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Abstract.This paper is concerned with the study of a nonlinear problem in-
volving the fractional p(x)−Laplacian operator. By means of the Berkovits
degree theory, we prove the existence of nontrivial weak solutions for this prob-
lem. The appropriate functional framework for this problem is the fractional
Sobolev spaces with variable exponent.
Keywords:Nonlinear elliptic problem, fractional p(x)−Laplacian operator,
fractional Sobolev spaces with variable exponent, Degree theory.

1 Introduction

Great attention was paid to the study of elliptic problems including the frac-
tional operator during the last years. The study of this type of problems is
motivated by their abilities to model several physical phenomena such as those
of phase transition, continuum mechanics and dynamics. Fractional operator is
also present in game theory and probability which he provides a simple model
to describe stochastic stabilization of Lévy jump processes (see [2, 7, 8, 9] and
the references therein).

Let Ω be a smooth bounded open set in RN , s ∈ (0, 1) and let
p : Ω×Ω → (1,+∞) be a continuous variable exponent with sp(x, y) < N . We



Differential Equations and Control Processes, N. 3, 2024

assume that

1 < p− = min
(x,y)∈Ω×Ω

p(x, y) ≤ p(x, y) ≤ p+ = max
(x,y)∈Ω×Ω

p(x, y) < +∞, (1)

and p is symmetric i.e.

p(x, y) = p(y, x), ∀(x, y) ∈ Ω× Ω. (2)

Let us denote
q(x) = p(x, x), ∀x ∈ Ω.

Let us consider the fractional p(x)−Laplacian operator given by

(−∆p(x))
su(x) = p.v.

∫
Ω

|u(x)− u(y)|p(x,y)−2(u(x)− u(y))

|x− y|N+sp(x,y)
dy, ∀x ∈ Ω,

where p.v. is a commonly used abbreviation in the principal value sense.

In this paper, we are concerned with the study of the following nonlinear
elliptic problem,{

(−∆p(x))
su(x) + |u(x)|q(x)−2u(x) = λ|u(x)|r(x)−2u(x) in Ω,

u = 0 on ∂Ω.
(P)

where r(·) ∈ C(Ω̄) and λ is a real parameter. We also assume that

1 < r− ≤ r(x) ≤ r+ < p−. (3)

Note that (−∆p(x))
s is the fractional version of well-known p(x)−Laplacian

operator −∆p(x)(u) = −div(|∇u|p(x)−2∇u) for which Alsaedi in [1] establishes
sufficient conditions for the existence of nontrivial weak solutions for a problem
similar to (P) that is the following problem:{

−∆p(x)u = λ|u|p(x)−2u+ |u|q(x)−2u in Ω,

u = 0 on ∂Ω.

The proofs combine the Ekeland variational principle, the mountain pass theo-
rem and energy arguments.

A first introduction to the operator (−∆p(x))
s can be found in [14], where the

authors extended Sobolev spaces with variable exponents to the fractional case
with a compact embedding theorem, and proved the existence and uniqueness
of weak solutions for the following fractional p(x)−Laplacian problem{

(−∆p(x))
su(x) + |u|q(x)−2u(x) = f(x) in Ω,

u = 0 on ∂Ω,
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where f ∈ La(x)(Ω) for some a(x) > 1. Subsequently, Bahrouni and Rǎdulescu
in [5] are interested in some qualitative properties on both the variable exponent
Sobolev fractional space and the operators (−∆p(x))

s. The results presented ab-
stractly in their paper are used to prove that the problem (P) admits at least one
nontrivial weak solution by a variational analysis. More recently, Azroul et al.
[3] study the problem (P) as an eigenvalue problem using adequate variational
techniques, mainly based on Ekeland’s variational principle. They establish the
existence of a continuous family of eigenvalues lying in a neighborhood at the
right of the origin.

Note that the fractional Laplacian considered in this work and in [3, 5, 14] is
in fact ”regional” since the integration is over Ω but not over RN . In the case of
the ”global” fractional Laplacian, where the integral is defined on RN\B(x, ε) by
tending ε to 0, similar problems have been studied (see, for instance, [4, 12, 13]).

