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Abstract. The paper addresses the filtering of a continuous-time Markov chain states that can be 

observed through linear measurements perturbed by a Wiener process. There is supposed the presence 

of uncertainty in the intensity of measurement noise. The problem is worked out under the assumption 

of unknown intensity but subject to its known upper bound. If there is no uncertainty in measurements 

the optimal solution is provided by the Wonham filter that doesn’t ensure stable numerical 

implementations. The paper exposes that the Wonham filter shows robustness in the presence of 

uncertainty if model’s parameters don’t imply its divergent. It is detected that to cope with divergence 

tracking and handling trajectories aren’t sufficient in the case of uncertainty. The more efficient way 

is to consider discretized approximations of the Wonham filter implemented for a discrete model that 

approximates the initial continuous-time measurement system. Such an approach perceptibly 

advantages if numerical implementations contain divergent trajectories. If there are no divergent 

trajectories, then the discretized filters give a slightly worse result but acceptable. 

 

Keywords: filtering problem, nonlinear filtering, Wonham filter, minimax estimation, Markov chain. 

 

 

 

1. Introduction 
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Filtering is one of the crucial problems in studying dynamical systems. Estimating random hidden process’s 
states from noise-contaminated measurements represents the matter of the stochastic filtering problem. As 
is well known, in the case of linear models under assumption about Gaussian-distributed underlying 
processes the optimal solution can be obtained by the Kalman-Bucy filter while the Kushner-Stratonovich 
filter is employed for the exact same purpose when nonlinear models are considered [1-3].  

In general, nonlinear filtering is challenging due to the lack of a finitely dimensional system of a 
sufficient amount of statistics for a posterior distribution. That implies to utilizing various finitely 
dimensional approximations [3-6]. 

The other complexity lies in appearing uncertainty in a model. Optimal filtering algorithms are highly 
sensitive to deviations from nominal settings and their efficient performance might degrade. By virtue of 
this developing robust state estimation strategies are of notable importance. There can be given several 
strategies as an illustration: the contemporary 𝐻∞ filtering algorithm [7, 8], its combination with classical 
least square techniques (the mixed 𝐻2/𝐻∞) [9], receding horizon estimation [10, 11], a robust filter based 
on a convex quadratic problem expressed in terms of LMI [12], the minimax approaches [13-17]. 

It is worth mentioning that there is a variety of interpretations for “robustness”. Herein the considered 
robust algorithms can be treated in terms of stability of estimates with respect to existing uncertainty. 

In the paper, the system uncertainty related to a lack of a prior information about measurement noise 
intensities is devoted attention to. The minimax approach is taken for construction a robust filter. The idea 
behind the minimax approach is that the filtering problem is being solved provided that the worst scenario 
from some uncertainty set containing values and statistics of undefined parameters is implemented [16, 17]. 

Nonlinear filtering for a continuous-time Markov chain with  finite state space is considered. In 

other words, the Wonham filtering problem is being solved [18, 19]. It should be kept in mind that 

the Wonham filter is essentially nonlinear and its straightforward solution doesn’t seem possible to 

obtain. However, in practice it is more relevant to focus on robustness of numerical approximations 

for the Wonham filter. This is the topic of further discussion in the current work. 

The remainder of this paper is organized as follows. The filtering problem is formulated in  Sect. 1. The 

optimal solution for the problem with no uncertainty and its robust approximation schemes are given 

in  Sect. 2.  Sect. 3 reveals a huge amount of numerical experiments for a vast range of parameters values to 

perform comparative analysis where the discretized filters are involved for the purpose. The paper is 

summarized in  Sect. 4.  

 

 

2. Problem Formulation 
 

Let (𝛺, ℱ, 𝒫, ℱ𝑡),  𝑡 ∈ [0, 𝑇], be a probability space equipped with a filtration. Suppose that the stochastic 

system whose states evolution is described by means of the equation defining a Markov jump process, a 

Markov chain with the state space produced by a set of unit coordinate vectors {𝑒1, … , 𝑒𝑛},  
𝑒𝑗 ∈ ℝ𝑛𝑦 ,  𝑗 = 1, . . . , 𝑛: 

 

𝑑𝑦𝑡 = 𝛬𝑡
′ 𝑦𝑡𝑑𝑡 + 𝑑𝛬𝑡

𝑦
,   𝑦0 = 𝑌, (1) 

 

is observed through linear measurements satisfying the equation: 

 

𝑑𝑧𝑡 = 𝑎𝑡𝑦𝑡𝑑𝑡 + 𝑏𝑡𝑧𝑡𝑑𝑡 + 𝜎𝑡𝑑𝑤𝑡,    𝑧0 = 𝑍, (2) 

 

where 𝑦𝑡 ∈ ℝ𝑛𝑦 is the system state vector, 𝑧𝑡 ∈ ℝ𝑛𝑧 is the measurement vector, 𝛬𝑡 is the transition intensity 

matrix of the Markov chain governed by equation (1), 𝛬𝑡
′  is the transpose of 𝛬𝑡, 𝛬𝑡

𝑦
 is the ℱ𝑡-martingale, 

the vector 𝑌 ∈ ℝ𝑛𝑦 is the initial vector having the known probability distribution 𝜋0, the vector 𝑍 ∈ ℝ𝑛𝑧 is 

a Gaussian random vector with known characteristics ℰ{𝑍}, ℰ{𝑍𝑍′}, 𝑤𝑡 ∈ ℝ𝑛𝑤  is the standard Wiener 

process independent of 𝛬𝑡
𝑦

, 𝑌, 𝑍, ℱ𝑡
𝑧 is the 𝜎 -algebra generated by measurements presented by equation 
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(2), meanwhile ℱ𝑡
𝑧 ⊆ ℱ𝑡 ⊆ ℱ, the matrix functions  𝑎𝑡 ∈ ℝ𝑛𝑧×𝑛𝑦, 𝑏𝑡 ∈ ℝ𝑛𝑧×𝑛𝑧, 𝜎𝑡 ∈ ℝ𝑛𝑧×𝑛𝑤 are 

presumed to be bounded:  

 
|𝑎𝑡| + |𝑏𝑡| + |𝜎𝑡| ≤ 𝐶   ∀𝑡 ∈ [0, 𝑇],  

 

that guaranties the existence of a solution of equation (2). Moreover, measurement errors are non-

degenerative, namely 𝜎𝑡𝜎𝑡
′ > 0. The notation |∙| stands for a matrix norm. The symbols ℰ{⋅ | ⋅}, ℰ{⋅} mean 

a conditional and unconditional expectations respectively. 

The presented problem is considered under assumption of the lack of information about exact values of 

measurement errors intensity given by 𝜎𝑡𝜎𝑡
′ ≤ 𝛴𝑡 but under conditions of knowing the upper bound of the 

noise covariance 𝛴𝑡 > 0. The matrix inequality 𝐾 ≤ 𝐾′ should be interpreted as 𝐾 − 𝐾′ = 𝐾′′ ≤ 0 where 

𝐾′′  is a positive semidefinite matrix. The goal of the paper is to examine quality of the algorithms to estimate 

the chain state 𝑦𝑡 through measurements subject to the claimed above restriction.  

