgl .]927 5.]92T 1= J92r

: gy _g,)
X H 1{i92571 = Z.925 ;AO}J/ [¢jq1 ) ¢]qk 27‘] o ’
s=1

where we use the notations from Sect. 2.3, 2.5, 3.1. The quality (O5) is proved
for the case when {¢;(z)}32, is an arbitrary CONS in the space Lo([t, T7). Thus,
the condition ¢g(x) = 1/4/T —t in Theorems 11-13 can be omitted.

Let us separately explain why the condition ¥;(7)Y_1(7) € Lo([t, T]) (I =
2,3,...,k) in Theorems 11, 13 can also be omitted. Recall that this condi-
tion appeared due to the direct application of Theorem 10 to the iterated Ito
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stochastic integral J W(k)]%ltmik)[sT """ ! defined by B7) (see the transition from
) to ([B8)).

It is easy to see that the kernels Kd(tl, oy tpegy) and Ky(ty, ..., tp_o)
of the iterated Ito stochastic integrals I[y)®) Elp(él'"isl712‘51”'"Z‘S“li””"'ik) and
I_[w(k>];{?"'isl711’51”'"is’”flis’””'"ik) have the same structure as (4]) but with new
wight functions 1(7),...,Yp—2(7) and 1(7),. .., Yg_2,(7), some of which
possibly coincide with ¢1(7), ..., ¥r(7) (see ([@d)). Moreover, the conditions
Di(7), () € Lo([t,T]) and ¢u(T)via(7) € Li([t,T]) (I = 2,3,...,k)
guarantees that Kq(t1, ..., tpor), Ka(ti, ... tps) € La([t,T]) (see ([@B)). This
means that the formula (Q9) is true if 1(7),...,U(7) € Lo([t,T]) and
Yi(T)—1 (1) € Ly([t, T]) (I = 2,3, ..., k). Furthermore, the formula (I00) holds
under the conditions ¢y (7), ..., ¥r(7) € Lo([t, T]) and ¢y (7)¢—1(7) € Li([t, T])
(1=2,3,... k).

Since the condition ¥y (7),...,Yx(7) € Lo([t,T]) implies the condition
YT (1) € Li([t,T]) (I = 2,3,...,k), then the condition ¥;(7)¢;_1(7) €
Li([t, T]) (I =2,3,...,k) can be omitted in the above reasoning.

Thus, the equalities (@9) and (I00) are satisfied under the condition
U (1), ..., () € Lao([t,T]) and the condition o;(7)Y—1(7) € Lo([t, T]) (I =
2,3,...,k) can be omitted in Theorems 11, 13. Theorem 14 is proved.

3.3 Another Definition of the Stratonovich Stochastic Integral

Let (2, F, P) be a complete probability space and let w(t, w) def wy [0, T xQ —

R be the standard Wiener process defined on the probability space (€2, F, P).
Let us consider the family of o-algebras {F;, ¢t € [0, 7]} defined on (2, F, P)

and connected with the Wiener process w; in such a way that
1. F, CF;, CF for s < t.

2. The Wiener process w; is Fi-measurable for all ¢ € [0, 7.
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3. The process wyao —w; for all t > 0, A > 0 is independent with the events

of o-algebra F;.

Let &(1,w) e, [0,7] x 2 — R be some random process, which is mea-

surable with respect to the pair of variables (7,w) and satisfies to the following

condition:

[lelir <o w1 6200

Let {7;}}, is a partition of [t,T] such that the condition (@) is fulfilled.
Consider the definition of the Stratonovich stochastic integral, which differs

from the definition given in Sect. 2.2.

The mean-square limit (if it exists)

N-1 it
; def
l.im. E Sds wT . wT / - odw; 101
N—oo OT]+1_T] /5 i ! 5 ( )

is called [63], [64] the Stratonovich stochastic integral of the process &, 7 €
[t,T]. We also denote by

[ & odu.

t

the Stratonovich stochastic integral like (IOI)) (if it exists) of {1yep -y for
re[t,T], t>0.
It is known [64] (Lemma A.2) that the following iterated Stratonovich

stochastic integral:

JS [yt lin-ik) / Ur(tr) . / di(ty) o dwi™ o dwi (102)

exists for the case i1 = ... = i # 0, where 7 € [t,T], ¥1(7), ..., k(7)) €

Lo([t, T]), i1, ..., =0,1,...,m, w!” (¢=1,...,m) are independent standard

. . . . 0
Wiener processes defined as above in this section and wg —
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Note that in [65] (2021) an analogue of Theorem 8 (1997) is proved for the
integral JSR®)EH) (i = = ig 0, du(r),.....va(r) € La([£.T]))

)

3.4 Expansion of Iterated Stratonovich Stochastic Integrals of Mul-
tiplicity 2. The Case of an Arbitrary CONS in the Space

Ly([t, T) and (), 4(7) € Lo([t, T])

Consider the special case k = 2 of Theorems 12, 14 in more detail. In this case,
the conditions (62)), (94)) (p1 = p2 = p) takes the following form (compare with
@3)):

jzo/¢2(t2)¢j(t2)/¢1(t1)¢j(t1)dt1dt2 = %/%(7’)1#2(7)(17, (103)

where {¢;(7)}32, is an arbitrary CONS in Ly([t,T]) and (1), va(7) €
Lo([t, T]) (Theorem 14) or 11(7), 15(7) are continuous functions on [t, T] (The-

orem 12).

Thus, from Theorem 12 (the case k = 2) we obtain the following theorem
(recall that the conditions ¢g(z) = 1/4/T — t can be omitted in Theorem 12).

Theorem 15 [14], [49]-[51]. Suppose that {¢;(x)}32, is an arbitrary CONS
in Lo([t,T)) and ¥1(T),12(T) are continuous functions on [t,T]. Then, for the

iterated Stratonovich stochastic integral

TPl = / T¢2(t2) /

the following expansion:

t

¢1(t1)dwgl)dwgz) (92 =1,...,m)

b1 P2
FWOR = Lim >3 GGGy
’ J1=0j2=0

that converges in the mean-square sence s valid, where the notations are the

same as i1 Theorems 1, 2.
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The condition of continuity of the functions 11(7),19(7) is related to the
definition ([I6) of the Stratonovich stochastic integral that we use.

Theorem 15 can be generalized to the case 11(7), 9o(7) € Lo([t, T] (see be-
low) if instead of the definition ([I@]) we use another definition of the Stratonovich
stochastic integral (see the definition (I0T))).

From Proposition 3.1 [65] for the case k = 2 we obtain

T tQ T t2
/ L) / (1) o dw! o dwl) = / a(ts) / b1 () dw, dw!+
t t t t

T

+3 [ttty (104)

t

w. p. 1, where ¢4 (7),12(7) € Lo([t,T]), 1 =1,...,m,
T y
/@/Jg(tg) /@/Jl(tl) o dwgf) o dwg)
t t
is defined by (I01]), (I02) and
T sy
[ int) [ wrteawawl?
t t

is the iterated Ito stochastic integral of the form [2)) (k = 2, i1 =iy = 1).

On the other hand, it is not difficult to show that
T tg T t2
/ () / Gi(t) o dw o dw = / Unlt) / i(t)dwaw?  (105)
t t t t

w. p. 1, where ¥y (7),¢¥9(7) € Lo([t,T]), ¢ # 5 (i,7 = 1,...,m), another nota-

tions are the same as in (L04]).

Combining (I04)) and (I05), we get (see (4S)

T tg T t2
/ L) / Ui (t) o dw!™ o dw!™) = / a(ts) / dr () dw D dw!?+
t t t t
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T
1 def Tx ilig
43 [ on)us(edn & TR (106)
t
w. p. 1, where wl(T), ¢2(7’) € Lg([t,T]), 11,10 =1,...,m.
Summing up the above arguments, we obtain from Theorem 14 (k = 2) the

following generalization of Theorem 15 to the case ¥ (7), () € Lo([t, T)).

