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Annotation. The publication presents an original way of solving the problems of identifying data 

type (typesetting) and semantic description of the attributes when managing structured data and 

master data. A formal definition of the generalized attribute typesetting problem is given, which 

allows generation of the additional data types – a key aspect of the applied data management tasks. 

This problem allows using the discrete Bellman optimality principle under special criteria of the target 

function. A unified architecture of the deep generative neural network addressing simultaneously the 

generalized attribute typesetting and semantic description generation problems is proposed. The 

architecture is based on the adversarial autoencoder architecture (AAE) using the mechanisms of soft-

attention, and long-term memory (SCRN). The effectiveness of such implementation, in particular, 

is achieved through the application of the principles of dynamic programming within each epoch of 

the network training. 
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1. Introduction 
 

Increased volumes of data and computing power over the past decades have served as a powerful 

impetus for the development of machine learning, as well as new areas of applications of the classical 

discrete optimization problems algorithms that appeared back in the middle of the 20th century [1]. 

Preparation and correct interpretation of data is an important applied task and a key aspect for all machine 

learning algorithms, since they are both used for initial training and “pre-trained models” [2]. Over the past 

two decades, a whole class of tools and methodologies managing different types of data has emerged [3], 

while the use of machine learning and deep neural networks, in particular, has become the subject of research 

relatively recently [4,5]. Good examples of such investigations are ensembled architecture of the long short-

term memory (LSTM) and Naïve Bayes Classifier for the metadata classification [6], and the use of 

convolutional networks to detect missing data [7]. 

This paper examines tasks related to the field of data profiling & story telling - determining the data type 

(typesetting) and semantic description of data. The problem of the correct and complete data typesetting is 

critical for the subsequent effective work with data, and has several levels of complexity. In its primitive 

form, this is a comparison of the basic data types, which is considered in [6], but the most important ones 

are contextual data types created based on the data itself [8], e.g. lookups or categories of the possible 

abbreviations or so-called codifications, which is especially true for the codified products and engineering 

data [3]. The problem of typesetting without the ability to generate new data types was considered for the 

special case of the classification problem for medical and biotechnological data [9], where comparisons of 

various solving techniques are provided, including support vector machines (SVM), clustering and an 

adversarial generating network GAN (Generative Adversarial Network). GAN architecture using LSTM 

mechanisms to search for anomalies in time series data for large data sets in various industries is proposed 

in [10]. 

Below a generalized typesetting problem is considered, including the generation of new data types 

(lookups and registries) based on their features in the form of a discrete optimization problem with various 

target functions proposed. For the latter, certain criteria are formulated to ensure the fulfillment of Bellman's 

discrete optimality principle, which allows the use of both dynamic programming and TD learning methods 

to solve the original discrete optimization problem. Thus, an effective scheme is used to find the extremum 

of the target function within each training epoch. The architecture of the deep neural network of generating 

autoencoder using memory and attention mechanism allowed to create a data description based on historical 

information and analysis of the attribute values, which is especially important when working with changing 

over time and streaming data. 

The problems under consideration are of practical importance, because they are integral parts of the data 

management projects at any level, since all common approaches and data management practices always 

begin with data profiling and analysis phases [3,11,12]. Usually, so-called subject matter experts and data 

specialists are involved with such problems, which lead to high costs and time consumption, and in its turn 

extend the whole projects drastically. The algorithms and architecture of the deep neural network proposed 

below are automated solutions to these problems, which are capable of learning and rebuilding with the 

receipt of new data or constantly updating data on regular basis. The experiments with various data sets were 

carried out using open-source machine learning software libraries including TensorFlow and Keras having 

a goal of achieving applicable results matching manual analysis of the data types and semantic description 

without performance analysis, which is subject for the further investigations. 