The exact filtering problem solution expressed as 

 

𝑦̂𝑡
𝑚𝑖𝑛𝑚𝑎𝑥 = arg min𝑦̂𝑡

 max𝜎𝑡:𝜎𝑡𝜎𝑡
′≤𝛴𝑡

ℰ {|𝑦̂𝑡 − 𝑦𝑡|2}  

 

is tough to obtain, however, it can be done if supposing that 

 

𝑦̂𝑡
𝑚𝑖𝑛𝑚𝑎𝑥 ≈ 𝑦̂𝑡

𝑊(Σ𝑡), 𝑦̂𝑡
𝑊(𝜎𝑡𝜎𝑡

′) = ℰ{𝑦𝑡|ℱ𝑡
𝑧, 𝜎𝑡}.  

 

The latter should be treated as the optimal Wonham filter without uncertainty if the covariance 𝜎𝑡𝜎𝑡
′ 

was given but in fact replaced with the upper bound 𝛴𝑡. In the problem without uncertainty the optimal 

solution can be defined as [18, 19]: 

 

𝑑𝑦̂𝑡
𝑊 = 𝛬𝑡

′ 𝑦̂𝑡
𝑊𝑑𝑡 + (diag(𝑦̂𝑡

𝑊) − 𝑦̂𝑡
𝑊(𝑦̂𝑡

𝑊)′)𝑎𝑡
′𝛴𝑡

−1(𝑑𝑧𝑡 − 𝑎𝑡𝑦̂𝑡
𝑊𝑑𝑡 − 𝑏𝑡𝑧𝑡𝑑𝑡). (3) 

 

Unfortunately, such an approach does not permit to obtain the desired estimate of the state 𝑦𝑡  in practice 

because when switching into numerical implementation of the optimal Wonham filter (3) by using the Euler-

Maruyama scheme the stability of computational procedure fails (a sequence of approximations is 

divergent) [20, 21]. Consequently, finding stable algorithms but actually not optimal is more worth.  

The paper accentuates on the case when the measurement noise intensity is unknown. The Wonham 

filter and the discretized filters described in detail in [22, 23] are considered as the baseline algorithms. In 

the paper for each of the filters the unknown intensity is replaced with the upper bound 𝛴𝑡. It should be 

underlined that analytical examination for the algorithms accuracy and the comparative study cannot be 

done. Additionally, it is worth noting that evolution of the filters trajectories is affected by as far as robust 

the algorithms are. That, in turn, depends on the parameters in the measurement equation.  

Thus, the goal of the paper is to propose the computational model that has a value in practice and to 

carry out a series of numerical experiments under various initial conditions varying the parameters of the 

model, changing values of the upper bound 𝛴𝑡. A wide range of the model variations can be obtained in 

such a way. That permits to carry out extensive modelling to identify specificities of behavior of the filters 

and to assess the accuracy. 

 

3. Discretized Representations of the Wonham Filter 
 

Discretizing equations (1) and (2) over time interval [0, 𝑇] with a given fixed time step 𝛿: 
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𝑡0 = 0,  𝑡𝑖 = 𝑡0 + 𝑖 ∙ 𝛿, 𝑖 = 1, … , [
𝑇

𝛿
], 

 

 

([. ]  means the floor function) leads to stable approximations of the Wonham filter, that is shown in [22].  

In addition to that the matrices 𝑎𝑡, 𝑏𝑡, 𝜎𝑡 are assumed to be constant on subintervals [𝑡𝑖−1, 𝑡𝑖]. This can 

be accomplished by swapping them for piecewise constant approximations.  

For further explanation the process 𝑧𝑡
0 being the anticipating transformation of 𝑧𝑡 should be introduced 

[22]: 

 

𝑧𝑡
0 = ∫ (𝑑𝑧𝜏 − 𝑏𝜏𝑧𝜏)𝑑𝜏

𝑡

0

= ∫ (𝑎𝜏𝑦𝜏𝑑𝜏 + 𝜎𝜏𝑑𝑤𝜏).
𝑡

0

 
(4) 

 

It holds due to the fact that 

 

𝑦̂𝑡 = ℰ{𝑦𝑡|ℱ𝑡
𝑧} = ℰ{𝑦𝑡|ℱ𝑡

𝑧0
}  

 

is met. 

Consider new measurements 𝛥𝑧𝑡𝑖

0  discretized in time with step 𝛿: 

 

𝛥𝑧𝑡𝑖

0 = ∫ (𝑎𝜏𝑦𝜏𝑑𝜏 + 𝜎𝜏𝑑𝑤𝜏).
𝑡𝑖

𝑡𝑖−1

 
 

 

The increments 𝛥𝑧𝑡𝑖

0  generate the 𝜎 -algebra ℱ𝑡
𝛥𝑧0

= 𝜎 {𝛥𝑧𝑡𝑗

0 , 𝑗 = 1, . . , 𝑖}. Then, the estimate 

𝑦̂𝑡 = ℰ{𝑦𝑡|ℱ𝑡
𝛥𝑧0

} can be defined via the following recurrent formula [23]: 

 

𝑦̂𝑡𝑖

𝑜𝑝𝑡 = (𝟏𝑞̂𝑡𝑖

′ 𝑦̂𝑡𝑖−1

𝑜𝑝𝑡)
−1

(𝑞̂𝑡𝑖

′ 𝑦̂𝑡𝑖−1

𝑜𝑝𝑡), 

(5) 𝑞̂𝑡𝑖

𝑘,𝑗
= ℰ{𝒩(𝛥𝑧𝑡𝑖

0 ; 𝑎𝜇𝑖, 𝛿𝜎𝜎′)𝑦𝑡𝑖

𝑗
 |𝑦𝑡𝑖−1

=  𝑒𝑘}, 

𝑦̂𝑡𝑖

𝑜𝑝𝑡 = 𝜋0, 

 

where 𝜇𝑖 = ∫ 𝑦𝜏𝑑𝜏
𝑡𝑖

𝑡𝑖−1
= (𝜇𝑖

1, . . . , 𝜇
𝑖

𝑛𝑦) is taken for a random vector whose components are equal to time 

the Markov chain stays in each possible state on the interval ( 𝑡𝑖−1, 𝑡𝑖], 
 

𝒩(𝑧; 𝑚, 𝜎𝜎′) =
1

√det (𝜎𝜎′)(2𝜋)𝑛𝑧

exp {−
1

2
(𝑧 − 𝑚)′(𝜎𝜎′)−1(𝑧 − 𝑚)} 

 

 

is the multivariate Gaussian probability distribution with the mean 𝑚 and covariance matrix 𝜎𝜎′, 𝟏 =

(1, . . . ,1)′ ∈ ℝ𝑛𝑦 is a vector of ones, 𝑎𝑡 = 𝑎 = const, 𝜎𝑡 = 𝜎 = const. The entries 𝑞̂𝑡𝑖

𝑘,𝑗
 of the matrix 

𝑞̂𝑡𝑖
= {𝑞̂𝑡𝑖

𝑘,𝑗
}

𝑘,𝑗=1

𝑛𝑦
 can be calculated by applying numerical approximations in accordance with the different 

schemes [23]: the left-point rule; the middle point rule; the Gauss quadrature schemes. 
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The left-point rule will hereinafter be used as a base formula in calculation since the estimates obtained 

by the rest two mentioned rules have demonstrated absolutely identical properties that is shown in [23]. The 

left-point rule provides the estimate 𝑦̆𝑡𝑖

𝛿
1
2 with an error of order 1/2. 