Theorem 16 [14], [49]-[51]. Suppose that {¢;(x)}32, is an arbitrary CONS
in the space Lo([t,T]) and 1(7),vo(T) € Lo([t,T]). Then, for the iterated

Stratonovich stochastic integral

T 2
PN = [t [ odwi oaw? (i in=1,...,m)
t t
the following expansion:

Js[w ] mz) _ p};f_{loo Z Z Cjﬂlcj ]2 (107)

J1=0j2=0

that converges in the mean-square sence is valid, where the notations are the

same as in Theorems 1, 2 and JS[@/J(Q)]%Z” is defined by (102).

3.5 Expansion of Iterated Stratonovich Stochastic Integrals of Mul-
tiplicity 3. The Case of an Arbitrary CONS in the Space

Lo([t, T]) and t1(7), ¢2(7),¢3(7) = 1

In this section, we will prove the following theorem.

Theorem 17 [14], [49], [50]. Suppose that {¢;(x)}72, is an arbitrary CONS
in the space Lo([t,T]). Then, for the iterated Stratonovich stochastic integral of
third multiplicity

xt3 xt2
T @ ///dwt dwiPdw(?  (ir iz i3 =0,1,...,m)
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the following expansion:
P
TP = Lim, Z i GG ¢ (108)
2,j3=

that converges in the mean-square sense is valid, where

T ts to
Cj3j2j1 - /¢j3(t3)/¢jg(t2)/¢j1(t1)dt1dt2dt3
t t t
T
= [oriawt
t

are independent standard Gaussian random variables for various i or j (in the

case when i # 0), wl = 7.

and

Proof. First, note that under the conditions of Theorem 17 the equality

xt3  xt2

J [ Z”m / / / dwt dwt dwt

is true w. p. 1 (see Theorem 8), where J*[1)®)]}} 1”213) is defined by (48]).

According to Theorem 14, we come to the conclusion that Theorem 17 will

be proved if we prove the following equalities (see (04))):

2
i 3 ( S o — 2 ) oo
g G~ ()

73=0 71=0
2
i3 (S jon| Yo o
Pz \ ja=0 (as)~ ()
2
plgﬁloz ( ZCﬁJﬂl) = 0. (111)
J2=0 71=0

Let us prove (I09). Using Fubini’s Theorem and Parseval’s equality, we

have

p 2
- Z stjljl) -

)~ () j=0

lim E
D300 333131

Jjz=0
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¢J3 / ds — Z / ;. (s / ¢, (0)dods | dr | =

0\ % t 0 t
T T 2 2
<iin 3| [ou0 [ 2e—0 -2 [onwas) |ar| -
< pE?O G, (T T 2.3 ¢, (s)ds T =
3= t J1=0 t
T ] » ] T 2 2
= plggo 5(7‘ —t) — Z 3 /gbjl(s)ds dr. (112)
t 71=0 t
Applying the Parseval equality, we have
T 2 T 2
— 1 =1
Z 9 ¢jl(8)d8 = Z 2 1{S<T}¢]1( ) =
J71=0 t J1=0 t
1 ’ 1
= —/ (Lisery) ds = =(7 — 1), (113)
2 2
t
Moreover,
. 2
"1 1 1
T—t 2_35 /gbjl(s)ds < 5(7’—15) < §(T—t) < 0. (114)

Using (I13)), (I14) and applying Lebesgue’s Dominated Convergence Theo-
rem in (I12)), we obtain the equality (109).

Let us prove (II0). Using Fubini’s Theorem and Parseval’s equality, we
obtain

p 2
-y stjgjl) =

(Jsj3) () js=0

lim g
D300 J3]3J1

Jj1=0
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P T T » T 0 T 2
1
= 11{20 Z a gb]l(s)deT o Z Q5 3('9) ¢J3 (7-) gbjl(s)deTde -
=\’ / / asot/ j / !
v (4 T , T T T 2
= lim ¢ 1 (S) (T - S)dS - ¢ '1(8) ¢ 3(7-) ¢ 3(9)d8d7d5 -

)
~ (7 v (7 N
s;;rgoz\/cﬁjl(s) 2T =5 =3 5 | [ennar ds] _

T X b T 2
=lim [ (T =) - Z 5 (/ ¢, (T)dr ds. (115)
t J3=0 s
Using the Parseval equality, we get
T 2 T 2
— 1 — 1
Z 5 /¢]3 (T)dT - 5 /1{S<T}¢j3 (T)dT -
J3=0 S ngO ¢
1 r 1
2
=5 / (L(s<ry) dr = 5(T — 5). (116)
t
Moreover,
p T ?
Sr-s5-% = /gs-(f)df <tr_g<lropy<s i
! 7 — 2 — 2

Combining (IT5)—(II7) and using the same reasoning as in the proof of
(I09), we obtain

T 2\ 2
, 1 ~ 1
lim E(T —5) — Z 5 /¢j3(7)d7 ds = 0.

P—00 .
t 73=0
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The equality (I10) is proved.
Let us prove (I11). Applying Fubini’s Theorem and Parseval’s equality, we
have

2
plggo Z ( Z C]l]2]l> -

Je=0 \ j1=0
2

= lim Z zp: /T ¢, (0 / ¢, (T / ¢;,(s)dsdrdd | =

Jj2=0 J1= Ot

T 2

:plggoi i/%(T)/T¢j1(8)d8/q5jl(8)d9d7 <

j2:O leO t

T

: JE&Z / O (T / G, (s)ds / ¢, (0)dbdr | =

J2=0 71=0
2

= lim /(bj1 ds/gb]l )do | dr. (118)
1 Ot

p—>OO

Using (1)), we obtain

Z/(pﬁ ds/% 49<2/% ds/% <

n=0%

<Z/¢ﬁ ds/cbﬁ g% — 1) < o0. (119)

]lot

Applying the generalized Parseval equality, we get

JH&Z / b5 (5)ds / NS / scryn(s) /T 1oy (5)ds =

n1=07%

T
= /1{S<T}1{S>T}d8 = 0. (120)

t
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Taking into account (I19), (I20) and using Lebesgue’s Dominated Conver-
gence Theorem in (II8), we obtain the equality (I11]). Theorem 17 is proved.

3.6 Expansion of Iterated Stratonovich Stochastic Integrals of Mul-
tiplicity 4. The Case of an Arbitrary CONS in the Space

Ly([t,T]) and 1(7),...,¢u(7) =
In this section, we will prove the following theorem.

Theorem 18 [14], [49], [50]. Suppose that {¢;(x)}72, is an arbitrary CONS
in the space Lo([t,T]). Then, for the iterated Stratonovich stochastic integral of
fourth multiplicity

xta xl3 xt2

J* [ ) isia) / / / / dwt dwt dwt dwt

the following expansion:

p
T = 1im, Z Cj4j3j2j1C}f”é}fk}f’é}j“’
J35

p
J1:J2

that converges in the mean-square sense is valid, where i1,19,13,74 = 0,1, ..., m,

T t4 t3 t2
Clijsjoin = / ¢j,(ta) / 0js(t3) / dj, (t2) / ¢j, (t1)dt dtadtzdty (121)
t t t t

T
(= [ ¢i(r)dw!
'

are independent standard Gaussian random variables for various i or j (in the

case when i # 0), wl = 7.

and

Proof. First, note that under the conditions of Theorem 18 the equality

xta xl3 xit2

J* [ niersis / / / / dwVdw! dw") dw
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is valid w. p. 1 (see Theorem 8), where J*[s)* ] Uiiisis) §g defined by (48)).