Using another technique based on topological degree theory, notably the
recent Berkovits degree, we prove in this paper the existence of at least one
nontrivial weak solution the problem (P).

The paper is divided into four sections. In the second section, we intro-
duce some preliminary results about Lebesgue and fractional Sobolev spaces
with variable exponent, some classes of operators and an outline of the recent
Berkovits degree. The third section is reserved for some technical lemmas.
Finally, in the fourth section we give our main results concerning the weak
solutions of the problem (P).

2 Some preliminary results

2.1 Lebesgue and fractional Sobolev spaces with variable exponent

In this subsection, we first recall some useful properties of the variable exponent
Lebesgue spaces Lp(x)(Ω). For more details we refer the reader to [11, 16, 19]
for more details.

Denote
C+(Ω̄) = {h ∈ C(Ω̄)| inf

x∈Ω̄
h(x) > 1}.

For any h ∈ C+(Ω̄), we define

h+ := max{h(x), x ∈ Ω̄}, h− := min{h(x), x ∈ Ω̄}.
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For any p ∈ C+(Ω̄) we define the variable exponent Lebesgue space

Lp(x)(Ω) = {u; u : Ω → R is measurable and

∫
Ω

|u(x)|p(x) dx < +∞}.

Endowed with Luxemburg norm

∥u∥p(x) = inf{λ > 0/ρp(·)(
u

λ
) ≤ 1}.

where

ρp(·)(u) =

∫
Ω

|u(x)|p(x) dx, ∀u ∈ Lp(x)(Ω),

(Lp(x)(Ω), ∥ · ∥p(x)) is a Banach space, separable and reflexive. Its conjugate
space is Lp′(x)(Ω) where 1

p(x) +
1

p′(x) = 1 for all x ∈ Ω.
We have also the following result

Proposition 1 For any u ∈ Lp(x)(Ω) we have

(i) ∥u∥p(x) < 1(= 1;> 1) ⇔ ρp(·)(u) < 1(= 1;> 1),

(ii) ∥u∥p(x) ≥ 1 ⇒ ∥u∥p
−

p(x) ≤ ρp(·)(u) ≤ ∥u∥p
+

p(x),

(iii) ∥u∥p(x) ≤ 1 ⇒ ∥u∥p
+

p(x) ≤ ρp(·)(u) ≤ ∥u∥p
−

p(x).

From this proposition, we can deduce the inequalities

∥u∥p(x) ≤ ρp(·)(u) + 1, (4)

ρp(·)(u) ≤ ∥u∥p
−

p(x) + ∥u∥p
+

p(x). (5)

If p, q ∈ C+(Ω) such that p(x) ≤ q(x) for any x ∈ Ω̄, then there exists the
continuous embedding Lq(x)(Ω) ↪→ Lp(x)(Ω).

Next, we present the definition and some results on fractional Sobolev spaces
with variable exponent that was introduced in [3, 5, 14]. Let s be a fixed
real number such that 0 < s < 1 and lets the assumptions (1) and (2) with
sp(x, y) < N be satisfied, we define the fractional Sobolev space with variable
exponent via the Gagliardo approach as follows:

W = W s,p(x,y)(Ω)

= {u ∈ Lq(x)(Ω) :

∫
Ω×Ω

|u(x)− u(y)|p(x,y)

λp(x,y)|x− y|N+sp(x,y)
dxdy < +∞, for some λ > 0},
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where q(x) = p(x, x). We equip the space W with the norm

∥u∥W = ∥u∥q(x) + [u]s,p(x,y),

where [·]s,p(x,y) is a Gagliardo seminorm with variable exponent, which is defined
by

[u]s,p(x,y) = inf{λ > 0 :

∫
Ω×Ω

|u(x)− u(y)|p(x,y)

λp(x,y)|x− y|N+sp(x,y)
dxdy ≤ 1}.