It should be additionally noticed that the essence of the transformation (4) lies in treating the matrix 

coefficient 𝑏𝑡 as 0 in (2). That incidentally holds true for both discretized filters and the Wonham filter. 

However, this is the coefficient that tremendously affects the stability of numerical process for the Wonham 

filter. 

 

4. Numerical experiments 
 

4.1. Model description 
 

The claimed analysis has been carrying out by treating the model of a mechanic actuator as an element of 

an overhead crane system [23]. Suppose, the actuator causes movement of a trolley along a rail. The trolley 

should be positioned at several fixed locations on the rail (states). Let 𝑥𝑡 and 𝑣𝑡 be an actuator state and its 

velocity respectively. The velocity is determined by a force linearly depending on the state 𝑥𝑡 and the 

velocity 𝑣𝑡 and also a vector 𝑦𝑡 serving to describe required positions of the trolley. From the physical point 

of view the problem lies in stabilizing the actuator at states defined by 𝑦𝑡 = 𝑒𝑖 being states of the Markov 

chain. The system can be represented in the form [23]: 

 

𝑑𝑥𝑡 = 𝑣𝑡𝑑𝑡, 𝑡 ∈ (0, 𝑇], 
(6) 

𝑑𝑣𝑡 = 𝑎𝑥𝑡𝑑𝑡 + 𝑏𝑣𝑡𝑑𝑡 + 𝑐𝑦𝑡𝑑𝑡 + √𝑔𝑑𝑤𝑡, 

 

where the constants 𝑎, 𝑏, 𝑔 and the vector 𝑐 are known, 𝑤𝑡 is the standard Wiener process, 𝑦𝑡 is an 

unobservable process subject to be estimated through (𝑥𝑡, 𝑣𝑡) as measurements. The process 𝑦𝑡 is supposed 

to be a three- or four-state Markov jump process: 𝑛𝑦 = 3 or 𝑛𝑦 = 4. The transition intensity matrix 𝛬𝑡 =

 = 𝛬 = 𝑐𝑜𝑛𝑠𝑡: 

 

𝛬 = (
−0.5 0.5 0
0.5 −1 0.5
0 0.5 −0.5

) or 𝛬 = (
−5 5 0
5 −1 5
0 5 −5

) 
 

 

for 𝑛𝑦 = 3 and 

 

 

𝛬 = (

−0.5
0.5
0
0

0.5
  −1
0.5
0

0
0.5
  −1
0.5

0
0

0.5
  −0.5

) or 𝛬 = (

−5
5
0
0

5
  −10

5
0

0
5

  −10
5

0
0
5

  −5

) 

 

 

for 𝑛𝑦 = 4. 

The initial state 𝑦0 = 𝑌 = 𝑒1 is specified by the probability distribution 𝜋0 = (1,0,0)′ or 𝜋0 =
(1,0,0,0)′ depending on dimensionality. 𝑥0, 𝑣0  are supposed to be independent Gaussian variables with 

the zero mean and the variances 𝜎𝑥 = 1, 𝜎𝑣 = 1.  Moreover, a note should be made regarding 𝑦𝑡 is that 𝑦𝑡 

is a homogeneous Markov process with the limiting distribution 

 

𝜋∞ = (
1

3
,
1

3
,
1

3
)

′
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for 𝑛𝑦 = 3 and 

 

𝜋∞ = (
1

4
,
1

4
,
1

4
,
1

4
)

′

 
 

 

for 𝑛𝑦 = 4. 

The coefficients 𝑎, 𝑏 are varied in calculation while the vector 𝑐 is set to be 

 

𝑐 = (𝑐1, 𝑐2, 𝑐3) = (−1, 0, 1) or 𝑐 = (𝑐1, 𝑐2, 𝑐3) = (1, 2, 4)  

 

if 𝑛𝑦 = 3 and 

 

𝑐 = (𝑐1, 𝑐2, 𝑐3, 𝑐4) = (−1.5, −0.5, 0.5, 1.5)  

 

if 𝑛𝑦 = 4.  

Varying the parameters listed above one can change such qualitative characteristics of system (6) as 

transition intensities (low/high), state space dimension (lower-dimensional state space / higher-dimensional 

state space), states of the Markov chain (symmetric with respect to the origin / biased with respect to the 

origin). Besides that, different values of the coefficients 𝑎, 𝑏 in (6) are considered to produce stable and 

unstable systems. 

It is worth mentioning that system (6) is stable if 𝑏 < 0 and 𝑏2 + 4𝑎 < 0 as 
𝑏±√𝑏2+4𝑎

2
 are eigenvalues 

of the system matrix 

 

𝑏𝑡 = (
0 1
𝑎 𝑏

)  

 

and unstable otherwise. Therefore, the coefficients 𝑎, 𝑏 are assigned to both negative and positive values in 

numerical experiments (see Section 4.2). 

The Euler-Maruyama method is applied to perform integration in all cases for both system (6) and filter 

models (3) and (5) with step 𝛿 = 10−3. A discrete time Markov chain approximating 𝑦𝑡 is being simulated 

by independent exponentially distributed random variables if taking 100 intervals for each integration 

interval of length 𝛿, namely sampling is produced from 𝐸(0.00001)  distribution. The integration step for 

observation system (6) is similarly divided into 100 intervals of length 
𝛿

100
. 

As it is mentioned and perfectly illustrated in [23] the Euler-Maruyama scheme leads to divergence of 

some trajectories’ estimates because of its instability. According to the presented results in [23] mostly for 

every trajectory there are points where the nonnegativity property or normalization or even both are not met. 

To diminish the impact caused by failure of the aforementioned conditions simple adjustments have been 

done. 

If the condition |(𝑦̂𝜏
𝑊)𝑘| > 1 is hold for at least one 𝑘 then there presents the divergence. Two 

techniques can be offered to avert divergence. According to the first one, in the case of satisfaction of 

|(𝑦̂𝜏
𝑊)𝑘| > 1 the estimate turns back to the limit state 𝑦̂𝜏

𝑊 = 𝜋∞ at the moment 𝜏 when the divergence test 

gets gratified. The estimate modified in such a way is denoted as 𝑦̂𝑡
𝑙𝑖𝑚 where the superscript indicates the 

involvement of the limit state 𝜋∞. Following the second one, the estimate 𝑦̂𝜏
𝑊 at the considered moment 

gets replaced with the estimate 𝑦̂𝜏−𝛿
𝑊  received at the previous step. That gives the estimate 𝑦̂𝑡

𝑑𝑒𝑙 where the 

superscript underlines its “delay” nature. These are two sorts of estimates that will be examined for 

robustness later and these are the estimates which attention is paid to as a goal of the paper.  
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To assess the quality of estimation of the aforementioned 𝑦̂𝑡
𝑙𝑖𝑚, 𝑦̂𝑡

𝑑𝑒𝑙, 𝑦̆𝑡𝑖

𝛿
1
2the mean square error are 

calculated from obtained 1000 trajectories and filter estimates: 

 

𝒟̂(𝑦̂𝑡
𝑙𝑖𝑚), 𝒟̂(𝑦̂𝑡

𝑑𝑒𝑙), 𝒟̂ (𝑦̆𝑡𝑖

𝛿
1
2) calculated as 𝒟̂(𝑦̃𝑡𝑖

) = ℰ̂ {
𝛿

𝑇
∑ (𝑐𝑦𝑡𝑖

− 𝑐𝑦̃𝑡𝑖
)

2
𝑇

𝛿

𝑖=1
}, 

 

 

where ℰ̂ means averaging over 1000 trajectories. 