It is easy to see that Theorem 18 will be proved if we prove the following

equalities (see Theorem 14 and (04)):

2
p
1
fim Z ( > Ciajujin — 5l ) =0, (122)
p—ro0 : . |
J3,J4=0 \ j1=0 (i)~ ()
P 2
lim Z ( Z Cj4j1j2j1 = 07 (123)
P—00 /
J2,J4=0 J1=0
D 2
lim Z ( Z Cj1j3j2j1 = 07 (124)
p—00 /
J2,J3=0 \ j1=0
2
1520 Z ( Z Cj4j2j2j1 - 3432]231 ) =0, (125)
! J1,J4=0 \ j2=0 (Jaj2) ()
p p 2
plg?o Z ( Z Cj2j3j2j1> =0, (126)
j17j3:O .220
2
lggo Z ( Z Cj3j3j2j1 - 33333231 ) =0, (127)
P J1,J2=0 \ j3=0 (Jaja)(+)
1 1 )
lggy Z 0333331]1 - ZCj3j3j1jl = g(T — t) , (128)
i J1,j3=0 (J3d3) () (F1j1) ()
plinolo Z Cjijsjsir = 0, (129)
J1,53=0
pli)lglo Z 012]11211 = 0. (130)
J1,j2=0

Let us prove the equalities (122)—(127). Using Fubini’s Theorem and Par-
seval’s equality, we obtain the following relations for the prelimit expressions
on the left-hand sides of (122)—(1271):

2
(jljl)f\v(')>

Z ( Z Cj4j3j1j1 - ]4]3]1]1
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O . t4 oF, 5 t3 t3 —t dtgdt4—
J3,Ja= 0( / : / ]
» T 17 i3 to 2
— Gji(ta) | ¢4 (t3) | &5, (t2) [ @5 (t1)dtrdtadtsdty | =
> /ﬂ fout [ fo )
¢4t4 ¢3t3< t?)_t)
T (fofo

_Z/¢j1 t2 /qﬁ]l 41 dtldt2> dtgdt4> —

71=07%
(7 / (4 vy AURY
=D, Gju(ts) [ Gy(ts) | S(ts—t) =D 5 ¢j1(s)ds) dtsdt, | <
ja:j4=0 \t/ t/ \2 71=0 / ) )
- (T ta ( , s 2 2
= Z /¢j4(t4)/¢j3(t3) %(t?, —1) — Z /¢j1(s)ds> ] dtgdt4] =

p p 2
Z ( Z Cj4j1j2j1) =
Jj1=0

j27j4:O

D T ta i3 to 2
Z ¢'4(t4) ¢'1(t3) ¢'2(t2) ¢'1(t1)dt1dt2dt3dt4> =
J2,J4=0 (glot/ ! t/ ’ t/ ’ / J
P D T ty to ty 2
L (Z 8i(ta) | 6i(t) [ o (i)t ¢'1(t3)dt3dt2dt4> i
J2,54=0 jlot/ ! t/ ’ t/ ’ Z J
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T ty ) ty 2
[outtd [ 62> [onttin [ o (t)dtadeadts | <
J2:4=0 \% t n=0% s
2
/ b, (t1) / b5, (t) / &, (t1)dt, / b, (t3)dtsdtadty | =
.]2 .]4 0 t ji= 0
2
= / 1j1yers) / &, (t1)dt / i, (t3)dts | dtadty, (132)
[t,T]2 Jj1=0
P P 2
Z (chlj3j2jl) -
J2,93=0 \ j1=0

p ty t3 to
Z ¢jl(t4)/¢j3(t3)/¢j2(t2)/¢j1(t1)dt1dt2dt3dt4

T t3 to T
Gjs(ts) | ¢4 (t2) [ &5 (t1)dts | ¢, (ta)dtsdtadts
Joo o forom |

|
]
| |
|

.
[
|

(en)

H.

>

J1=0

ot
£

IA

T
/ ¢, (t3) / 5, (1) Z / ¢, (1) dt, / ¢, (L) dtydtsydts

n=07%

t3

/T i, (t3) / 5, (12) Z / ¢, (t1)dty / o, (t4)dt ydtydts
-/

Jj1=0
Liyets) Z / ¢, (t)dt / bj, (ta)dty | dtadts, (133)

£
|

[t,T)2 Jj1=0
p p 1 2
E : § :Cj4j2j2j1 - ECj4j2j2j1 . =
J1,J4=0 \ j2=0 (jag2)(+)
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ta 12

P 0( / 0iu(ta) / / ¢, (t1)dt dtodty,—
¢ ; 2 2
; j ;i (t4) ] ), (t3) ] ), (t2) ] ¢j1(t1)dt1dt2dt3dt4> _
o~ O( /%4 ty) /qéh t1) /dtht1dt4—
i/T% (ta) /%1 t1) /%2 t2) /%2 t3) dt3dt2dt1dt4>2 )

.72—0 t
P T ty » 1 ta 2 2
ty — 1
= Z ¢j4(t4)/¢j1(t1) 4 5 | Zi /gbﬁ(s)ds dt1dt4 <
Juda=0 | % t J2=0 t
00 T ty » 1 ta 2 2
ty — 1
<> ¢j4(t4)/¢j1(t1) - 5 - - 25 /%(S)ds dtrdty | =
J1.Ja=0 \ % y jo=0 7
ty 2\ 2
1 "1
= 1{t1<t4} §(t4 - tl) - Z 5 /gb]g(s)ds dtldt4, (134)
0772 =0\

p p 2
> (Zomgjzjl) =
J2=0

J1,33=0

/ ¢, (ts) / ;4 (L3) / 5, (12) / ¢;, (t)dtydtadtsdty | =
Ji J3=0
2
Z / ¢, (t3) / ¢, (t2) / ¢, (1) dt dty / Oj (ty)dtydts | =
Jl J3=0 \J2=0%
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p p T 2
- Z Z/gb]i’» t3 /(fb]l tl /(rb]z t2 dt2/¢]2 t4 dt4dt1dt3 =
J1:J3=0 \J2=07%
P t3 2
- Z /¢j3(t3)/¢j1 t1) /%2 t2 dtz/ﬁ% ty)dtsdtydts | <
J1.J3=0 \ '} ; J2=0
2
S /gﬁ]g t3 /(;5]1 tl /gﬁh 1o dtz/gﬁh t4 dt4dt1dt3 =
1,J3=0 t Jo= Ot1
2
= / 1{t1<t3} /gﬁh 1o dtg/gﬁh t4 dt4 dt dts, (135)
[t,T)2 Jo= Otl
P 2
Z ( Z Cj3j3j2j1 - ]3]3]2]1 ) =
J1,J2=0 \ js=0 (Jagz) ()
» . T t3
=) 5 / / i, (t2) / ¢, (t1)dtydbydts—
.71 .72 0 t
P T 12 ts to 2
_Z/¢j3(t4)/¢j3(t3)/¢jz(t2)/¢j1(t1)dt1dt2dt3dt4 =
jBZO t
p 1 T T
=) . / ¢, (t1) / b, (2) / dtsdtadt; —
.71 .72 0 t
p T T T T 2
_Z/¢j1(t1)/¢j2(t2>/¢j3(t3)/¢j3(t4>dt4dt3dt2dt1 =
J3=0 3 151 to t3
p 1 T 2 ?
T —1t
/dbyl t1) /% t2) 2 _ ZE /¢j3(3)ds dtydty | <
jl ]2 =0 t j3:0 t2
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00 T T T » 1 T 2 2
— 1
< 3 | fonttn fon | =52 =35 | [ ontonis | | deade | -
=0\t t 15=0 \s,
2
1 vy (7 2
= 1{t1<t2} i(T — tg) — Z 5 /qug(S)dS dtodt;. (136)
[t.T]2 73=0 " \g,

Using Parseval’s equality, generalized Parseval’s equality and Lebesgue’s
Dominated Convergence Theorem, as well as applying the same reasoning as
in the proof of Theorem 17, we obtain that the right-hand sides of (I31))—(136)
tend to zero when p — 0o. The equalities (122)—(127) are proved.

Let us prove the equalities (I28)—(I30). First, let us show that
Cj4j3j2j1 + Cj1j2j3j4 = Cj4Cj3j2j1 - Cj3j4cj2j1 + Cj2j3j4Cj17 (137)

where C},j,j,;, has the form (I21).