The article is structured as follows. Section 2 formalizes the concept of the data type, its characteristics 

for an abstract source of information (which can be streaming data, unknown uploads, so-called “black box 

data”, reverse engineering results, etc.), and it formulates the generalized problem data typesetting, for which 

the fulfillment of Bellman's discrete optimality principle is proven. Next, in Section 3, the architecture of a 

computational neural network for the defined problem is given. Section 4 is devoted to the problem of 

generating the semantic description of the data attributes, which solution architecture turns out to be similar 

to the Section 3 architecture. Section 5 of the publication provides a combined GAN architecture with the 

soft attention and long-term memory mechanisms to simultaneously solve both problems. 
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2. Formal statement of the data typesetting problem 
 

Let’s consider structured data in the form of a marked file as input. The task of classical data profiling 

is to determine “what kind of data it is,” i.e. for all of its attributes find out its data types, structure, most 

frequently used values, data completeness, inter-relation and dependencies of these attributes and other 

parameters [3,11]. The task of the descriptive part (also called as “data story telling”) is to find out the 

semantic meaning of this data, that is, what exactly the values of a particular attribute mean, and how they 

are changing over time. In this section a number of definitions and functions for the formal definition of the 

problem are introduced. 

First, let's make some assumptions. As a rule, the general meaning of the input data is clear, and the 

collection of so-called technical metadata is usually done first [11], i.e. this could be analysis of a file or 

DBMS system tables. However, this method is not applicable everywhere (the input can be a direct upload 

to a file in the form of textual and numeric information). Therefore, let’s assume that: 

1) the input data is structured by attributes (which data type is to be determined) and their values are 

atomic (it means that the value is not split into multiple attributes), their number is known - 𝑛, as 

well as the total number of records – 𝑙;  
2) the affiliation of a particular value to any data type is expressed by a certain set of characteristics 

(features), and for elementary standard data types they are already known [8,13]. Obviously, a value 

can be interpreted in more than one way in terms of data types, for example, a string value with a 

date. 

Neither the first nor the second assumptions are the simplifications of the problem, because there are 

many algorithms and tools to parse data into attributes, including machine learning methods [14], which 

provide this initial assumed information. 

Thus, let’s consider the input data 𝑋 to be a matrix of elements over the 𝒳 space of the dimension 𝑙 × 𝑛, 

and 𝑋𝑖 is the corresponding vector with the values of the 𝑖th attribute. 

To identify features, let’s will treat each feature as a function 𝑓𝑘: 𝒳 → [0,1], where 𝑓𝑘(𝑥𝑖𝑗) = 0 means 

that the specified feature is not fulfilled for a given element, and 1 means that it is fulfilled. Some features 

may have non-binary interpretations and produce a so-called “scoring” value from 0 to 1. The set of features 

is finite, and in the future, at each iteration, the neural network will learn, i.e. supplement and update the 

feature list based on the results obtained. Thus, at the training iteration 𝑚, the list of features will look like 

𝐹𝑚 = {𝑓𝑘
𝑚}0

𝐾𝑚, where the vector 𝑓𝑘
𝑚(𝑋𝑖) contains the result of matching all values of the 𝑖th attribute to 

the 𝑘th feature at the iteration 𝑚. 

At the beginning of the training, there is a certain set of elementary data types - 𝑇0 and, accordingly, an 

initial list of features 𝐹0. Similar to features, at each training iteration, the set of types  𝑇𝑚 will be updated. 

Each data type is described by a certain set of characteristics, namely: 

 

∀𝑡 ∈   𝑇𝑚 ∃! 𝐹𝑡
𝑚 ⊆ 𝐹𝑚and if 𝑡1 ≠ 𝑡2, then 𝐹𝑡1

𝑚 ≠ 𝐹𝑡2

𝑚. (1) 

 

Let’s say that a certain value 𝑥 has a pure type 𝑡 if the following is satisfied 

∀𝑓 ∈  𝐹𝑡
𝑚 𝑓(𝑥) = 1. As noted, some features may not have discrete feature function value, at the same 

time some values of 𝑋 might be “noisy”, in which case the value of the feature function will only be close 

to 1, but never equal 1. 

