
dx
dt6

�-

?

DIFFERENTIAL EQUATIONS
AND

CONTROL PROCESSES
N. 3, 2024

Electronic Journal,
reg. N ΦC77-39410 at 15.04.2010

ISSN 1817-2172

http://diffjournal.spbu.ru/
e-mail: jodiff@mail.ru

Computer software for the investigation of
differential equations, dynamical systems, and control processes

Light and fast renderings of
limit sets for Fuchsian and Kleinian groups

Alessandro Rosa
Software developer

alessandro.a.rosa@gmail.com

Abstract. After reviewing some basic theory on groups of Möbius transforma-
tions in C1, we will discuss features and drawbacks of the classic approach for
the digital rendering of their limit sets. We will then introduce the technical
details of a new easier and faster algorithm, simply based upon numerical base
conversion. Finally, we will draw the guidelines for the implementation and
examine the benefits. Readers are just assumed to know complex arithmetics
and how to program graphic plots.

Keywords: Limit set, dynamical systems, Kleinian group, linear fractional
transformation, circle inversion.

1 The framework

Let M be the collection of automorphisms gn of the complex plane C in the
form of the linear fractional transformation

z1 = gn(z) =
anz0 + bn
cnz0 + dn

, an, bn, cn, dn, z0 ∈ C, ad− bc ̸= 0, n ∈ Z (1)

also termed Möbius transformation (or map) after the in-depth studies carried
out by August Ferdinand Möbius (1790–1868) during the beginnings of the XIX

Differential Equations and Control Processes, N. 3, 2024

century. This map is conformal because angles and orientation are preserved.

Simple computations show that both inversion, g−1
n (z) =

dnz − bn
−cnz + an

, and com-

position, g1 ◦ g2 = g1(g2) = g3, are closed in M. The composition of Möbius
maps enjoys the same properties as of 2× 2 matrix, namely(

a1 b1

c1 d1

)
◦

(
a2 b2

c2 d2

)
=

(
a1a2 + b1c2 a1b2 + b1d2

a2c1 + c2d1 b2c1 + d1d2

)
,

and the associative property: (g1 ◦ g2) ◦ g3 = g1 ◦ (g2 ◦ g3). This relation can be
extended to arbitrarily many elements in the chain

g1 ◦ g1 ◦ g2 ◦ g−1
1 ◦ g−2

1 ◦ g2 ◦ (2)

Conversely, every element in M cannot be regarded as primitive, being the
composition of arbitrarily many transformations gn. The identity I(z) = z =

g ◦ g−1 is a special Möbius map with coefficients a = d = 1, b = c = 0,

(
1 0

0 1

)
,

and it is the neutral element in M: gn ◦ I = I ◦ gn = gn. The inverse g−1

commutes with g, i.e., g ◦ g−1 = g−1 ◦ g = I; Möbius maps composition is
not in general commutative anyway. We have collected sufficient information
to classify M as an algebraic group, known as function or Möbius group and
including subgroups G ⊂ M that enjoy special properties. Subgroups are cha-
racterized by their generators, Möbius maps assumed to give rise to all other
elements in G. The term generator may sound fictitious because, according to
(2), this map cannot be prime and indecomposable; it just refers to the role
played in the subgroup and to special properties enjoyed by its coefficients.

From the combination of (2) with (1), we obtain a ordered sequence of val-
ues, z1, z2, . . . , zn, defined orbit in the theory of dynamical systems. (Iteration is
a special case of chains (2) including one only transformation: g1◦g1 . . . g1◦. . . .)
We say that the action of G is freely discontinuous when g(U) ∩ U = ∅ holds,
for z ∈ U ⊂ C [13, p. 16]. It is proven that orbits of Möbius maps are asymp-
totically stable [13, p. 17], thus (1◦) it makes sense to question about their
final destination, the limit value, and the collection of such values, the limit
set Λ; we also understand that computing Λ is not algorithmically feasible, be-
cause of the infinitely many combinations (2) involved by asymptoticity. Orbits
shall be necessarily halted at some finite step d < ∞: we can only deal with
approximations Λd of Λ ≡ Λ∞, where lim

d→∞
Λd = Λ∞ ≡ Λ.