To investigate for robustness with respect to the unknown measurement errors intensity numerical 

computations are performed for the chosen noise intensity √𝑔 = 0.1 but under the assumption of solely 

known 𝛴𝑡. Three options for 𝛴𝑡 are considered: 

 𝛴𝑡 = 𝑔 (the problem with complete information about parameters of the noise); 

 𝛴𝑡 = 3𝑔 (the upper bound of the intensity is “close” to its true value); 

 𝛴𝑡 = 10𝑔 (the upper bound of the intensity is “far” from its true value). 

In addition to that calculations are supplemented by considering two more cases when 𝑔 is known and 

it is three and ten times the initially chosen value. 

 

4.2. Stable system 
 

In the paper, two scenarios regarding principally distinct behavior of the system (with stable and unstable 

measurements) are analyzed. The situation when the parameters 𝑎 = −1, 𝑏 = −0.5 comes within the 

stable measurements case and is treated as an illustrative example of that scenario. For the unstable 

measurements it is supposed that 𝑎 = 1, 𝑏 = 0.5. Moreover, as claimed earlier the parameter 𝑏 can be 

formally nullified, however, it turns out that the case when 𝑎 = 0, 𝑏 = 0 can play a significant role for 

numerical filter’s implementations. That is the reason to single that case out in particular.  

Computations are organized as follows. At first the stable measurements are focused on. In Section 4.3 

the unstable measurements will be paid attention to. Series of computational experiments are separately 

conducted for each of the cases with different given values of the parameters 𝑛𝑦, 𝛬, 𝑐. Along with 

computations executed for 𝑔 = 0.01 and 𝛴𝑡 = 𝑔, 3𝑔, 10𝑔  each series of experiments are complemented 

by the situations for 𝑔 = 0.01 × 3 = 0.03, 𝑔 = 0.01 × 10 = 0.1 to compare. The tables below present 

the results for each considered series of the experiments. The tables are preceded by a list of the 

corresponding parameters.  

The first series of computations replicates the scenario in [23] and is given in Tab. 1. 

 

Tab. 1. Experiment results. Stable system 

𝑎 = −1, 𝑏 = −0.5, 𝑛𝑦 = 3, (𝑐1, 𝑐2, 𝑐3) = (−1, 0, 1), Λ = (
−0.5 0.5 0
0.5 −1 0.5
0 0.5 −0.5

),  

𝑎 = 0, 𝑏 = 0 (for elaborate explanation see section 4.3) 

𝑔, 𝛴𝑡 𝒟̂(𝑦̂𝑡
𝑙𝑖𝑚) 𝒟̂(𝑦̂𝑡

𝑑𝑒𝑙) 𝒟̂ (𝑦̆𝑡
𝛿

1
2) 

𝑔 = 0.01, 𝛴𝑡 = 0.01 0.0540 0.0495 0.0486 

𝒈 = 𝟎. 𝟎𝟏, 𝜮𝒕 = 𝟎. 𝟎𝟑 0.0612 0.0612 0.0729 

𝒈 = 𝟎. 𝟎𝟏, 𝜮𝒕 = 𝟎. 𝟏 0.0911 0.0911 0.1225 

𝑔 = 0.03, 𝛴𝑡 = 0.03 0.0987 0.0987 0.0986 

𝑔 = 0.1, 𝛴𝑡 = 0.1 0.1837 0.1837 0.1837 

 

Hereinafter the rows corresponding to computations with uncertainty (for 𝛴𝑡 = 3𝑔, 𝛴𝑡 = 10𝑔) are 

highlighted in bold, the accuracy of the estimates of the discretized filters for the model with uncertainty and 

for the corresponding model with the intensity 3𝑔 are placed in light-grey cells and the accuracy of the 
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discretized filters for the model with uncertainty 𝛴𝑡 = 10𝑔 and for the corresponding model with the 

intensity 10𝑔 are situated in dark-grey cells. Highlighting cells in the tables makes the comparison of the 

accuracy for the model with uncertainty and for the worst case easier. The bold values correspond to the 

results for the models with uncertainty and they are the ones that are used to analyze the robustness. 

According to Tab. 1, the results agree with earlier ones obtained in [23]. It must be pointed out that when 

trajectories contain points with violation of the condition (it corresponds to the first row) the discretized 

filters demonstrate better quality than the heuristic estimates. However, this property breaks for further cases 

when the filter approximations 𝑦̂𝑡
𝑙𝑖𝑚, 𝑦̂𝑡

𝑑𝑒𝑙 get preferable. In two last experiments there are not trajectories 

with divergence and all the filters show up approximately close results. The discretized filters can be still 

claimed to provide robustness nevertheless.  

The tables are accompanied by graphical illustrations. The graphs demonstrate results obtained in one 

chosen experiment for each model. The figures present distinctive state trajectories, trajectories of the filters 

estimates and dynamics of 𝒹̂𝑡𝑖
(𝑦̃𝑡𝑖

) = ℰ̂ {(𝑐𝑦𝑡𝑖
− 𝑐𝑦̃𝑡𝑖

)
2

} involved in obtaining the integral square 

estimates of the filters’ accuracy 𝒟̂(𝑦̂𝑡
𝑙𝑖𝑚), 𝒟̂(𝑦̂𝑡

𝑑𝑒𝑙), 𝒟̂ (𝑦̆𝑡𝑖

𝛿
1
2). The listed above results for the first case are 

given in Fig. 1.  

 

 
a)           b) 

Fig. 1. Model 1, scenario 3: 𝑔 = 0.01, 𝛴𝑡 = 0.1 

a) 1 – 𝑐𝑦𝑡, 2 – 𝑐𝑦̂𝑡
𝑙𝑖𝑚 (𝑐𝑦̂𝑡

𝑑𝑒𝑙is identical ), 3 – 𝑦̆𝑡𝑖

𝛿
1
2 

b) 4 – 𝒹̂𝑡(𝑦̂𝑡
𝑙𝑖𝑚), 5 – 𝒹̂𝑡(𝑦̂𝑡

𝑑𝑒𝑙), 6 – 𝒹̂𝑡 (𝑦̆𝑡𝑖

𝛿
1
2) 

 

For further analysis let’s make the actuator’s running more complicated by significantly increasing 

intensities. It can be done by getting entries of the transition intensity matrix 𝛬𝑡 larger. Tab. 2 exposes 

experiment results. Fig. 2 supplies the case with corresponding graphs. 