The space (W, ∥ · ∥W ) is a Banach space (see [10]), separable and reflexive (see
[5, Lemma 3.1]).

We also define W0 as the subspace of W which is the closure of C∞
0 (Ω) with

respect to the norm ∥ · ∥W . From [3, Theorem 2.1 and Remark 2.1],

∥ · ∥W0
:= [·]s,p(x,y)

is a norm on W0 which is equivalent to the norm ∥ · ∥W , and we have the
compact embedding W0 ↪→↪→ Lq(x)(Ω). So the space (W0, ∥ · ∥W0

) is a Banach
space separable and reflexive.
We define the modular ρp(·,·) : W0 → R by

ρp(·,·)(u) =

∫
Ω×Ω

|u(x)− u(y)|p(x,y)

|x− y|N+sp(x,y)
dxdy.

The modular ρp(·,·) checks the following results, which is similar to Proposition
1(see [18, Lemma 2.1])

Proposition 2 For any u ∈ W0 we have

(i) ∥u∥W0
≥ 1 ⇒ ∥u∥p

−

W0
≤ ρp(·,·)(u) ≤ ∥u∥p

+

W0
,

(ii) ∥u∥W0
≤ 1 ⇒ ∥u∥p

+

W0
≤ ρp(·,·)(u) ≤ ∥u∥p

−

W0
.

2.2 Some classes of operators and an outline of Berkovits degree

Let X be a real separable reflexive Banach space with dual X∗ and with con-
tinuous pairing ⟨. , .⟩ and let Ω be a nonempty subset of X.

Let Y be a real Banach space. We recall that a mapping F : Ω ⊂ X → Y
is bounded, if it takes any bounded set into a bounded set. F is said to be
demicontinuous, if for any (un) ⊂ Ω, un → u implies F (un) ⇀ F (u). F is said
to be compact if it is continuous and the image of any bounded set is relatively
compact.
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A mapping F : Ω ⊂ X → X∗ is said to be of class (S+), if for any (un) ⊂ Ω
with un ⇀ u and limsup⟨Fun, un − u⟩ ≤ 0, it follows that un → u.
F is said to be quasimonotone , if for any (un) ⊂ Ω with un ⇀ u, it follows that
limsup⟨Fun, un − u⟩ ≥ 0.

For any operator F : Ω ⊂ X → X and any bounded operator
T : Ω1 ⊂ X → X∗ such that Ω ⊂ Ω1, we say that F satisfies condition (S+)T ,
if for any (un) ⊂ Ω with un ⇀ u, yn := Tun ⇀ y and limsup⟨Fun, yn − y⟩ ≤ 0,
we have un → u.

Let O be the collection of all bounded open set in X. For any Ω ⊂ X, we
consider the following classes of operators:

F1(Ω) := {F : Ω → X∗ | F is bounded, demicontinuous and satisfies condition (S+)},
FT,B(Ω) := {F : Ω → X | F is bounded, demicontinuous and satisfies condition (S+)T},
FT (Ω) := {F : Ω → X | F is demicontinuous and satisfies condition (S+)T},
FB(X) := {F ∈ FT,B(Ḡ) | G ∈ O,T ∈ F1(Ḡ)}.

Here, T ∈ F1(Ḡ) is called an essential inner map to F .

Lemma 1 [15, Lemma 2.3] Suppose that T ∈ F1(Ḡ) is continuous and
S : DS ⊂ X∗ → X is demicontinuous such that T (Ḡ) ⊂ DS, where G is
a bounded open set in a real reflexive Banach space X. Then the following
statements are true:

(i) If S is quasimonotone, then I+S ◦T ∈ FT (Ḡ), where I denotes the identity
operator.

(ii) If S is of class (S+), then S ◦ T ∈ FT (Ḡ)

Definition 1 Let G be a bounded open subset of a real reflexive Banach space
X, T ∈ F1(Ḡ) be continuous and let F, S ∈ FT (Ḡ). The affine homotopy
H : [0, 1]× Ḡ → X defined by

H(t, u) := (1− t)Fu+ tSu for (t, u) ∈ [0, 1]× Ḡ

is called an admissible affine homotopy with the common continuous essential
inner map T .