As mentioned above, it is quite likely that several types are suitable for some attribute values but the 

problem considered here is to determine the type for the entire attribute as accurately as possible. When 

measuring features for the attribute values, so-called attribute feature measurement matrix is obtained: 

𝑀𝐹𝑖
𝑚 = {𝑓𝑘

𝑚(𝑥𝑖𝑗)|𝑓𝑘
𝑚 ∈ 𝐹𝑚, 𝑥𝑖𝑗 ∈ 𝑋𝑖 , 𝑘 ∈ 1: 𝐾𝑚, 𝑗 ∈ 1: 𝑙}. The set of such matrices will be denoted by 

𝑀𝐹. For each data type, let’s introduce a matrix operator to work with these matrices: 

 

𝑇𝐹: 𝑀𝐹 ×  𝑇𝑚 → ℝ𝑙 × ℝ𝐾𝑚 | 𝑇𝐹(𝑀𝐹𝑖
𝑚, 𝑡) = {𝑓𝑘

𝑚(𝑥𝑖𝑗)}, 𝑖𝑓 𝑓𝑘
𝑚 ∈ 𝐹𝑡

𝑚  (2) 
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𝑎𝑛𝑑 𝕆 𝑖𝑓 𝑓𝑘
𝑚 ∉ 𝐹𝑡

𝑚} 

 

Thus, for each data type, the operator 𝑇𝐹 “filter out” the feature measurement matrix and resets the 

values for those features that are not included in the argument type 𝑡. 

To formally state the typesetting problem in the form of an optimization problem, let’s introduce the 

target function that measures “the affiliation” of an attribute 𝑋𝑖 to the data type 𝑡 -  𝑐𝑚: 𝒳 ×  𝑇𝑚 → ℝ. 

Obviously, this is a family of target functions, and, as will be shown below, it does not make sense to change 

the target functions during iterations. Thus, the formal definition of a simple typesetting problem at iteration 

𝑚 becomes a problem of maximizing the target function  𝑐𝑚. 

 

Definition 1. A simple  typesetting problem for a given attribute 𝑋𝑖 at iteration 𝑚, a set of types 𝑇𝑚 and a 

list of features 𝐹𝑚 is to find such a type 𝑡𝑖
𝑚 ∈ 𝑇𝑚| 𝑡𝑖

𝑚 = a𝑟𝑔𝑚𝑎𝑥
𝑡𝜖 𝑇𝑚

𝑐𝑚(𝑋𝑖, 𝑡). 

 

The typesetting problem defined this way is the simplest classification problem, formulated as an 

extremal problem, for which various solution methods can be proposed [15]. However, applied industries 

require the ability to create new data types based on the input that did not exist initially [4,7]. Usually these 

are contextual data types, e.g. lookups and registries. According to (1) at each next iteration the set 𝑇𝑚+1can 

be supplemented in such a way as to maximize the value of the target function in subsequent iterations. 

Accordingly, let’s supplement it with all such sets of features whose value of the target function for any 

attribute 𝑖 will be above certain threshold 𝜂𝑖
𝑚 (which will also be a parameter of iteration 𝑚): 

 

 𝑇`𝑚+1: =  𝑇𝑚 ∪ { 𝑡  ↔ 𝐹
𝑡
𝑚+1 ⊆ 𝐹𝑚| ∃𝑖 𝑡ℎ𝑎𝑡 𝑐𝑚(𝑋𝑖, 𝑡) ≥ 𝜂𝑖

𝑚} (3) 

 

At each iteration 𝑚, the features list 𝐹𝑚 can be expanded (so called hidden or latent features could be 

added to the features list), new features that are used for more accurate definition of the data type of an 

attribute can be added [14]. Thus, the additional task of new data types generation is to solve a suboptimal 

discrete optimization problem with a target function 𝑐𝑚on all subsets of the features list 𝐹𝑚. This can be 

done efficiently by re-using the results of the previous iterations, which will require the target function 𝑐𝑚 

to satisfy a certain property below. Let us denote 𝜃𝑚 - the set of optimization parameters, and 𝜂𝑚 - the set 

of iteration 𝑚 threshold values, then the target function must satisfy the following condition: 

 
𝑐𝑚+1(𝑋𝑖 , 𝑡) = 𝑐𝑚(𝑋𝑖 , 𝑡) + 𝑣(𝑋𝑖 , 𝐹𝑚+1, 𝜃𝑚+1, 𝜂𝑚+1), where the function 𝑣  

depends on the parameters of the current iteration only and is non-negative. 
(4) 

 

Definition 2. Generalized Typesetting Problem. Let the primary sets of types 𝑇0 and features 𝐹0 are given. 