 

Tab. 2. Experiment results. Stable system.  

The case of lager intensities 

𝑎 = −1, 𝑏 = −0.5, 𝑛𝑦 = 3, (𝑐1, 𝑐2, 𝑐3) = (−1, 0, 1), Λ = (
−5 5 0
5 −1 5
0 5 −5

),  

𝑎 = 0, 𝑏 = 0 (for elaborate explanation see section 4.3) 

𝑔, 𝛴𝑡 𝒟̂(𝑦̂𝑡
𝑙𝑖𝑚) 𝒟̂(𝑦̂𝑡

𝑑𝑒𝑙) 𝒟̂ (𝑦̆𝑡
𝛿

1
2) 

𝑔 = 0.01, 𝛴𝑡 = 0.01 0.1959 0.1956 0.1948 

𝒈 = 𝟎. 𝟎𝟏, 𝜮𝒕 = 𝟎. 𝟎𝟑 0.2164 0.2164 0.2286 

𝒈 = 𝟎. 𝟎𝟏, 𝜮𝒕 = 𝟎. 𝟏 0.3247 0.3247 0.3250 

𝑔 = 0.03, 𝛴𝑡 = 0.03 0.3055 0.3055 0.3064 

𝑔 = 0.1, 𝛴𝑡 = 0.1 0.4477 0.4477 0.4485 
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Fig. 2. Model 2, scenario 3: 𝑔 = 0.01, 𝛴𝑡 = 0.1 

a) 1 – 𝑐𝑦𝑡, 2 – 𝑐𝑦̂𝑡
𝑙𝑖𝑚 (𝑐𝑦̂𝑡

𝑑𝑒𝑙is identical ), 3 – 𝑦̆𝑡𝑖

𝛿
1
2 

b) 4 – 𝒹̂𝑡(𝑦̂𝑡
𝑙𝑖𝑚), 5 – 𝒹̂𝑡(𝑦̂𝑡

𝑑𝑒𝑙), 6 – 𝒹̂𝑡 (𝑦̆𝑡𝑖

𝛿
1
2) 

 

The results reveal the same particularity of numerical implementation of the discretized filters. Although 

more closeness is traced in results. The filter’s approximations faintly leave behind the discretized filters in 

quality of estimates. Moreover, in spite of increasing transition intensity a number of cases when the 

divergence test has been satisfied hasn’t grown in comparison with the previous series of experiments. Both 

the discretized filters and the filter’s approximations showcase robustness with respect to uncertainty. 

In the next series of experiments higher-dimensional state space is considered that implies the increase 

in the complexity of the Wonham filter implementations. 

The results presented in Tab. 3 really exemplify the scenario when the discretized filters have the edge 

over the Wonham filter approximations. That is clearly seen if focusing on the middle values of the last 

column in Tab. 3. The results in Tab. 3 are also supplemented with the graphs in Fig. 3. 

 

Tab. 3. Experiment results. Stable system.  

The higher-dimensional state space case 

𝑎 = −1, 𝑏 = −0.5, 𝑛𝑦 = 4, = (−1.5, −0.5,0.5,1.5), Λ = (

−0.5 0.5 0 0
0.5 −1 0.5 0
0 0.5 −1 0.5
0 0 0.5 −0.5

),  

𝑎 = 0, 𝑏 = 0 (for elaborate explanation see section 4.3) 

𝑔, 𝛴𝑡 𝒟̂(𝑦̂𝑡
𝑙𝑖𝑚) 𝒟̂(𝑦̂𝑡

𝑑𝑒𝑙) 𝒟̂ (𝑦̆𝑡
𝛿

1
2) 

𝑔 = 0.01, 𝛴𝑡 = 0.01 0.3615 0.3562 0.0534 

𝒈 = 𝟎. 𝟎𝟏, 𝜮𝒕 = 𝟎. 𝟎𝟑 0.3583 0.3583 0.0811 

𝒈 = 𝟎. 𝟎𝟏, 𝜮𝒕 = 𝟎. 𝟏 0.3751 0.3751 0.1384 

𝑔 = 0.03, 𝛴𝑡 = 0.03 0.3957 0.3957 0.1086 

𝑔 = 0.1, 𝛴𝑡 = 0.1 0.4767 0.4767 0.2058 

 

 
a)                                                             b) 

http://www.math.spbu.ru/diffjournal


Differential equations and control processes, N. 3, 2024 

 

https://doi.org/10.21638/11701/spbu35.2024.303        Electronic Journal: http://diffjournal.spbu.ru      37 

 
c) 

Fig. 3. Model 3, scenario 1: 𝑔 = 0.01, 𝛴𝑡 = 0.01 

a,b) 1 – 𝑐𝑦𝑡, 2 – 𝑐𝑦̂𝑡
𝑙𝑖𝑚 (𝑐𝑦̂𝑡

𝑑𝑒𝑙is identical ), 3 – 𝑦̆𝑡𝑖

𝛿
1
2 

c) 4 – 𝒹̂𝑡(𝑦̂𝑡
𝑙𝑖𝑚), 5 – 𝒹̂𝑡(𝑦̂𝑡

𝑑𝑒𝑙), 6 – 𝒹̂𝑡 (𝑦̆𝑡𝑖

𝛿
1
2) 

 

This is the main difference of the current scenario from the others, the fulfilment of the condition is not 

one-off and becomes regular that leads to dynamics shown in Fig. 3.  

The filters approximations show up quit similar behavior that proves the same values of the accuracy. 

However, it is not an regularity establishing in time that will be seen later. What is more, the uncertainty in 

the model refines estimation quality in the sense of robustness.  

All the filters showcase the robustness but advantages of the discretized filters are undoubted. It should 

be also added that the estimate of the accuracy given in Tab. 3 is increasing over time as the variances 

𝒹̂𝑡(𝑦̂𝑡
𝑙𝑖𝑚) and 𝒹̂𝑡(𝑦̂𝑡

𝑑𝑒𝑙) get larger. Unlike the listed variances the variance 𝒹̂𝑡 (𝑦̆𝑡𝑖

𝛿
1
2) remains constant. For 

the considered model the accuracy of the trivial estimate ℰ{𝑦𝑡}  defined by its second moment in the steady 

state mode ℰ{|𝑦∞|2} =
2

3
. So, the estimates of the approximations are still informative. 

 Keeping values of the parameters unchanged except the intensity that is now 10 times the previous 

one a new series of experiments is launched. Tab. 4 displays the result while Fig. 4 demonstrates specific 

behavior. The accuracy of the trivial estimate ℰ{|𝑦∞|2} = 1.25 that points out informativity of the 

approximations. 

 

Tab. 4. Experiment results. Stable system.  