Remark 1 [15, Lemma 2.5] The above affine homotopy satisfies condition
(S+)T .
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We introduce the topological degree for the class FB(X) constructed by
Berkovits in [6].

Theorem 1 [15, Theorem 3.1] There exists a unique degree function

d : {(F,G, h)|G ∈ O, T ∈ F1(Ḡ), F ∈ FT,B(Ḡ), h /∈ F (∂G)} → Z

that satisfies the following properties

1. (Existence) If d(F,G, h) ̸= 0, then the equation Fu = h has a solution in
G.

2. (Additivity) Let F ∈ FT,B(Ḡ). If G1 and G2 are two disjoint open subsets
of G such that h ̸∈ F (Ḡ \ (G1 ∪G2)), then we have

d(F,G, h) = d(F,G1, h) + d(F,G2, h).

3. (Homotopy invariance) If H : [0, 1]×Ḡ → X is a bounded admissible affine
homotopy with a common continuous essential inner map and
h : [0, 1] → X is a continuous path in X such that h(t) /∈ H(t, ∂G) for all
t ∈ [0, 1] ,then the value of d(H(t, .), G, h(t)) is constant for all t ∈ [0, 1].

4. (Normalization) For any h ∈ G, we have d(I,G, h) = 1.

3 Technical lemmas

Let Ω ⊂ RN , N ≥ 2, be a smooth bounded open set, s ∈ (0, 1) and we assume
that (1), (2) and (3) hold. In this section, we present two technical lemmas
that we will need to study our problem (P).

Let us denote by L : W0 → W ∗
0 the operator associated to the (−∆p(x))

s

defined by

⟨Lu, ϕ⟩ =

∫
Ω×Ω

|u(x)− u(y)|p(x,y)−2(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|N+sp(x,y)
dxdy

+

∫
Ω

|u(x)|q(x)−2u(x)ϕ(x) dx,

for all u, ϕ ∈ W0, where W ∗
0 is the dual space of W0.

Lemma 2 [5, Remark 4.3]

(i) L is bounded and strictly monotone operator,
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(ii) L is a mapping of type (S+),

(iii) L is a homeomorphism.

Lemma 3 The operator S : W0 → W ∗
0 setting by

⟨Su, ϕ⟩ = −λ

∫
Ω

|u(x)|r(x)−2u(x)ϕ(x)dx, ∀u, ϕ ∈ W0

is compact.

Proof
Let φ : W0 → Lq′(x)(Ω) be the operator defined by

φu(x) := −λ|u(x)|r(x)−2u(x) for u ∈ W0 and x ∈ Ω.

It’s obvious that φ is continuous. We prove that φ is bounded.
For each u ∈ W0, we have by the inequalities (4) and (5) that

∥φu∥q′(x) ≤ ρq′(·)(φu) + 1

=

∫
Ω

|λ|u|r(x)−1|q′(x) dx+ 1

≤ const ρα(·)(u) + 1

≤ const(∥u∥α−

α(x) + ∥u∥α+

α(x)) + 1

where α(x) = (r(x) − 1)q′(x) ∈ C+(Ω) with α(x) ≤ q(x). By the continuous
embedding Lq(x)(Ω) ↪→ Lα(x)(Ω) and the compact embeddingW0 ↪→↪→ Lq(x)(Ω),
we obtain

∥φu∥q′(x) ≤ const((∥u∥α−

W0
+ ∥u∥α+

W0
) + 1

This implies that φ is bounded on W0.
Since the embedding I : W0 → Lq(x)(Ω) is compact, it is known that the adjoint
operator I∗ : Lq′(x)(Ω) → W ∗

0 is also compact. Therefore, the composition
S = I∗ ◦ φ is compact.

4 Main Result

In this section, we study the nonlinear problem (P) based on the Berkovits
degree theory introduced in subsection 2.2, where Ω ⊂ RN , N ≥ 2, is a smooth
bounded open, s ∈ (0, 1) and under assumptions (1), (2) with sp(x, y) < N and
(3) .