Assuming that the results of the previous iteration 𝑚 of the generalized problem are known - 𝑇𝑚, 𝐹𝑚. The 

iteration 𝑚 + 1 task is to determine the data type for 𝑋𝑖, namely 𝑡𝑖
𝑚+1 = a𝑟𝑔𝑚𝑎𝑥

𝑡𝜖 𝑇𝑚
𝑐𝑖

𝑚+1(𝑋𝑖 , 𝑡), where 𝑐𝑖 

is the target function used for the 𝑖th attribute, for which the property (4) is satisfied, and further obtain a 

new feature set 𝐹𝑚+1 ⊇ 𝐹𝑚, and generate new data types  𝑇𝑚+1 ⊇  𝑇𝑚 for which (3) is satisfied based on 

these new features. 

 

In the general definition 2 we consider that it is possible to use different target functions for different 

attributes. However, in practice, when testing the architecture described below, a single target function 

based on the Frobenius metric (5) was used.  

Note, that it is intentionally calculated the data type 𝑡𝑖
𝑚+1 first, and update the sets of data types 𝑇𝑚+1 

and features 𝐹𝑚+1 afterwards. The property (4) introduces the concept of transition between iterations in 

such a way that it allows us to formulate the Bellman recurrence relation for the target function 𝑐𝑚+1, and 
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the fact that it does not deteriorate (this is a reason why non-negative of 𝑣 is required in (4)) and its changes 

are influenced solely by the parameters of the current iteration leads us to the following important statement. 

 

Statement 1. Bellman's discrete optimality principle is satisfied for the generalized typesetting problem 

defined above. 

 

This Statement 1 allows us to use various methods to solve the generalized typesetting problem. For 

small dimensions, the most effective method is dynamic programming [16]. However, for a large number 

of parameters, which is typical for applied tasks, finding all possible combinations of the dynamic 

programming method becomes computationally complex, so TD- and Q- learning turns out to be ones of 

the most effective strategies [17]. 
The choice of the target function is important from the convenience and simplicity of its calculation 

points of view, and the condition (4) seriously simplifies the solution of the discrete optimization problem. 

The universal target function is the Frobenius metric of the matrix 𝑇𝐹(𝑀𝐹𝑖
𝑚, 𝑡): 

 

𝑐𝐹(𝑋𝑖, 𝑡) = √∑ ∑ 𝑇𝐹(𝑀𝐹𝑖
𝑚, 𝑡)

𝑙

𝑗=1

𝐾𝑚

𝑘=1

2

 (5) 

 

Statement 2. Using (5) as the target function of the generalized function typesetting problem 𝑐𝑚(𝑋𝑖, 𝑡) =
 𝑐𝐹(𝑋𝑖 , 𝑡) is possible since it satisfies condition (4). 

 

This statement obviously follows from the fact that all the values of the matrix 𝑇𝐹(𝑀𝐹𝑖
𝑚, 𝑡) are non-

negative, and the fact that 𝐹𝑚+1 ⊇ 𝐹𝑚 means that the matrix 𝑇𝐹(𝑀𝐹𝑖
𝑚+1, 𝑡) will be obtained from the 

corresponding matrix of the previous iteration by adding several columns with non-negative values, which 

provides the desired values for 𝑣. 

Different target functions can be used for different data attributes. For example, using of so-called “𝐿0 

metric” could be promising for some attributes, that is, counting non-zero elements of a matrix [18], for 

which (4) is also satisfied. For further exposition and corresponding implementation of the architectures 

given below 𝑐𝐹 will be used as a target function. 

 

3. Neural network architecture for the generalized typesetting problem 
 

The architecture of the computing neural network for a generalized typesetting problem is considered in 

this section. The use of 𝑐𝐹 is proposed as the optimization of the target function (5), and the algorithm 

iteratively updates the sets 𝑇𝑚, 𝐹𝑚 and the sets of parameters: vectors for the Generator and Discriminator 

- 𝜃𝑚 = (𝜃𝑑, 𝜃𝑔), and the thresholds 𝜂𝑚. 