The higher-dimensional state space case with larger intensities 

𝑎 = −1, 𝑏 = −0.5, 𝑛𝑦 = 4, = (−1.5, −0.5,0.5,1.5), Λ = (

−5 5 0 0
5 −1 5 0
0 5 −1 5
0 0 5 5

),  

𝑎 = 0, 𝑏 = 0 (for elaborate explanation see section 4.3) 

𝑔, 𝛴𝑡 𝒟̂(𝑦̂𝑡
𝑙𝑖𝑚) 𝒟̂(𝑦̂𝑡

𝑑𝑒𝑙) 𝒟̂ (𝑦̆𝑡
𝛿

1
2) 

𝑔 = 0.01, 𝛴𝑡 = 0.01 0.7073 0.7092 0.2247 

𝒈 = 𝟎. 𝟎𝟏, 𝜮𝒕 = 𝟎. 𝟎𝟑 0.7030 0.7030 0.2665 

𝒈 = 𝟎. 𝟎𝟏, 𝜮𝒕 = 𝟎. 𝟏 0.7317 0.7317 0.3869 

𝑔 = 0.03, 𝛴𝑡 = 0.03 0.8215 0.8216 0.3668 

𝑔 = 0.1, 𝛴𝑡 = 0.1 0.9820 0.9820 0.5852 

 

http://www.math.spbu.ru/diffjournal


Differential equations and control processes, N. 3, 2024 

 

https://doi.org/10.21638/11701/spbu35.2024.303        Electronic Journal: http://diffjournal.spbu.ru      38 

 
a) b) 

Fig. 4. Model 4, scenario 2: 𝑔 = 0.01, 𝛴𝑡 = 0.03 

a) 1 – 𝑐𝑦𝑡, 2 – 𝑐𝑦̂𝑡
𝑙𝑖𝑚 (𝑐𝑦̂𝑡

𝑑𝑒𝑙is identical ), 3 – 𝑦̆𝑡𝑖

𝛿
1
2 

b) 4 – 𝒹̂𝑡(𝑦̂𝑡
𝑙𝑖𝑚), 5 – 𝒹̂𝑡(𝑦̂𝑡

𝑑𝑒𝑙), 6 – 𝒹̂𝑡 (𝑦̆𝑡𝑖

𝛿
1
2) 

 

Increasing the intensity does not contribute to qualitative conclusions made for the previous model. 

Though the accuracy of all the filters equally reduces the filters are still robust. The discretized filters gain 

remarkably. The Wonham filter approximations are acceptable. 

The last left out examination that is required to discuss is to violate symmetry of the chain. The obtained 

results are given in Tab. 5. Fig. 5 assists the results graphically. This series of experiments is supposed to be 

carried out under the same conditions as the first one (see Tab. 1) 

 

Tab. 5. Experiment results. Stable system.  

The asymmetric case 

𝑎 = −1, 𝑏 = −0.5, 𝑛𝑦 = 3, 𝑐 = (1,2,4), Λ = (
−0.5 0.5 0
0.5 −1 0.5
0 0.5 −0.5

),  

𝑎 = 0, 𝑏 = 0 (for elaborate explanation see section 4.3) 

𝑔, 𝛴𝑡 𝒟̂(𝑦̂𝑡
𝑙𝑖𝑚) 𝒟̂(𝑦̂𝑡

𝑑𝑒𝑙) 𝒟̂ (𝑦̆𝑡
𝛿

1
2) 

𝑔 = 0.01, 𝛴𝑡 = 0.01 0.2464 0.1255 0.0574 

𝒈 = 𝟎. 𝟎𝟏, 𝜮𝒕 = 𝟎. 𝟎𝟑 0.0752 0.0753 0.0945 

𝒈 = 𝟎. 𝟎𝟏, 𝜮𝒕 = 𝟎. 𝟏 0.1153 0.1153 0.1799 

𝑔 = 0.03, 𝛴𝑡 = 0.03 0.1448 0.1262 0.1236 

𝑔 = 0.1, 𝛴𝑡 = 0.1 0.2554 0.2554 0.2548 

 

 
a)                                        b) 
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c) 

Fig. 5. Model 5, scenario 1: 𝑔 = 0.01, 𝛴𝑡 = 0.01 

a,b) 1 – 𝑐𝑦𝑡, 2 – 𝑐𝑦̂𝑡
𝑙𝑖𝑚 (𝑐𝑦̂𝑡

𝑑𝑒𝑙), 3 – 𝑦̆𝑡𝑖

𝛿
1
2 

c) 4 – 𝒹̂𝑡(𝑦̂𝑡
𝑙𝑖𝑚), 5 – 𝒹̂𝑡(𝑦̂𝑡

𝑑𝑒𝑙), 6 – 𝒹̂𝑡 (𝑦̆𝑡𝑖

𝛿
1
2) 

 

The findings seemed absolutely unexpected. First of all, the approximations 𝑦̂𝑡
𝑙𝑖𝑚 and 𝑦̂𝑡

𝑑𝑒𝑙 concede the 

estimate 𝑦̆𝑡
𝛿

1
2. A little benefit from this poor appearance of the approximations is that the utility of the 

estimates of the approximations is interpreted in such a sense that their accuracy is much better than the 

trivial estimate because ℰ{|𝑦∞ − ℰ{𝑦∞} |2} =
14

9
. However, the situation changes for the models with 

uncertainty and higher intensity. Moreover, the robustness of the approximations are more notable if 

comparing with the discretized filters. The filters get alike in behavior as the noise intensity is increasing. 

This example reveal that an numerical scheme of the Wonham filter that is initially unstable might be stable 

in the problem with uncertainty and exceed the discretized filters as a robust algorithm. 

In summary, it can be stated that to predict behavior of the Wonham filter approximations cannot be 

done. Losses caused by instability of numerical computations can unexpectedly appear and influence the 

filtering quality. If parameters of a model are successfully chosen the approximations can take advantages 

and be more robust in behavior. The discretized filters always perform even under uncertainty as well but 

do not provide the desired reference solution when it becomes optimal. 

 

4.2. Unstable system 
 

It should be noted that system (6) gets actually unstable even if 𝑎 = 0, 𝑏 = 0. The system with values 

of the parameters leading to such a result can be called the system on the stability boundary. In fact, behavior 

of such a system turned out quite inert and there cannot be detected trajectories that diverge over 𝑇 = 10. 

Repeated runs of the series of experiments given in Tab. 1-5 prove the statement above. In other words, the 

values 𝑎 = −1, 𝑏 = −0.5 can be replaced with 𝑎 = 0, 𝑏 = 0 leaving all other parameters unchanged. This 

gives the same results and permits not to change the content of the tables and the conclusions as 

consequence. This is the remark that is added in the headings of Tab. 1-5. 

Switching to the unstable measurements case, suppose that 𝑎 = 1, 𝑏 = 0.5. One might assume that the 

situation will replicate the stability boundary case when 𝑎 = 0, 𝑏 = 0. But this is not the case. It is the 

instability of the measurements system itself that sufficiently influence numerical implementations. This 

fact is confirmed by the further set of experimental series. The first scenario is the model whose parameters 

coincide with the parameters from the first model except 𝑎, 𝑏 (𝑎 = 1, 𝑏 = 0.5). 