Using Fubini’s Theorem, we have

T t4 t3 to
Ciisjoin = | @iu(ta) | &5,(t3) | ¢j,(t2) [ @5, (t1)dtidtadtsdty =
[oeo [eses [t |
T T s to
= [ 0j,(ts) | ¢j,(t3) | b4, (t2) [ &5 (t1)dtidtadtzdts—
[oteo [ [t |
T T ts s
— [ ¢, (ts) | &5,(t3) | &4,(t2) [ @j (t1)dtrdtadtsdty =
Jo oo
T T T s
= C},Csjoiy — | 0iu(ts) [ &5,(t3) | ¢4,(ta) | ¢ (t1)dtidtadtsdts+
fos oo

T T T t
+ [ 05,(ts) | ¢4,(t3) | ¢4(t2) [ @) (t1)dt1dtadtsdty =
[otts [ost forte |
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0140]31211 C]3J4Cjzjl +/¢j4 t4 /Qb]s t3 /quz t2 /¢j1 tl dtldt2dt3dt4_

/ ¢, (t1) / b, (t3) / ¢, (t2) / ;. (t)dt dtadtsdty =

- CJ4Cj3j2j1 - Cj3j4cj2j1 + Cj2j3j4Cj1 - Cj1j2j3j4' (138)
From (I38) we get (I37). Recall that in [16] (Part II of this work) we

obtained an analogue of (I37) for the case k = 6.

It is easy to see that we can consider the following generalization of (I37)

for the case k = 2r (r=2,3,4,...):

C¢k7/)k 1.1 + Cﬂ/ilih WY ka Cﬂ/)k 1Yk—2...Yn ka 1Yk Cﬂ/)k 2Vk—3.. 1/11+

JkJk—1--J1 J192---Jk Jk=1Jk—2---J1 Tk—1Jk Jk—2Jk—3--J1
Y2k 19k Yi—3Vk—4... Y1 Yatha.. APy oty Yorp3... g 1
+Cjk 2Jk—1Jk Cjk 3Jk—4---J1 CJ3J4 Jk C]zh +CJ2J3 Jk Cj1 ) (139)
where

T 12
Ot = / Ur(tr) b, (1) - . . / ity (£1)dty . dty, (140)

and ¢y (7), ..., ¥r(1) € Ly([t, T]). Further, we will write Cj,._;, instead of C* i

Jhew-J1
if this does not cause misunderstandings.

In principle, using (I39), we can calculate any expressions of the form

plggo Z Z Cjk J1

Jg2r—1=

, (141)

Jo1=Jg2>+Jg2r—1 I g2y

where g1, g2, ..., gor—1, gor are as in ([I8) and the following symmetry condition:

D) = (7)), Pa(7) = Ypa(r), s () = Pra(r)  (142)

is fulfilled for &k = 2r, r =2,3,4, ...

Obviously, the case ¥1(7), ..., 1¥(7) = 1 is possible since it is a special case

of the symmetry condition (I42). This case is important because it covers the
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mean-square approximation of iterated Stratonovich stochastic integrals from

the classical Taylor—Stratonovich expansions [2]-[7].

Let us prove (I28)). Substitute j; = j3, jo = 71 into (I37)
Cj3j3j1j1 + Cj1j1j3j3 - Cj3Cj3j1j1 - Cj3j30j1j1 + Cj1j3j30j1‘ (143)

From (I43) we obtain

p p p
E (Chajujuin + Chigijnis) = E - C,Clgiuin — E  ChyjCiit
j13j3:O j17j3:O j17j3:O
p
+ E : Cj1j3j3cj1'
J1,J3=0
Then

P P p 2
2 Z Cj3j3j1j1 =2 Z Cj3Cj3j1j1 — (Z Cj1j1> ) (144)

J1,53=0 J1,73=0 71=0
Using (I44)) and Fubini’s Theorem, we get

p p 1 p 2
Z Clajajijs = Z Ci,Chjijr — 5 (Z lejl) =

J1,J3=0 J1,J3=0 j1=0

p 1 p 1 5 2 p p 5 2
= Z Cj30j3j1j1 - 5 <Z 5(0]1) ) = Z Cj30j3jljl - (Z (Cj1) ) :
J1,J3=0 J1=0

J1,53=0 Jj1=0
(145)

oo | —

Applying Parseval’s equality, we have

Jj1=0

T
p
plggOZ(Cﬁ) = /1 dr =T —t. (146)
t
Combining (I45)) and (I44), we get
(T —t)?

p p
ph_glo Z Cj3j3j1j1 :plggo Z Cj30j3j1j1 - T (147)

J1,33=0 J1,33=0
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Further, we have

lim Z CsCljiji =

p—00 .

J1,J3=0
1 1
- D) l_glo 03303331]1 N li)nélo Z & 50333'1]'1 o Z Cisivin | -
Pree i o G~ P 550 (i) =0

(148)

Using the generalized Parseval equality, we obtain

_JHEOZ/a%g dT/% /d@dT:

(jljl)m 33_ 1

/T1-/Td9d7 (T;t)2. (149)

From (I48)) and (149) we have

lim Z CJ3CJ331]1

p—>OO

lim E C;.C =
D300 J3™~J3j11

J1,93=0

(T —t)? 1
- 4 o plggo Z 033 §Cj3j1j1

J3=0

o Z stjljl) : (150)

(]1.71) _71 =0

Combining (I47) and (I50), we obtain

(T —1)? 1
ph_glo Z 01313]111 = g - plggo Z C]s §Cj3j1j1

J1,J3=0 ja=0

p
- Z Cj3j1j1> :

()~ =0
(151)

Due to Cauchy—Bunyakovsky’s inequality and (I09), (I46), we get

p 2
ph—>I£lo <Z 033 ( J3J - Z Cj3j1j1)) <

j3=0 (i)~ ()  j=0

1
plggo Z J3 Z (501'3]'1]'1

j3=0 j3=0 (1)) §,=0
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00 p 1 2
< plggo Z (Cj3)2 Z (20j3j1j1 - Z stjljl) -

J3=0 J3=0 (i)~ 71=0
p 2
- t llglo Z < 737171 _ Z Cj3j1j1> = 0. (152)
P =0 (i)~ ji=o

From (I52) and (I51]) we obtain (I28]).

Let us prove (I29). Substitute j; = j1, jo = j3 into (I37)
Cj1j3j3j1 + Cj1j3j3j1 - le Cj3j3j1 - stjl Cj3j1 + Cj3j3j1 le' (153)

Using (I53), we get

p p p
2
2 ) Chguinin =2 > CiiChis — > (Ciiji) "™ (154)
J1,J3=0 J1,J3=0 J1,J3=0
Applying (I54), we obtain
p p 1 2 )
Z Cj1j3j3j1 - Z CjICijSjl - 5 Z (stjl) : (155)
J1,J3=0 J1,J3=0 J1,J3=0
Parseval’s equality gives
2
ym Z jsit) ]}ggo Z Lit <t195 (1) 0y (t2)dtrdty | =
J1,J3=0 J1,J3=0 [t, 772
2 T —t
— / (1{t1<t2}) dtldtQ — % (156)
[t 77
Combining (I55) and (I56]), we have
(T —t)?
ph_glo Z 011]3]311 pllglo Z 0]101313]1 o T (157)

J1,J3=0 J1,J3=0

Further, we obtain

lim Z Cj, Clajji =

p—>OO
J1,33=0
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1
o ph_glo E : 0110]31311 - plggo E : C]l 13]311
j1=0 7373 m( j1=0

p
- stjgjl) :

(J373) () j3=0
(158)

Applying Fubini’s Theorem and the generalized Parseval equality, we have

T t

3 o | [
Jsjs)

:,}H&Z/% dT/Qsjl /dtngZ/Tl /Td = t)z. (159)

1=07%

p
lim E C; Cliis
P00 4 J1~7373J1
J1=0

From (I58) and (I59) we get

lim E C. C; =
Ja J1~J3jsjt

J1,73=0

(T —t)? 1
- 4 o plggo Z le §Cj3j3j1

J1=0

o i Cj3j3j1) : (160)

(Jaga) () j3=0

Combining (I57) and (I60), we obtain

lim g C = hmE C
D300 J1J3J3J1 P00 n 333331

J1,J3=0 Jj1=0

- i Cj3j3j1) : (161)

(J373) () j3=0

Due to Cauchy—Bunyakovsky’s inequality and (II0), (I46), we get

p 2
ph_{go <Z le ( J3J3J1 - Z Cj3j3j1)) <

j1=0 (Jajs) () js=0

IA

p p 2
< lim E E _ E C. .
— pSoo J1 13]311 J3J3J1

J1=0 (Jajz) () js=0

2
1
plggo Z ]1 Z <§Cj3j3j1 - Z 0]31311) =

§1=0 §1=0 (Jajs)r~ j3=0
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p 2
- Z Cj3j3j1> = 0. (162)

(Jags) () =0

—(T—-1)1
pggoz ( J3Jz1

From (I61)) and (I62)) we obtain (129).

