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Abstract. In this paper, we consider the discrete kinetic Carleman system.
The Carleman system is the Boltzmann kinetic equation, and for this model
momentum and energy are not conserved. Using group analysis methods, we
obtain a solution representing the density of gas particles in a certain area. This
limitation is due to the non-negativity of solution. Similarly, it is possible to
find exact solutions for other kinetic models.
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1 Introduction

We consider the one-dimensional Carleman system [9, 15]:

∂tu+ ∂xu =
1

ε
(v2 − u2), x ∈ R, t > 0,

∂tv − ∂xv = −1

ε
(v2 − u2).

(1)

Here u = u(x, t), v = v(x, t) are the densities of two groups of particles with
velocities c = 1,−1, ε is the Knudsen parameter from the kinetic theory of
gases. This system describes a monatomic rarefied gas consisting of two groups
of particles. The Carleman system is a non-integrable system, i.e. the Painlevé
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test is not applicable. The interaction is as follows. The Carleman system
describes particles of two groups, namely, the first group of particles moves at
a unit speed along the axis Ox, and the second group moves at a unit speed in
the opposite direction. It is worth noting that only particles within one group
interact, that is, only with themselves, changing the direction of motion.

The method of group analysis is a well-known method for finding solu-
tions, in particular invariant solutions of equations of mathematical physics.
This method is described in detail in [1, 2, 3, 5]. A general description of the
Boltzmann equation is described in the article [4]. In this works [6, 7], Ilyin
O. V. obtained an optimal system of one-dimensional subalgebras and classes
of invariant solutions for the stationary kinetic Broadwell model and the one-
dimensional Boltzmann integro-differential equation for Maxwellian particles
with inelastic collisions. In [8] the results of group analysis of the multidimen-
sional Boltzmann and Vlasov equations are presented. Also, solutions of kinetic
systems using Painlevé series were found in [9, 10, 11, 15, 16]. Asymptotic sta-
bility for Boltzmann models as well as the numerical study are presented in
[14, 17, 18, 19]. The analysis described in this paper provides solutions of the
Carleman system that have not yet been found in the literature.

2 Method of group analysis

We consider a system of two second order partial differential equations

F1(u, ut, ux, utt, uxt, uxx, ...) = 0, (2)

F2(v, vt, vx, vtt, vxt, vxx, ...) = 0, (3)

where u = u(x, t), v = v(x, t) are unknown functions. According to the group
analysis methods, we will look for the prolonged operator in the form

X
1
= ξ

∂

∂x
+ η

∂

∂t
+ ζ

∂

∂u
+ χ

∂

∂v
+ ζ1

∂

∂ux
+ ζ2

∂

∂ut
+ χ1

∂

∂vx
+ χ2

∂

∂vt
,

where ξ = ξ(x, t, u, v), η = ξ(x, t, u, v), ζ = ζ(x, t, u, v), χ = χ(x, t, u, v). Here

X = ξ
∂

∂x
+ η

∂

∂t
+ ζ

∂

∂u
+ χ

∂

∂v
. (4)

is called the infinitesimal operator of the group. A universal invariant of the
group and the operator (4) is a function I(x, t, u, v)

XI = ξ
∂I

∂x
+ η

∂I

∂t
+ ζ

∂I

∂u
+ χ

∂I

∂v
= 0. (5)
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The coordinates of the first prolongation are given by

ζ1 = Dx(ζ)− uxDx(ξ)− utDx(η).

ζ2 = Dt(ζ)− uxDt(ξ)− utDt(η)

and
χ1 = Dx(χ)− vxDx(ξ)− vtDx(η),

χ2 = Dt(χ)− vxDt(ξ)− vtDt(η),

where Dx, Dt are the operators of total differentiation with respect to x and t:

Dx =
∂

∂x
+ ux

∂

∂u
+ vx

∂

∂v
+ uxx

∂

∂ux
+ uxt

∂

∂ut
+ vxx

∂

∂vx
+ vxt

∂

∂vt
+ · · ·,

Dt =
∂

∂t
+ ut

∂

∂u
+ vt

∂

∂v
+ uxt

∂

∂ux
+ utt

∂

∂ut
+ vxt

∂

∂vx
+ vtt

∂

∂vt
+ · · ·.

After calculations, we have

ζ1 = ζx + ζuux + ζvvx − ux(ξx + ξuux + ξvvx)− ut(ηx + ηuux + ηvvx), (6)

ζ2 = ζt + ζuut + ζvvt − ux(ξt + ξuut + ξvvt)− ut(ηx + ηuut + ηvvt) (7)

and

χ1 = χx + uxχu + vxχv − vx(ξx + uxξu + vxξv)− vt(ηx + uxηu + vxηv), (8)

χ2 = ξt + ξuut + ξvvt − vx(ξt + ξuut + ξvvt)− vt(ηt + ηuut + ηvvt). (9)

We require that

X
1
F1|F1=F2=0 = 0, X

1
F2|F1=F2=0 = 0. (10)

Relations (10) is called the invariance conditions.

We illustrate the above procedure for the Carleman system.