The results are displayed in Tab. 6. The things that deserve special attention are the following. The 

discretized filters keep demonstrating the same advantage in estimation while the approximations are out of 

sense. Indeed, in the considered case the steady-state value ℰ{|𝑦∞|2} =
2

3
. It signifies that the trivial estimate 

ℰ{𝑦𝑡} = 0 gets better in comparison with the approximations. Below Fig. 6 demonstrates specific behavior 

of the filters. 
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Tab. 6. Experiment results. Unstable system 

𝑎 = 1, 𝑏 = 0.5, 𝑛𝑦 = 3, (𝑐1, 𝑐2, 𝑐3) = (−1, 0, 1), Λ = (
−0.5 0.5 0
0.5 −1 0.5
0 0.5 −0.5

)  

𝑔, 𝛴𝑡 𝒟̂(𝑦̂𝑡
𝑙𝑖𝑚) 𝒟̂(𝑦̂𝑡

𝑑𝑒𝑙) 𝒟̂ (𝑦̆𝑡
𝛿

1
2) (note *) 

𝑔 = 0.01, 𝛴𝑡 = 0.01 0.4860 0.6432 0.0486 

𝒈 = 𝟎. 𝟎𝟏, 𝜮𝒕 = 𝟎. 𝟎𝟑 0.5491 0.6407 0.0729 

𝒈 = 𝟎. 𝟎𝟏, 𝜮𝒕 = 𝟎. 𝟏 0.6107 0.6398 0.1225 

𝑔 = 0.03, 𝛴𝑡 = 0.03 0.5660 0.6569 0.0986 

𝑔 = 0.1, 𝛴𝑡 = 0.1 0.6496 0.6796 0.1837 
*Values coincide with Tab. 1 

ℰ{|𝑦∞|2} =
2

3
≈ 0.6667 

 

 
a)                                                                      b) 

 

 
c) 

Fig. 6. Model 6, scenario 2: 𝑔 = 0.01, 𝛴𝑡 = 0.03 

a,b) 1 – 𝑐𝑦𝑡, 2 – 𝑐𝑦̂𝑡
𝑙𝑖𝑚 (𝑐𝑦̂𝑡

𝑑𝑒𝑙), 3 – 𝑦̆𝑡𝑖

𝛿
1
2 

c) 4 – 𝒹̂𝑡(𝑦̂𝑡
𝑙𝑖𝑚), 5 – 𝒹̂𝑡(𝑦̂𝑡

𝑑𝑒𝑙), 6 – 𝒹̂𝑡 (𝑦̆𝑡𝑖

𝛿
1
2) 

 

According to Tab. 6 the quality of the approximations 𝑦̂𝑡
𝑙𝑖𝑚 and 𝑦̂𝑡

𝑑𝑒𝑙 should be claimed as inadmissible. 

It means that there is no robustness in the filters behavior. It can be stated as the main contribution of this 

series of experiments. In contrast to this the discretized filters preserve the robust properties. The evolution 

of the graph 𝒹̂𝑡(𝑦̂𝑡
𝑙𝑖𝑚) deserves attention because its growth finalizes at some time moment and the accuracy 

of 𝑦̂𝑡
𝑙𝑖𝑚 slightly improves. In fact, both algorithms stop estimating at some moment. It is visualized as 

sticking the green trajectory to line 1. It is also seen that the estimate 𝑦̂𝑡
𝑙𝑖𝑚 begins to change while 𝑦̂𝑡

𝑑𝑒𝑙 

does not. 
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By analogy with the stable case, current series of experiments are conducted for the models whose 

parameters coincide with the claimed ones in Tab. 1-5 except 𝑎, 𝑏. The results are given in Tab. 7-10 and 

complemented by graphs in Fig. 7-10. 

 

Tab. 7. Experiment results. Unstable system.  

The case of lager intensities 

𝑎 = 1, 𝑏 = 0.5, 𝑛𝑦 = 3, (𝑐1, 𝑐2, 𝑐3) = (−1, 0, 1), Λ = (
−5 5 0
5 −1 5
0 5 −5

)  

𝑔, 𝛴𝑡 𝒟̂(𝑦̂𝑡
𝑙𝑖𝑚) 𝒟̂(𝑦̂𝑡

𝑑𝑒𝑙) 𝒟̂ (𝑦̆𝑡
𝛿

1
2) (note *) 

𝑔 = 0.01, 𝛴𝑡 = 0.01 0.5674 0.7157 0.1948 

𝒈 = 𝟎. 𝟎𝟏, 𝜮𝒕 = 𝟎. 𝟎𝟑 0.6252 0.7097 0.2286 

𝒈 = 𝟎. 𝟎𝟏, 𝜮𝒕 = 𝟎. 𝟏 0.7103 0.7348 0.3250 

𝑔 = 0.03, 𝛴𝑡 = 0.03 0.6809 0.7643 0.3064 

𝑔 = 0.1, 𝛴𝑡 = 0.1 0.7880 0.8126 0.4485 
*Values coincide with Tab. 2 

ℰ{|𝑦∞|2} =
2

3
≈ 0.6667 

 

 
a)                                         b) 

 

 
с) 

Fig. 7. Model 7, scenario 3: 𝑔 = 0.01, 𝛴𝑡 = 0.1 

a,b) 1 – 𝑐𝑦𝑡, 2 – 𝑐𝑦̂𝑡
𝑙𝑖𝑚 (𝑐𝑦̂𝑡

𝑑𝑒𝑙), 3 – 𝑦̆𝑡𝑖

𝛿
1
2 

c) 4 – 𝒹̂𝑡(𝑦̂𝑡
𝑙𝑖𝑚), 5 – 𝒹̂𝑡(𝑦̂𝑡

𝑑𝑒𝑙), 6 – 𝒹̂𝑡 (𝑦̆𝑡𝑖

𝛿
1
2) 

 

In the higher-dimensional state space the results reinforce conclusions made in the previous example. 

As it is clearly seen there is no robustness in the approximations evolutions. 

 

 

http://www.math.spbu.ru/diffjournal


Differential equations and control processes, N. 3, 2024 

 

https://doi.org/10.21638/11701/spbu35.2024.303        Electronic Journal: http://diffjournal.spbu.ru      42 

Tab. 8. Experiment results. Unstable system.  

The higher-dimensional state space case 

𝑎 = 1, 𝑏 = 0.5, 𝑛𝑦 = 4, 𝑐 = (−1.5, −0.5,0.5,1.5), Λ = (

−0.5 0.5 0 0
0.5 −1 0.5 0
0 0.5 −1 0.5
0 0 0.5 −0.5

)  

𝑔, 𝛴𝑡 𝒟̂(𝑦̂𝑡
𝑙𝑖𝑚) 𝒟̂(𝑦̂𝑡

𝑑𝑒𝑙) 𝒟̂ (𝑦̆𝑡
𝛿

1
2) (note *) 

𝑔 = 0.01, 𝛴𝑡 = 0.01 1.0222 1.3663 0.0534 

𝒈 = 𝟎. 𝟎𝟏, 𝜮𝒕 = 𝟎. 𝟎𝟑 1.1485 1.3604 0.0811 

𝒈 = 𝟎. 𝟎𝟏, 𝜮𝒕 = 𝟎. 𝟏 1.2706 1.3450 0.1384 

𝑔 = 0.03, 𝛴𝑡 = 0.03 1.1647 1.3711 0.1086 

𝑔 = 0.1, 𝛴𝑡 = 0.1 1.3076 1.3841 0.2058 
*Values coincide with Tab. 3 

ℰ{|𝑦∞|2} = 1.25 

 

 
a)                                         b) 

 

 
с) 

Fig. 8. Model 8, scenario 2: 𝑔 = 0.01, 𝛴𝑡 = 0.03 

a,b) 1 – 𝑐𝑦𝑡, 2 – 𝑐𝑦̂𝑡
𝑙𝑖𝑚 (𝑐𝑦̂𝑡

𝑑𝑒𝑙), 3 – 𝑦̆𝑡𝑖

𝛿
1
2 

c) 4 – 𝒹̂𝑡(𝑦̂𝑡
𝑙𝑖𝑚), 5 – 𝒹̂𝑡(𝑦̂𝑡

𝑑𝑒𝑙), 6 – 𝒹̂𝑡 (𝑦̆𝑡𝑖

𝛿
1
2) 

 

Increasing intensity supports the inference made above. 