Let us prove (I30). Substitute j3 = j1, js = Jjo into (I37)

Cj2j1j2j1 + Cj1j2j1j2 - CjQleijl - lejQCijl + Cijlele' (163)
Then
p p
Z (Cjzjljzjl + Cj1j2j1j2> - Z (Cj20j1j2j1 + Cj2j1j20j1> -
J1,J2=0 J1,52=0
p
- Z Cj1j2Cj2j1' (164)
jl7j2:o

Using (164)), we have

p p p
1
§ : Cj2j1j2j1 - E : Cj2lej2jl - 5 E : lej2Cj2jl' (165)

J1,92=0 J1,52=0 J1,52=0

Fubini’s Theorem and the generalized Parseval equality give

lim g Ci . Chis =
P00 Jj2 e T

J1,J2=0
:ph—{go 'ZO/¢]2 t2) /%1 th dtldt2/¢gz t2) /%1 t1)dtrdty =
J1,J2
p
= lim > / Lit, <1105, (£1) @, (t2) dtrdt / Lty <t} 05 (1) @), (t2) dtrdts =
I32=0 72 [t,T]?
- / 1{t2<t1}1{t1<t2}dtldt2 — O (166)

[t,T]?

The equalities (I65) and (I66]) imply the relation

ph_glo Z 03231]2]1 _ hm Z 032031]2]1 (167)

J1,72=0 _]1_]2 =0
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Further, we have (see the derivation of (I52)))

2
p [ D
)2
tin (z chzcm) i 30 (Y (z o) <
J2=0 1=0 J2=0 J2=0 \j1=0
2 b /b 2
)2

plggoz j2) Z (Z C]Uz]l) = (I'—1) ;L%Z( CJUle) =0,

J2=0 J2=0 \j1=0 Jj2=0 \j1=0

(168)

where (I68) follows from (I11I).

Using (I67) and (I68), we obtain (I30). The equalities (122))—(I30) are

proved. Theorem 18 is proved.

3.7 Generalization of the Results from Section 3.5 to the Case
¢1(7)7¢2(7)7¢3(7) € L?([t?T])

In this section, we will prove the following two theorems.

Theorem 19 [14], [50], [51]. Suppose that {¢;(x)}52, is an arbitrary CONS
in the space Lo([t,T]) and 1 (7),va(7),3(7) € Lo([t,T]). Then, for the sum
J* a3 ] (ixéais) (11,49,73 = 0,1,...,m) of iterated It6 stochastic integrals defined
by (48) the following expansion:

p—00

p
T 1 (3)1(ixini : i
J [,@/}( )]f(T,th 3) = l'l'm Z J3]2]1 ]1 ]2 )Cj(gg)
2,J3=
that converges in the mean-square sense is valid, where

T t3 to
Cisjoiy = / V3(t3) @y, (t3) / Va(t2) @y, (t2) / 1(t1) g, (t1)dtrdtadts
t t t

T
— [ orawt?
t

are independent standard Gaussian random variables for various i or j (in the

case when i # 0), wl = 7.

and
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Theorem 20 [14], [50], [51]. Suppose that {¢;(x)}52, is an arbitrary CONS
in the space Lo([t,T]) and ¥1(7),2(7), ¥3(T) are continuous functions on [t, T).
Then, for the iterated Stratonovich stochastic integral of third multiplicity

x 13

T @) puits / s (ts / oty / D () dwi dw dw ()

t

the following expansion:

p
s, ,(3)1(ini2dz) _ . E : 22) (i3)
J [w ]T,t - lpl_)g . 333231 31 ]2 <j3
2,J3=
that converges in the mean-square sense s valid, where 11,129,153 = 0,1,...,m;

another notations are the same as in Theorem 19.
Note that Theorem 20 is a simple consequence of Theorem 19 and Theo-

rem 8 (k = 3). Let us prove Theorem 19.

Proof. First, let us note some facts that follow from Monotone Conver-
gence Theorem ([60], Theorem 3.5.1). Suppose that {g;(x)} is an arbitrary

sequence of real-valued measurable functions such that the series
> 9i(x) (169)
j=0

converges absolutely almost everywhere on X (with respect to Lebesgue’s mea-
sure) to some function f(z). From Monotone Convergence Theorem, in partic-

ular, it follows the following equality (see [60], Theorem 3.5.2):

/Zg] dx—Z/gj (170)

J= OX
It is easy to see that under the above conditions the following equality:

lim (Zw(ﬂf)) dx:/(ZQj(ﬂf)) da (171)

J=0
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is true (further, we will use the equality (I7I))). Indeed, we have g;(z) =

g9i (x) — g; (x), |g;(x)| = gj (x) + g; (x), where g/ (x) = max{g;(z),0} > 0,
g; (¥) = —min{g;(z),0} > 0. Moreover,

>_9i@) = _gf (@)= g; (@),
Z 19(x)| = ng(x) + Zgj‘(:v)- (172)

Since the series (I6Y9) converges absolutely, then by virtue of the equality
(I'72) the series (with non-negative terms) on the right-hand side of (I72)) con-
verge (to some functions fi(x) and fy(x), respectively). Further, using Mono-

tone Convergence Theorem, we obtain

Jim (Zw(@) dr = lim (Zg}(w)—zgj (w)> dr =

+f (igﬂw))er -
/(fl( $—2/f1 ) fa(@ dx+/(f2( ) da =
:/(fl(x)—fz( dx—/(Zgj ) dr.

X
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According to Theorem 14, we come to the conclusion that Theorem 19 will

be proved if we prove the following equalities (see (04))):

lim E
D300 333131

Jz=0

lim g
D300 ]3]3]1
71=0
lim E
p-}OO

Jj2=0

p 2
- Z Cj3j1j1) =0,

()~ () =0

p 2
- Z Cj3j3j1) =0,

(sgs) () =0

2
(Z Cj1]2]1> = 0.

Jj1=0

Let us prove (I73). Using Parseval’s equality, we have

lim E
D300 333131

Jjz=0

D T
= lim /
p%oojz))zzo t
_Z/¢2 ¢j1

J1=0
<Jim 3 /
J3=0 \ '}
p
_Z/'@/Q Qb]l
n=0%

~ iim / U(s)
t

—Z/% )65 (v

=07

2
- Z CJ33131) -

(]1.71) _]1 =0

$)6,1(5) / (Y () —

2

/@/Jl )p;,(0)dodr | ds | <

$)o(s / () () —

2

/¢1 )¢, (6)dOdT | ds | =

1 S
: / (P (F)dr—

2

/@/Jl ), (0)dldT | ds =

(173)

(174)

(175)

(176)
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T

= / ¥5(s) lim / o (7)1 (T)dT—

t
2

_Z/% 7)o (7 /% )05, (0)dodr | ds =0, (177)

1=07%

where ([I77) follows from ([73) and the transition from (I76) to (I77) is based on
(I7T) and the absolute convergence of series on the left-hand side of (73)) (the
sum of this series does not depend on the order of terms since the sum is equal
to the integral on the right-hand side of (73) for any basis {¢;(z)}Z, (we mean
the order of numbering of the functions ¢;(z))). The equality (I73)) is proved.