3 Application of the method

Let us insert

F1 = ut + ux −
1

ε
(v2 − u2),

https://doi.org/10.21638/11701/spbu35.2024.208 Electronic Journal: http://diffjournal.spbu.ru/ 185



Differential Equations and Control Processes, N. 2, 2024

F2 = vt − vx +
1

ε
(v2 − u2),

into the invariance conditions (10)

X
1
F1|F1=0,F2=0 = (ζ2 + ζ1 −

1

ε
2vχ+

1

ε
2uζ)|F1=0,F2=0, (11)

X
1
F2|F1=0,F2=0 = (χ2 − χ1 +

1

ε
2vχ− 1

ε
2uζ)|F1=0,F2=0. (12)

Now, replacing ut, vt by −ux+
1
ε(v

2−u2), vx− 1
ε(v

2−u2) and taking into account
the expressions (6)-(7) and (8)-(9) for the coordinates of the first prolongation
from the first equation (11), we have:

ux : −ξt −
1

ε
(v2 − u2)ξu + ξv

1

ε
(v2 − u2) + ηt + ηu

1

ε
(v2 − u2)−

−1

ε
ηv(v

2 − u2)− ξx + ηx = 0,

u2x : ξu − ηu − ξu + ηu = 0,

vx : ζv −
1

ε
(v2 − u2)ηv + ζv −

1

ε
(v2 − u2)ηv = 0,

uxvx : −ξv + ηv − ξv + ηv = 0,

1 : ζt + ζu
1

ε
(v2 − u2)− ζv

1

ε
(v2 − u2)− 1

ε
(v2 − u2)ηt−

−1

ε
(v2 − u2)ηu

1

ε
(v2 − u2) +

1

ε
(v2 − u2)ηv

1

ε
(v2 − u2) + ζx−

−1

ε
(v2 − u2)ηx −

2

ε
χv +

2

ε
uζ = 0.

From the second equation (12):

ux : χu −
1

ε
(v2 − u2)ηu − χu −

1

ε
(v2 − u2)ηu = 0,

uxvx : ξu + ηu + ξu + η − u = 0,

vx : χv − ξt −
1

ε
(v2 − u2)ξu + ξv

1

ε
(v2 − u2)− ηt−

−ηu
1

ε
(v2 − u2) + ηv

1

ε
(v2 − u2) +

1

ε
(v2 − u2)ηv − χv + ξx+

+ηx −
1

ε
(v2 − u2)ηv = 0,
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v2x : −ξv − ηv + ξv + ηv = 0,

1 : χt + χu
1

ε
(v2 − u2)− χv

1

ε
(v2 − u2) +

1

ε
(v2 − u2)ηt+

+
1

ε
(v2 − u2)ηu

1

ε
(v2 − u2)− 1

ε
(v2 − u2)ηv

1

ε
(v2 − u2)− χx−

−1

ε
(v2 − u2)ηx +

2

ε
χv − 2

ε
ζu = 0.

Rewrite the system in a more compact form

ηv = ξv,

2
1

ε
(v2 − u2)ηu − ξt + ηt − ηx − ξx = 0,

ζv −
1

ε
(v2 − u2)ηv = 0,

1

ε
(v2 − u2)(ζu − ζv − ηt − ηu

1

ε
(v2 − u2) + ηv

1

ε
(v2 − u2)− ηx)+

+ζx + ζt −
2

ε
χv +

2

ε
uζ = 0

and

ηu = −ξu,

χu +
1

ε
(v2 − u2)ηu = 0,

2
1

ε
(v2 − u2)ηv − ηt − ξt + ηx + ξx = 0,

1

ε
(v2 − u2)(χu − χv + ηt +

1

ε
(v2 − u2)ηu −

1

ε
(v2 − u2)ηv − ηx)+

+χt − χx +
2

ε
χv − 2

ε
ζu = 0.

Integrating the system, we get

η(t) = αt+ β, ξ(x) = αx+ γ, ζ(u) = −αu, χ(v) = −αv,

where α, β, γ are arbitrary constants. The corresponding characteristic system
of ordinary differential equations for (5)

dt

η
=

dx

ξ
=

du

ζ
=

dv

χ

or
dt

αt+ β
=

dx

αx+ γ
=

du

−αu
=

dv

−αv
.
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We obtain

ω =
αx+ γ

αt+ β
,

where α, γ, β is an integration constants. Invariant solution are sought in the
form

u =
Φ(ω)

α(αt+ β)
, v =

Ψ(ω)

α(αt+ β)
,

where Φ,Ψ unknown functions of similarity variable that must be defined.

−(αt+ β)Φ + (αt− αx+ β − γ)Φ′

(αt+ β)3
=

Ψ2 − Φ2

α2(αt+ β)2ε
, (13)

−(αt+ β)Ψ− (αt+ αx+ β + γ)Ψ′

(αt+ β)3
=

Φ2 −Ψ2

α2(αt+ β)2ε
(14)

or we rewrite

α2ε(Φ(1− ω))′ = −Φ2 +Ψ2,

α2ε(Ψ(1 + ω))′ = −Φ2 +Ψ2. (15)

Φ(ω) =
1 + ω

1− ω
Ψ(ω) + (1− ω)C,

where C is an arbitrary constant of integration.

For finding function Ψ, we have the Riccati equation

Ψ′ =
−4ω

εα2(1− ω)2(1 + ω)
Ψ2 +

(−2C − εα2 + 2(εα2 − C)ω − εα2ω2

εα2(1− ω)2(1 + ω)

)
Ψ−

− C2

εα2(1− ω)2(1 + ω)
.

We can write the particular solution at C = 0

u =
−εα(εα(t+ x) + β + γ)

−2(εαt+ β)2 + C1((εαt+ β)2 − (εαt+ γ)2)
,

v =
−εα(εα(t− x) + β − γ)

−2(εαt+ β)2 + C1((εαt+ β)2 − (εαt+ γ)2)
, (16)

where C1 is an arbitrary constant of integration. The non-negativity of the
solution can be chosen by choosing a constant C1 in the region of the plane x, t.
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4 Conclusion

In this article, the solution was found using group analysis methods. We de-
termined three different infinitesimal groups of transformations leaving the in-
variant condition. A well-known and very important special class of invariant
solutions was represented by self similar solution which was constructed on the
basis of invariants of extension groups. Future work will present solutions to
the remaining kinetic systems.
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