 

Tab. 9. Experiment results. Unstable system.  

The higher-dimensional state space case with larger intensities 

𝑎 = 1, 𝑏 = 0.5, 𝑛𝑦 = 4, 𝑐 = (−1.5, −0.5,0.5,1.5), Λ = (

5 5 0 0
5 −1 5 0
0 5 −1 5
0 0 5 5

)  
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𝑔, 𝛴𝑡 𝒟̂(𝑦̂𝑡
𝑙𝑖𝑚) 𝒟̂(𝑦̂𝑡

𝑑𝑒𝑙) 𝒟̂ (𝑦̆𝑡
𝛿

1
2) (note *) 

𝑔 = 0.01, 𝛴𝑡 = 0.01 1.3522 1.1722 0.2247 

𝒈 = 𝟎. 𝟎𝟏, 𝜮𝒕 = 𝟎. 𝟎𝟑 1.4753 1.6902 0.2665 

𝒈 = 𝟎. 𝟎𝟏, 𝜮𝒕 = 𝟎. 𝟏 1.5672 1.6442 0.3869 

𝑔 = 0.03, 𝛴𝑡 = 0.03 1.5516 1.76146 0.3668 

𝑔 = 0.1, 𝛴𝑡 = 0.1 1.7296 1.8053 0.5852 
*Values coincide with Tab. 4 

ℰ{|𝑦∞|2} = 1.25 

 

 
a)                                        b) 

 

 
с) 

Fig. 9. Model 9, scenario 3: 𝑔 = 0.01, 𝛴𝑡 = 0.1 

a,b) 1 – 𝑐𝑦𝑡, 2 – 𝑐𝑦̂𝑡
𝑙𝑖𝑚 (𝑐𝑦̂𝑡

𝑑𝑒𝑙), 3 – 𝑦̆𝑡𝑖

𝛿
1
2 

c) 4 – 𝒹̂𝑡(𝑦̂𝑡
𝑙𝑖𝑚), 5 – 𝒹̂𝑡(𝑦̂𝑡

𝑑𝑒𝑙), 6 – 𝒹̂𝑡 (𝑦̆𝑡𝑖

𝛿
1
2) 

 

Besides the conclusions discussed above this experimental series brings out the fact that the estimates 

𝑦̂𝑡
𝑙𝑖𝑚, 𝑦̂𝑡

𝑑𝑒𝑙 lost their informativity conceding to the trivial estimate ℰ{𝑦𝑡} in accuracy. 

 

Tab. 10. Experiment results. Unstable system.  

The asymmetric case 

𝑎 = 1, 𝑏 = 0.5, 𝑛𝑦 = 3, 𝑐 = (1,2,4), Λ = (
−0.5 0.5 0
0.5 −1 0.5
0 0.5 −0.5

)  

𝑔, 𝛴𝑡 𝒟̂(𝑦̂𝑡
𝑙𝑖𝑚) 𝒟̂(𝑦̂𝑡

𝑑𝑒𝑙) 𝒟̂ (𝑦̆𝑡
𝛿

1
2) (note *) 

𝑔 = 0.01, 𝛴𝑡 = 0.01 1.3522 1.1722 0.2247 

𝒈 = 𝟎. 𝟎𝟏, 𝜮𝒕 = 𝟎. 𝟎𝟑 1.4753 1.6902 0.2665 

𝒈 = 𝟎. 𝟎𝟏, 𝜮𝒕 = 𝟎. 𝟏 1.5672 1.6442 0.3869 

𝑔 = 0.03, 𝛴𝑡 = 0.03 1.5516 1.76146 0.3668 
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𝑔 = 0.1, 𝛴𝑡 = 0.1 1.7296 1.8053 0.5852 
*Values coincide with Tab. 5 

ℰ{|𝑦∞ − ℰ{𝑦∞} |2} =
14

9
≈ 1,5556 

 

 
a)                                        b) 

 
c) 

Fig. 10. Model 10, scenario 2: 𝑔 = 0.01, 𝛴𝑡 = 0.03 

a,b) 1 – 𝑐𝑦𝑡, 2 – 𝑐𝑦̂𝑡
𝑙𝑖𝑚 (𝑐𝑦̂𝑡

𝑑𝑒𝑙), 3 – 𝑦̆𝑡𝑖

𝛿
1
2 

c) 4 – 𝒹̂𝑡(𝑦̂𝑡
𝑙𝑖𝑚), 5 – 𝒹̂𝑡(𝑦̂𝑡

𝑑𝑒𝑙), 6 – 𝒹̂𝑡 (𝑦̆𝑡𝑖

𝛿
1
2) 

 

Thus, the last results demonstrate identical behavior of the approximations 𝑦̂𝑡
𝑙𝑖𝑚 , 𝑦̂𝑡

𝑑𝑒𝑙 with poor 

accuracy of the estimates close to or even worse than the trivial estimate ℰ{𝑦𝑡}. In contrast, estimates based 

on the discretized filters don’t depend on whether the measurement system is stable or not. That agrees with 

theory. In all the cases the discretized filters preserve the robust properties with respect to uncertainty 

whereas the approximations of the Wonham filter cannot demonstrate these properties. 

 

5. Conclusion 
 

The paper discusses and proposes approaches to forming stable numerical implementations of the Wonham 

filter with uncertainty in measurement noise covariance. The exact filtering problem is tough to obtain. 

However, if supposing that there is no uncertainty in the model the optimal solution is provided by the 

Wonham filter. Unfortunately, such an approach cannot be considered as the way out because the numerical 

implementations of the Wonham filter suffer from divergence. Consequently, effective numerical 

implementations that additionally show robustness are of interest. Because of lack of analytical solutions 

the examination of the filters behavior are conducted with a wide range of series of numerical experiments. 

The obtained results showcase that all the filters (the discretized filters, the Wonham filter approximations) 

preserve the robust properties with respect to uncertainty in the stable measurements case. Absolutely 

opposite behavior can be observed when switching to unstable measurements. The discretized filters take 

advantages in estimation in comparison with the approximations. With a certain set of the parameters of the 

model, it is found that approximations even becomes out of sense, and do not preserve the robust property 
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at all as a result. Thus, benefits of the discretized filters are absolutely undoubtedly in the problem under 

uncertainty in the unstable measurements case. 
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