Talking about discrete data in general, two approaches are possible depending on whether the density of 

the distribution of the attribute values 𝑋𝑖 by the already defined data types is known. Following the 

classification of the generative models from [18], the first approach defines models with the explicit density, 

and given the discreteness of the values, variational approximations (VAE) are usually used. However, in 

the case of a generalized typesetting problem, it is impossible to predict the distribution by the newly 

generated data types since they are being produced iteratively and the whole distribution is changing at each 

iteration, so the architecture of generative networks (GANs) is proposed below. Also, it is important to note 

that the computing (neural) network should be able to generate examples that correspond to the initial model 

[4,5], which is fully satisfied here based on the assumptions below and the fact that data is meaningful in 

each particular attribute. 

In the classical GAN architecture, the Encoder encodes the values of the vector 𝑋𝑖 and the values of the 

measured features 𝑀𝐹𝑖
𝑚 into one of the known types  𝑇𝑚, but does not generate  𝑇𝑚+1since there is 

nowhere to get suitable combinations of the hidden features, and if generated randomly, then reasonable 

data types cannot be achieved. Therefore, modified architecture of the generative autoencoder (AAE - 
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adversarial autoencoder) is introduced below, which adds a Discriminator that tries to distinguish the 

generated distribution of the encoded features from the encoded real value along with its feature values. It 

will also be convenient to entrust the Discriminator with the responsibility of making a decision on updating 

hidden features 𝐹𝑚+1 and generating data types for the next iteration  𝑇𝑚+1 based on them. 

To generate data, let’s take the noise vector 𝑧 of a multidimensional normal distribution 𝒩(0,1) over 

the feature space: 𝐺(𝑧, 𝜃𝑔): 𝐹𝑚  →  𝒳, where 𝜃𝑔 is a set of optimization parameters from vectors of the 

appropriate dimension to perform a linear transformation operation with vectors of dimension 𝐾𝑚: 

𝑧 ⊕ 𝜃𝑔 = 𝑧 ∗ 𝜃𝑔
1 +  𝜃𝑔

2, and 𝒳  is the space of all possible values of the input data of the problem, including 

all the input values 𝒳 ⊆ 𝒳 . Two transformation layers for the noise vector 𝑧 are required, since it is 

impossible to obtain a normal distribution with a help of linear transformation, so for the activation function 

to take is  𝑠𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝑥) = log (𝑒𝑥 + 1): 

 

𝐺(𝑧, 𝜃𝑔) =  𝑙𝑜𝑔(𝑒𝑧⊕𝜃𝑔 + 1) ⊕ 𝜃𝑔 (6) 

 

Comment. It is important to note the fact that values are generated this way, specifically over the space of 

all features 𝐹𝑚, but not the data types of the current iteration  𝑇𝑚, ensures the subsequent update of the 

features set 𝐹𝑚+1 and, accordingly, set of data types 𝑇𝑚+1. Otherwise, the model won’t be able to find 

additional features and thus generate the new data types. 

 

The task of the Discriminator is to distinguish the input vector - either generated or encoded real value 

𝑋𝑖 and the values of its features 𝑀𝐹𝑖
𝑚, namely, 𝐷(𝑥, 𝜃𝑑): 𝑋  → [0,1], where 𝜃𝑑 is a similar set of 

optimization parameters. And the goal of the Discriminator is to maximize the value 𝐷 on 𝑋𝑖, and to 

minimize it on the generated values. Let us use the sigmoidal activation function 𝜎(𝑥) = 1/(1 + 𝑒−𝑥) for 

the parameterized values of the analyzed vector, to which the hyperbolic tangent was applied: 

 

𝐷(𝑥, 𝜃𝑑) =  𝜎((tanh(tanh (𝑥 ⊕ 𝜃𝑑) ⊕ 𝜃𝑑) (7) 

 

Following the minimax principle (sometimes called “game”) of the Discriminator and Generator, let’s 

define the target function (following the original GAN definition in [18]) using the averaging operator 𝔼 

over the input values and noise correspondingly: 

 

min
𝐺

max
𝐷

 𝑉(𝐷, 𝐺) = 𝔼 [ log(𝐷(𝑥, 𝜃𝑑))] − 𝔼 [log (1 − 𝐷(𝐺(𝑧, 𝜃𝑔), 𝜃𝑑))] (8) 

 

The Decoder should solve the extreme problem of determining the best data type for the attribute 𝑋𝑖 for 

the previously selected target function 𝑐𝐹:  

 