Let us prove (I74)). Using Fubini’s Theorem and Parseval’s equality, we

obtain

2
p
plggo Z ( JaJsi1 0 - Z 0333331) -

Jj1=0

(Jaga)

p
= lim ;) / U3 (T)a(T / 1(s)@j, (s)dsdT—

p T )
_]?:6/ Ya(0)0u{0 / Va(7)0s (7 / U1(s)g), (s)dsdrdd | =
:Ji%ﬁi) % / V1(5)95(s) / W3(T) s (T)drds—

p T )
]Zot/ V)il / Va(T)on(T / Y3(0);,(0)d0drds | =
_;Lfgloz / Yi(s)a(s % i bs3(7) o (T)dT—
o 5

2

‘Z/% T) ¢ (T /wg Vo, (0)dOdr | ds | <

J3=07
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<pli{fjoz (/ $)¢;, (s ( /¢3 Vibo(T)dT—
2
—Z / Ua(T) gy (T / V3(60)pj, (0 d«%) ds) _

J3=0"%

:z}ggo/lb%(s) (;/%(7’)%(7)617'

Z/¢2(7')¢j3(7')/@/13(9)%3(«9)619(17') ds = (178)

J3=0"

T

:/zbf(s)pli_{& (;f¢3(7)¢2(7)d7'

t

2
_Z/% 7)), (T /@/13 ), (0 d9d7> ds =0, (179)

J3=07

where (I79) follows from (73) and the transition from (I78) to (I79) is based
on (I7I) and the absolute convergence of series on the left-hand side of ([73)).
The equality (I74)) is proved.

Let us prove (I75). Applying Fubini’s Theorem and Parseval’s equality, we

have

2
ph_glo Z (Z 011]2]1> =

72=0 \71=0

p T T 2
_Z}EEOZ (Z/% )&, (0 /% )i, (T /¢1(8)¢j1(s)d5d7d9> =
t

72=0 \ 71=0 +

J2=0

2
_Z}H&Z (hz()/¢2 ¢]2 /¢1 ijl dS/@/J?, (;5]1 deT) <
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2

< lim Z / a(T) (1) / U1(8) g, (s)ds / U3(0)pj, (0)dbdr | =

n1=07%
T p T T 2
1 2 ) ) _
=t 4500 (35 [orontons [ soonom ) ar= s
T p T T 2
— [ im (Y [n)onts)as [ @0, @)ds | ar=o. (151
t e J1=07% T
where (I8]]) follows from the equality
0 T T
> [ i) (s)ds | 1)3(0)8,(6)do0 =
T
_ / $1(5)Lpseryn(8) L gsoryds = 0 (182)
t

(the relation (I82) follows from the generalized Parseval equality) and the tran-
sition from (I80) to (I8T) is based on (I7I) and the absolute convergence of
series on the left-hand side of (I82)) (see the derivation of (71l)). The equality
(I73) is proved. Theorem 19 is proved.

3.8 Generalization of the Results from Section 3.6 to the Case

¢1(7’), ce ¢4(7’) ~ LQ([t, T])
Let us develop the approach discussed in the previous section.

Theorem 21 [14], [50], [51]. Suppose that {¢;(x)}72, is an arbitrary CONS
in the space Lo([t, T]) and {1(7),...,04(T) € Lo([t,T]). Then, for the sum
J* [¢(4)]¥;"i4) (11,...,14=0,1,...,m) of iterated Ito stochastic integrals defined
by ([A8) the following expansion:

p
Ty =1im. ChranGi -G
ja=0

p—oo Ja
VAR

https://doi.org/10.21638,/11701 /spbu35.2024.206 Electronic Journal: http://diffjournal.spbu.ru/ 148



Differential Equations and Control Processes, N. 2, 2024

that converges in the mean-square sense is valid, where

T to
Cyoi = / Galt)b(ta) ... / b () (0)dt . dts (183)
t t

and
T
= [ oxtryiwt
t

are independent standard Gaussian random variables for various i or j (in the

case when 1 # 0), W&O) =T

Theorem 22 [14], [50], [51]. Suppose that {¢;(x)}72, is an arbitrary CONS
in the space Lo([t,T]) and 1(T),...,04(T) are continuous functions on [t,T].
Then, for the iterated Stratonovich stochastic integral of fourth multiplicity

« T xl2
J*[¢(4)]gf’1t"'i4) :/ ¢4(754)-~-/ n(t)dwy,) . dw)
t t

the following expansion:

p
TR Z 1, S i ¢ ¢l

pP—00

that converges in the mean-square sense is valid, where i1,...,i4 =0,1,...,m;

another notations are the same as in Theorem 21.
Note that Theorem 22 is a simple consequence of Theorem 21 and Theo-
rem 8 (k = 4). Let us prove Theorem 21.

Proof. It is easy to see that Theorem 21 will be proved if we prove that
(see Theorem 14 and (94)))

2
p p
. 1
1520 Z ( Z Cj4j3j1j1 - §Cj4j3j1j1 ) =0, (184)
P =0 \ ji=0 (i)~ ()
p p 2
plggo 'ZO ( Z()Cj4j1j2j1) =0, (185)
J2,J4= n=
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2
p p
plggo Z ( Z Cj1j3j2j1> =0, (186)

j27j3:O .]120
2
lggo Z (ZCj4j2j2j1 - 34323231 ) =0, (187)
P J1,Ja=0 \ j2=0 (J2j2) ()
2
pliglo Z (Z ]2]3]2]1) =0, (188)
J1,53=0 =0
2
liglo Z (chb’ijle - J3]3]2]1 ) =0, (189)
g J1,52=0 \ j3=0 (Jagz) ()
T ts
1
lim Z C]sjgjljl -7 ’@/}4<t3)¢3<t3) ¢2<t1)¢1(t1)dt1dt3, (190)
pP—00 4
J1,33=0 } f
plggo Z 031]33331 =0, (191)
J1,J3=0
plggo Z 032313231 - Oa (192)
J1,52=0

where Cj,._;, has the form (I83), {¢;(z)}32, is an arbitrary CONS in the space
Lo([t,T]), and Y (7),...,04(T) € Lg([t,T]).

To prove (I84)—(I89) we modify the proof of (I22)—(1217). More precisely,
the proof of (I84)—(I89) is carried out by analogy with the proof of (122)-
(I27) using the equality (I7Il) instead of Lebesgue’s Dominated Convergence
Theorem (see the proof of Theorem 19 for details) and adjusted for the fact
that in the proof of (I22)—(I127)) the functions ¥1(7),...,1¥4(7) = 1 are replaced
by ¥1(7), ..., 94(7) € Lo([t,T]). Thus, the equalities (I84)—(I89) are proved.

In [57] an efficient method is proposed for proving equalities similar to (T90)—
(192)). In particular, the equality (I90) is proved in [57]. The above method

[57] is based on the equality of the matrix and integral traces of trace class

operators ([62], Theorem 3.1). In the next section, the equalities (190)—(192)
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are proved using the generalized Parseval equality and (73]). At that, we use

some ideas from [57]. Theorem 21 is proved.

3.9 On the Calculation of Matrix Traces of Volterra—Type Integral

Operators

It is easy to see that the function ({]) for even k = 2r (r € N) forms a family of
integral operators K : Lo([t, T']") — Lo([t, T]") (with the kernel (])) of the form

(Kf)(tgl,...,tgr):/K(tl,...,tk)f(tgm,...,tgk)dtgm...dtgk, (193)

where {g1,...,9x} = {1,...,k}, the kernel K (ti,...,t;) is defined by (4, i.e.

.

U1(ty) . p(te), t1<...<ty
K(ty, ... t) =< : (194)

0, otherwise

where ¥1(7), ..., Yp(7) € Lo([t,T]), t1,....,tx € [t,T] (k > 2) and K(t;) =
Y1 (ty) for ty € [t, T1.