Let L and S : W0 → W ∗
0 (Ω) be as in Section 3.
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Definition 2 We say that u ∈ W0 is a weak solution of (P) if

⟨Lu, ϕ⟩+ ⟨Su, ϕ⟩ = 0, ∀ϕ ∈ W0.

Theorem 2 Under assumptions (1), (2) and (3), the problem (P) has a weak
solution u in W0.

Proof u ∈ W0 is a weak solution of (P) if and only if

Lu = −Su. (6)

Thanks to the properties of the operator L seen in Lemma 2 and in view of
Minty-Browder Theorem [17, Theorem 26A], the inverse operator
T := L−1 : W ∗

0 → W0 is bounded, continuous and satisfies condition (S+).
Moreover, note by Lemma 3 that the operator S is bounded, continuous and
quasimonotone.
Consequently, equation (6) is equivalent to

u = Tv and v + S ◦ Tv = 0. (7)

To solve (7), we will apply the degree theory introduced in section 2. To do
this, we first claim that the set

B := {v ∈ W ∗
0 |v + tS ◦ Tv = 0 for some t ∈ [0, 1]}

is bounded. Indeed, let v ∈ B. Set u := Tv, then ∥Tv∥W0
= ∥u∥W0

.

If ∥u∥W0
≤ 1, then ∥Tv∥W0

is bounded.
If ∥u∥W0

> 1, then we get by the implication (i) in Proposition 2 and the
inequality (5) the estimate

∥Tv∥p
−

W0
= ∥u∥p−W0

≤ ρp(·,·)(u)

≤ ρp(·,·)(u) +

∫
Ω

|u(x)|q(x) dx

= ⟨Lu, u⟩
= ⟨v, Tv⟩
= −t⟨S ◦ Tv, Tv⟩

≤ t

∫
Ω

|λ|u(x)|r(x)| dx

≤ const(∥u∥r−r(x) + ∥u∥r+r(x)).
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From the continuous embedding Lq(x)(Ω) ↪→ Lr(x)(Ω) and the compact embed-
ding W0 ↪→↪→ Lq(x)(Ω), we can deduce the estimate

∥Tv∥p
−

W0
≤ const ∥Tv∥r+W0

.

It follows that {Tv|v ∈ B} is bounded.
By writing B = {v ∈ W ∗

0 |v = −tS ◦ Tv for some t ∈ [0, 1]} and taking into
account the boundedness of Tv (v ∈ B), S and t (t ∈ [0, 1]), we can see that B
is bounded in W ∗

0 . Consequently, there exists R > 0 such that

∥v∥W ∗
0
< R for all v ∈ B.

Therefore, if v /∈ BR(0), then v /∈ B, that is v+ tS ◦ Tv ̸= 0 for all t ∈ [0, 1]. In
particular

v + tS ◦ Tv ̸= 0 for all v ∈ ∂BR(0) and all t ∈ [0, 1],

where BR(0) = {v ∈ W ∗
0 ; ∥v∥W ∗

0
< R} the open ball of W ∗

0 of centre 0 and
radius R.

From Lemma 1 it follows that

I + S ◦ T ∈ FT (BR(0)) and I = L ◦ T ∈ FT (BR(0)).

Since the operators I, S and T are bounded, I + S ◦ T is also bounded. We
conclude that

I + S ◦ T ∈ FT,B(BR(0)) and I ∈ FT,B(BR(0)).

Consider a homotopy H : [0, 1]× BR(0) → W ∗
0 given by

H(t, v) := v + tS ◦ Tv for (t, v) ∈ [0, 1]× BR(0).

Applying the homotopy invariance and normalization property of the degree d
stated in Theorem 1, we get

d(I + S ◦ T,BR(0), 0) = d(I, BR(0), 0) = 1,

and hence there exists a point v ∈ BR(0) such that

v + S ◦ Tv = 0.

We conclude that u = Tv is a weak solution of (P).
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