𝑡𝑖
𝑚 ∈  𝑇𝑚 | 𝑡𝑖

𝑚 = a𝑟𝑔𝑚𝑎𝑥
𝑡𝜖 𝑇𝑚

𝑐𝐹(𝑋𝑖 , 𝑡) = a𝑟𝑔𝑚𝑎𝑥
𝑡𝜖 𝑇𝑚

√∑ ∑ 𝑇𝐹(𝑀𝐹𝑖
𝑚, 𝑡)

𝑙

𝑗=1

𝐾𝑚

𝑘=1

2

 (9) 

 

Additional tasks that are assigned to the Discriminator are the following: (a) making decisions on 

updating the set of features 𝐹𝑚+1 based on the newly found latent ones, and (b) generating new data 

types 𝑇𝑚+1,  by solving the suboptimal problem (3). The architecture of the modified adversarial generative 

autoencoder is presented in Diagram 1. 

http://www.math.spbu.ru/diffjournal


Differential equations and control processes, N. 2, 2024 

 
 https://doi.org/10.21638/11701/spbu35.2024.207        Electronic Journal: http://diffjournal.spbu.ru      177 

 
Diagram 1. Architecture of an adversarial autoencoder for the generalized typesetting problem 

 

For the given architecture, it is possible to further configure separate learning mechanisms for the new 

type creation thresholds 𝜂𝑖
𝑚 at each iteration, but such complications may have a negative impact on the 

overall performance and require further analysis. When solving the problem of generating new data types, 

the technique of enumerators of suboptimal solutions [19] can also be used, which allows us to sort solutions 

of (3) according to the degradation of the target function with the help of effective algorithms for 

enumerators operations. 

 

4. Neural network architecture for the problem of semantics of data attributes 
 

This section investigates a problem of generating a data attribute meaningful description, which is a key 

one in data management [3,11,13] and its proposed solution turns out to be close to the architecture of the 

abovementioned generalized typesetting problem. Similar problems have been considered from different 

points of view previously, e.g. ontological approach, and linguistic ones, including using neural networks 

[20]. Recently, the use of generative neural networks becomes a relevant approach due to increased 

computing power. 

Let’s consider the architecture of a generative autoencoder that encodes the values of a vector 𝑋𝑖 and the 

features measurements on that vector - 𝑀𝐹𝑖
𝑚, and then decodes it into a textual description 𝑆𝑖

𝑚. Taking into 

account the fact that the description of the semantic part of an attribute is usually based on the set of its 

values, let’s use some memory mechanism to store the “already read and processed” values. Different types 

of memory mechanisms as well as their advantages and disadvantages will be considered after the 

architecture itself.  

This architecture turns out to be similar to the classic “Show, Attend and Tell” algorithm for the problem 

of determining captions for images. [21] proposed an architecture consisting of a set of convolutional 

networks with attention (to focus on individual fragments of the picture) and memory layer, which is 

presented in the Diagram 2 below. 
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Diagram 2. Architecture of the Show, Attend and Tell model 

 

To solve the problem of semantic description generation of an attribute let's modify the architecture from 

[21] and make the following changes: 

1. In the problem being solved, it is not a picture that is analyzed, but a set of sequential attribute 

values 𝑋𝑖. Therefore, let us use layers of a simple unidirectional recurrent network (RNN, 

Recurrent Neural Network) instead of convolutional layers from Diagram 2. To simplify the 

problem, we assume that the order of the values is not important. However, in the case of 

streaming data and metadata changing over time, the values order becomes important and is a 

promising direction for further research; 

2. As already noted, a long-term memory mechanism is needed to store the already processed 

values without regard to their order. One option is to use LSTM memory cells [22] for GAN 

networks [10]. However, they require quite a lot of computing resources, so the use of the GRU 

or MUT1 architecture [23] for memory cells looks more promising. During the implementation 

and experiments, one of the most modern memory architectures (SCRN) was used since its 

performance was proven with large amounts of data [24-25], and it turned out to be “cheaper” 

to train vs. LSTM. Analysis of various memory cell options1is out of scope of this publication 

and remains a subject for the further analysis and experiments. 