For example,

to

T
) (ta) = | K(ty,ta) f(t1)dty = ha(ts) | wbi(ty) f(t1)dts, (195)
/ J

t

(Kf) (ta, t3) = / K(ty, ... ty) f(t1,ty)dt1dty =
.77

to T
— ot nts) Ltyery) / () / a(ta) f (b1, )bty (196)
t t3

where K (t1,...,t4) is defined by (I94).
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The simplest representative of the family (I93) has the form

(Vf) (z) = / f(r)dr (197)

and is called the Volterra integral operator, where V : Ly([0,1]) — Lo([0,1]),
f(7) € Ly(]0,1]). The kernel of the Volterra integral operator is determined by
the relation: K(7,2) = 1;<, (7,2 € [0,1]). It is well known that the Volterra
integral operator (I97) is not a trace class operator since its singular values are

equal to [62]
2

TR

On the other hand, it is known [62] that for trace class operators the equality
of matrix and integral traces holds (recall that the matrix trace of a linear
bounded operator is defined by ([7@])). It turns out that for the Volterra integral
operator (197) (although it is not a trace class operator), the equality of matrix

and integral traces is also true [62].

Thus, one cannot count on the fact that operators of the more general
form (193)) (from the same family of operators as the Volterra integral operator
(I97)) are operators of the trace class. Nevertheless, the proof of the equalities
of matrix and integral traces for Volterra—type integral operators (I93)) (which
is obviously a problem) provides a way to calculate the matrix traces of these

operators.

Why do we talk so much in this section about matrix traces of opera-
tors from the family (I93)7 The point is that matrix traces of operators of
the form (I93) are of great importance for obtaining of expansions of iterated

Stratonovich stochastic integrals.

Let us consider some illustrative examples. We have

oo

> (Ko, 63) iy =

j1=0

https://doi.org/10.21638/11701 /spbu35.2024.206 Electronic Journal: http://diffjournal.spbu.ru/ 152



Differential Equations and Control Processes, N. 2, 2024

T
= Z/ (t2)dj, (t2) /m t1) ¢, (t1)dt dty = ZCM, (198)
j1=0

J1=0
Z <K\Ilj1j27 \Iljlj2>L2([t,T]2) =
J1,J2=0
Z /% ta) @), (ta) /¢3 t3)¢j,(t1) /% ta) @) (t2) /1?1 t1) @) (t1) %

J1,j2=0
thldthtgdt4 =

- Z Clagajiis (199)

J1,52=0

where {\Ijﬁ]é(xvy)};lo,jz:o = {¢]1( )¢]2< )}]1 jo=0" {¢j( )}OO: 1S an arbitrary
CONS in Lyo([t,T)), (Kf)(t2) in (I98) is defined by (1953), and (Kf) (te,3)

in (I99) has the form (I96]).
The expressions on the right-hand sides of (I98) and (I99) were considered
earlier in this article (see (73)), (I90)).

Let us prove the equalities (I90)—(192) using a method based on generalized
Parseval’s equality and ([73]). At that, we will use some ideas from [57].

First we prove (190). Using (73), we have

plggo Z /% ta) By, (ta) /¢3 t3) B, (t3) /% ta)d;, (t2) /1?1 t1)dj, (t) %

J1,J2=0

X dtl dtzdtg dt4 =

= lim Z/M ta) b, (ta) /@/13 t3)@j, (t3)dtsdtyx

J2=0

X lim Z/% t2) @y, (t2) /1?1 t1)@j, (t1)dtidty =

Jj1=0 t
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T
1
— Z/ (t4)13(t4 dt4/@/12 t2) Y1 (to)dts =
y

=5 [ itinttate)n s, (200
[t,T]?
where 1 (7), ..., 04(7) € Lao([t, T1]).

Suppose that 1o(7) and ¢3(7) are polynomials of finite degrees. For ex-
ample, 19(7) and 3(7) can be Legendre polynomials that form a CONS in
Lo([t,T]). Denote

t?at?) Z Cl2ll¢ll t2)¢12(t3) (201)

l1,lo=0

where {éj(x)}oi is a CONS of Legendre polynomials in Ly([¢t,T]) and Cj,,
are Fourier-Legendre coefficients for the function g(t2, t3) = ¥a(t2)¥s(t3) 11yt

(o(7), U3(7) € La([t, T))), i.e

Clzh /¢3 t3 t3 / t2 dthtg

t

Further, we have lim ||s, — g‘liz([t 72y = 0. From (200) we obtain (the sum on
q—0 ’
the right-hand side of (207]) is finite)

> / Lot <t Ltgtsya(ta) @), () sq (b2, t3) 05, (83) 05, (E2) Y01 (81) @y (£1) X
jl’jQZO[t,T]‘l
1
thldtgdtgdt4 = Z / @/J4(t4)8q(t2, t4)’@/)1(t2)dt2dt4. (202)
[t,T]?

Note that the equality (202)) remains true when s, is a partial sum of the
Fourier-Legendre series of any function from Ly ([t, T]?), i.e. the equality holds
on a dense subset in Ly([t,T]?). The right-hand side of (202)) defines (as a
scalar product of s,(ta, 1) and ¥y(t4)11(t2) in Lo([t, T]?)) a linear bounded (and
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therefore continuous) functional in Ly([t, T]?), which is given by the function
Yy(ty)11(t2). On the left-hand side of (202) (by virtue of the equality (202))
there is a linear continuous functional on a dense subset in Lo([t, T']?). This func-
tional can be uniquely extended to a linear continuous functional in Lo([t, T]?)
(see [61], Theorem 1.7, P. 9). Let us implement the passage to the limit qlggo in
the equality (202) (at that we suppose that s, is defined by (201)))

(0.9]

Z /1{t1<t2<t3<t4}¢4(t4)1;3(t3)1;2(t2)¢1(t1)¢j2(t4)¢j2(t3)¢j1(t2)¢j1(tl)><

J1 7]2:0[t,T]4
T

tq
1 B _
dtydbadtydts = 7 / a(t) (k) / Do) (b)dbadts,  (203)
t ¢
where ¢1 (7-)7 ,@/_}2(7-)7 77;3(7-)7 77b4(7-) S LZ([tv T])
Rewrite the equality (203) in the form
P
plggo Z Clajojijs =
J1,J2=0

T ta

= i /@/’4(754)%2(754)/%(t?’)fbg‘z(t:’,)/tg%(tQ)(bjl(tg)/@/Jl(tl)qul(tl)x

j17j2:o t t t

to

T t4
ity dbydtsdty — i / Dalt) s (t) / o (t2) (£ dtadt . (204)
t t

where 1 (7), ..., 04(7) € Lao([t, T1]).

Note that the series on the left-hand side of (204)) converges absolutely since
its sum does not depend on permutations of basis functions (here the basis in
Lo([t, T1?) is {¢j, ()b, (y)}>7 . ). The equality (I90) is proved.

J1,J2=0

Let us prove (I92)). Using the generalized Parseval equality, we obtain

pP—0
.]17.]220 t

D T tq T to
lim > [ wn(t)oa(t) [ valt)onlts) [ ea(tonits) [ ri)st)x
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X dtl dtzdtg dt4 =

- Z /¢4(t4)¢j2(t4)/¢3(t3)¢j1(t3)dt3dt4x

J1,J2=07%

/Tw (t2) ), (t2) /% t1) @, (t1)dtidty =
/ Lyt (1), (1) (12) it
at
X Lyt 1 (t3)102(ta) B, (t3) @y, (ta)dtdty =
= [ Lycry¥s(ts)ha(ta)a(ts) v (ts)dlsdty =

= | Liyey¥3(ts)a(ta)a(ta)in (t3)dtsdts, (205)

~

where 11 (7),9a(7), ¥3(7), Ya(7) € Lao([t, T1).
Suppose that 15(7) and 13(7) are Legendre polynomials of finite degrees.