3. Similar to [21], an attention mechanism is required to “focus” at the desired attribute values and 

“remove noisy” values. Unlike the typesetting problem, mechanisms with soft attention [18] are 

suitable here since the descriptive part can be “softer”, namely a linear combination of values, 

rather than discrete. Let's design the attention mechanism as a separate neural network in order 

to cut off unnecessary values when generating the descriptive part of the semantics. Thus, a 

vector of read values 𝑋𝑖 is supplied as an input for the recurrent network after removing noisy 

and atypical values. These values along with the measurements of the feature matrix 𝑀𝐹𝑖
𝑚 are 

further passed through the attention network, where attention coefficients 𝑎𝑖𝑗
𝑚 are obtained. 

Thus, a linear combination ∑ 𝑎𝑖𝑗
𝑚 𝑥𝑖𝑗𝑗  is received as the input for the Decoder memory cells. 

 

 
1In addition to the already mentioned GRU, MUT1, the SRU (Simple Recurrent Unit) model may also be of 

interest. 
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Combining all of the above changes together based on the generative autoencoder proposed in [21], the 

following architecture is obtained: 

 

 
Diagram 3. Autoencoder architecture for the attribute semantics description generation problem 

 

Diagram 3 shows the architecture of the deep network at iteration 𝑚, where any descriptive element can 

be changed to reflect the new value have read with every new iteration. Note, that the data type information 

is also relevant to the semantic description of the attribute. This observation and a similar AAE architecture 

can effectively solve both problems simultaneously within a single architecture. 

 

5. A single neural network to solve both problems 
 

Let us outline common elements of the neural network architectures proposed above for the generalized 

typesetting and the data attributes semantics generation problems: common cells of long-term memory 

SCRN, main recurrent network of the Encoder and the feature measurement matrix 𝑀𝐹𝑖
𝑚. At the same time, 

the attention mechanism from the architecture of the data attributes semantics generation is not useful in the 

typesetting problem, since it serves to search for the focal areas of the values of a particular attribute, which 

allows generating its descriptive part. Similarly, the Generator and Discriminator of the generalized 

typesetting problem cannot be reused due to the specifics of the additional tasks being solved by them. Let's 

combine these two architectures to optimize computing resources and learning time on the training data. 

The adversarial autoencoder architecture of the generalized typesetting problem did not use long-term 
memory cells explicitly. However, they were used implicitly by the Discriminator as a “statistics cache” for 

the features list 𝐹𝑚 to determine a new type. Considering that there is already a memory layer of SCRN 

cells, it is quite logical to use it to cache Discriminator’s values. In this case, the task of determining new 

data types (3) will be solved much faster without additional recalculations. A good example is the new 

lookup type, where the memory layer stored in SCRN cells simply accumulates the values of the future 

lookup. 
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Diagram 4. Architecture of the combined neural network of the generalized typesetting and attribute 

semantics generation problems 

 

6. Conclusion 
 

Well-known industry metadata management problems for structured data and master data are 

considered, namely, generation of the meaningful description (semantics) of the attributes and identifying 

their data types, taking into account the necessity of creating additional reference data types. This paper 

proposes an algorithm to simultaneously solve these problems based on a single deep computing network, 

which is complemented by certain mechanisms for data types generation, and generation of the semantic 

descriptions of the data attributes. 

A formal definition of the generalized problem of determining the data type (typesetting) is introduced 

in the form of a discrete optimization problem, for which the Bellman optimality principle is proven. To 

solve the problem, the architecture of a neural network based on an adversarial autoencoder (AAE) is 

presented, where the dynamic programming method is used within iterations to search for discrete 

suboptimums. Further combined architecture is proposed for the generalized typesetting and data attribute 

description generation problems, which uses shared layers and is supplemented by a unified attention 

network and a layer of long-term memory SCRN cells. 

This work is based on the experiments with data from various industries, in particular smartphone log 

data [12] and online trading transaction data [26]. The program code of the specified architecture is 

implemented with the Python programming language using the open-source libraries TensorFlow and 

Keras. The main emphasis of the publication is the definitions of the problems in the forms of discrete 

optimization problems and the architecture of a unified deep learning neural network with well-known 

memory and attention blocks. At the same time, some directions for the future research are highlighted – 

e.g. dependent attributes identification, effective work with long-term memory, tuning the latent feature 

search, auto-tuning of the threshold values of the Discriminator. 
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