Denote

t?at?) Z Cl2ll¢ll t2)¢12(t3) (206)

I1,l=0
where {éj(x)}joio is a CONS of Legendre polynomials in Ly([¢t,T]) and Cj,,

T
are Fourier—Legendre coefficients for the function g(ts,t3) = @/;2(752)@3(153)1 (ta<ts)
(¥a(7),43(7) € Lo([t, T1)), ie

T g
Ch, = [ Ws(ts)du,(ts) | alta)dy, (t2)dtadts
[nn |

and

: 2 _
qlggo lsq — gHLQ([thP) = 0.
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From (205) we obtain (the sum on the right-hand side of (200]) is finite)

> / Lty wta) Litgerya(ta)sq(ta, t3) W01 (81) B, (ta) @5, (£3) D), (T2) D, (1) X
jlvaZO[th]4
thldthtgdt4: / 1{t3<t2}8q(t2,t3)¢1(t3)¢4(t2)dt3dt2. (207)
.71

The right-hand side of (207) defines (as a scalar product of s,(t2,t3) and
L, <31 (t3)0a(t2) in Lo([t, T]%)) a linear bounded (and therefore continuous)
functional in Ly([t, T]?), which is given by the function 1,1t (t3)0a(ts).
On the left-hand side of (207) there is also a linear continuous functional in
Ly([t, T]?) (see note below the formula (202)).

Let us implement the passage to the limit lim in (207)

g—0o0

oo

> / Lty <ty<taetsya(ta) s (ts)ha(ta) b1 (t1) ds, (t4) D5, (E3) djy (t2) @, (1) X

n 7]2:0[t,T]4

X dtydtadtsdty = / Lyt Ltpety) U3 (t3) o (t2) 1 (t3)1ha(ta)dtsdty = 0. (208)
[t,T]

Rewrite the equality (208) in the form

p
lim E Cliyjrins =
P00 J2J1J2J1

J1,72=0
50 T ty t3 to
= > [ ulta)dy,(ta) [ ws(ts)s, (ts) [ walta)dp(ta) [ r(tr)dy, (tr)x
2 Jramtn frstint [t |
thldthtgdt4 = 0, (209)

where ¢1(T)7 S ¢4(T) S LQ([t? T])
Note that the series on the left-hand side of (209) converges absolutely since

its sum does not depend on permutations of basis functions (here the basis in
Ly([t, T)?) is {9, (2)95(y)} j,—0)- The equality (I92) is proved.
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Let us prove (I91]). Using Fubini’s Theorem and generalized Parseval’s

equality, we get

D T T t3 to
Jim. > /¢4(t4)¢j1(t4)/¢3(t3)¢j2(t3)/¢2(t2)¢jg(t2)/wl(t1)¢j1(tl)x
j17j2:o t t t t
thldthtgdt4 =
i rtbstpn _ L st
= lim 040321— lim 040321
pP—00 ]1]220 J2J2]) 2 p—>ooj1 . J2J2) Gaj) ()
P
Py h31athr Yathotr |
_plggozch (201232]1 . N 20]23211 ) o
J1=0 (J2d2) () =0
T T
1 P
= 51};@@20/1?4(3)%(5)618/1# W /% i (s)dsdr—
J=U t

p
: [ V321
N plggo ZO le (2 Cjzjzjl

p
Yaorhy |
Z Cjzjzjl > _

(aj) () 1m0

Z%plrgoz:/m )6, (s ds/% (s /wg o) drds—

J1=0
p
P31hathy
o C]szﬁ

(J272) () =0

1
P4 1/)31/121/)1
N plggo Z C (2 J2J2J1

Jj1=0

- / 0u(s)01(5) [ a(r)ia(r)drds-

Y P3hahn
- plg(r)lo Z le (2012]2]1

Jj1=0

p
ZOE?;?) , (210)

(J2d2) (1) =0

where Cﬂ/’4 and CV*"2" are defined by (I40).

J2J2J1

Due to Cauchy—Bunyakovsky’s inequality, Parseval’s equality and (I74]), we
get
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2
p p
1
() 1/)31/121/)1 P31hathy
pli{go (Z C (2 J2J271 o o Cj2j2j1 ))
=0 (J272)~ (") J2=0

2
p 9 P p
: (8 P3tath V3ot
<) X (o] X <

IA

J1=0 j1=0 (J272) () =0
00 p 2
Py P31ha)1 P31hathy _
= ph—>r<r>lo Z C ) Z (201212]1 o - Z C]Q]le > -
Jj1=0 J2=0 (J272)~()  jp=0

. J2J2J1
(J2j2)(+) J2=0

P 2
- C%W”l) =0. (211)

T
2 Y32t
/ Yi(s)ds Z}E&Z (20323231
t
Combining (2I0) and (2IT]), we obtain

z}ggo Z /@/14 t4) b (ts) /@/13 t3)dj,(t3) /@/12 t2) by, (t2) /@/11 t1) b, (t1) %

J1,72=0

T

T
K dtydtydtsdt, — % / a(5) 81 (5) / s (7)o (7) s —
t

S

1
—5 | ) et (212)
[t.T]?
where ¢1(T)7 K ¢4(T) S L?([t? T])
Suppose that 13(7) and 14(7) are Legendre polynomials of finite degrees.

Denote

o(t3,t4) = Z Ci1, b1, (t3) 1, (t4), (213)

l1,la=

where {éj(x)}joio is a CONS of Legendre polynomials in Ly([¢t,T]) and Cj,,
are Fourier—Legendre coefficients for the function g(ts3,t4) = 153(153)@4(154)1 (3=t}
(¥3(7), Yu(T) € Lo([t, T1)), L€

T ty
Choiy = | ©a(ta) i, (ta) [ ws(ts)en, (t3)dtsdty
[rnen |
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and

: 2 _
qlggo lsq — gHLg([t,TP) = 0.

From (2I2)) we obtain (the sum on the right-hand side of (2I3)) is finite)

o0

) R A P R A TS (T S LRI
jla.jQ:O[t7T]4
1
X dt dtodtsdty = 5 / Sq(t3, t4)1{t4<t3}¢1 (t4)¢2<t3)dt4dt3. (214)
[t.T]?

The right-hand side of (2I4) defines (as a scalar product of s,(ts3,t4) and
L <381 (ta)a(ts) in Lo([t, T]%)) a linear bounded (and therefore continuous)
functional in Ly([t, T]?), which is given by the function 1,301 (ts)a(ts).
On the left-hand side of (214) there is also a linear continuous functional in
Ly([t, T)?) (see note below the formula (202)).

Let us implement the passage to the limit lim in (214)

g—0o0

0]

> / Lt ctywtyetsyVa(ta) 0, (L) 03 (t3) b, (E3) 0o (t2) by (t2) U1 (£1) @y, (£1) X

jl’jQZO[t,T]‘*

1
thldtgdtgdt4 = 5 / ¢3(t3)¢4(t4)1{t3<t4}1{t4<t3}¢1(t4)¢2(t3)dt4dt3 = 0. (215)

[¢,T]?

Rewrite the equality (2I5) in the form

p
lim E Cliiiin =
P00 J1J2J2J1

J1,Jj2=0
50 T t4 t3 to
= Y[ ualta)i,(ta) [ Us(ts)(ts) [ talta)ey(ta) [ r(tr)ey, (tr)x
3 et st [t |
thldtgdtgdt4 = 0, (216)

where 1 (7), ..., 04(7) € Lao([t, T1]).
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Note that the series on the left-hand side of (216) converges absolutely since
its sum does not depend on permutations of basis functions (here the basis in
Lo([t, T)?) is {¢;, (x)¢j2(y)}§ij?:0). The equality (I91)) is proved. The equalities
(I90)—(192) are proved.

4 Conclusion

Recall that this article is Part III of the work devored to a new approach to
the series expansion of iterated Stratonovich stochastic integrals of arbitrary
multiplicity with respect to components of a multidimensional Wiener pro-
cess ([15] and [16] are Parts I and II of this work, respectively). The results
of the work make it possible to construct efficient procedures for the mean-
square approximation of iterated Stratonovich stochastic integrals that appear
in strong methods with orders 1.0, 1.5, 2.0, 2.5, and 3.0 of convergence for
It6 SDEs with multidimensional non-commutative noise (approach based on
the Taylor—Stratonovich expansion). The above procedures based on multi-
ple Fourier—Legendre series have been successfully implemented as part of the

software package in the Python programming language in [66].
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