The studies on subgroups G ⊂ M arose between the late 1870s and 1890s
and represented a branch of geometric groups theory, aiming at inspecting the

https://doi.org/10.21638/11701/spbu35.2024.305 Electronic Journal: http://diffjournal.spbu.ru/ 68

Differential Equations and Control Processes, N. 3, 2024

(a) Fuchsian (b) Quasi-Fuchsian

Figure 1: Simple examples of limit sets. (a) Generators are the four and bigger inversion
circles, tangent to each other: the limit set is a circle and the subgroup is defined Fuchsian;
(b) the isometric circles of the generators are shown in the little picture on the far right.

fate of (2) and at classifying the limit sets including more than two points. Along
the development of this new theory, the classification rules of the subgroups G
involved:

(a) the shape and topology of limit sets: it could be a circle, a general curve
and a dust of points for the categories of Fuchsian, quasi-Fuchsian and Schottky
groups respectively (fig. 1);

(b) the numerical nature of the four coefficients in (1); for example, they are
real values in modular groups and Gaussian integers in the Picard, after Émile
Picard (1856-1941) groups;

(c) special algebraic relations between coefficients: for example, the trace
operator tr2(g) = (a + d)2 gathers Möbius maps into the elliptic, parabolic,
hyperbolic or loxodromic category, whether 0 ≤ tr2(g) < 4, tr2(g) = 4, tr2(g) >
4 and tr2 ∈ C\[0, 4] respectively.

All these are the basic notions we need about groups of Möbius transfor-
mations in this work. For in-depth information, see [2, 13, 15].

Circle inversions. Circles are special shapes in the theory of Möbius transfor-
mations. The simplest subgroup of M that enjoy special properties features
formulas in the form

T (z) = aC +
r2C

z − aC
. (3)

They are called circle inversions (or reflections) and map particular circles C
to themselves, while their interior and exterior are swapped (fig. 2/a). C is
centered at aC = xC + iyC and with radius rC . Conversely, we can determine
aC and rC in (3) from C. T maps every object outside (resp. inside) C inside

https://doi.org/10.21638/11701/spbu35.2024.305 Electronic Journal: http://diffjournal.spbu.ru/ 69

Differential Equations and Control Processes, N. 3, 2024

(resp. outside) it (fig. 2); then, T ◦ T = I, or T 2(z) = I.

Figure 2: Circle inversions.
The top diagram illustrates how
circle inversion works. At the
bottom, the disc images un-
der the action of a subgroup
whose generators have no self-
intersecting inversion circles and
known as of Schottky type.

C is the inverse of itself and thus invariant un-
der T ; it is defined inversion circle. From now
on, let it be CINV. The inversion kind belongs to
the general class of invariant circles for (1) – given
c ̸= 0, said isometric (coming from the union of
the two Greek terms iso and metric = same size).
Let them be CISO; they satisfy the equality relation
g(CISO) = CISO = g−1(CISO).

Isometric circles belong to the toolkit for the
exploration of Möbius maps and groups: invari-
ant objects prevent ambiguities, so they are essen-
tial for grounding mathematical theories. See [7,
pp. 23 et ff.]. These circles, or specifically those
of inversion for maps in the form (3), are also of
help for getting a graphical representation of sub-
group generators (fig. 1/a and 2). We will mainly
deal with subgroups of self-inverse and of non-self-
inverse Möbius maps, whether the form is (3) or
not respectively.

1.1 No fuzzy pictures

The renderings inside these pages are joined by the same goal: displaying the
limit sets for subgroups of M. We notice that they show up in two forms.
The choice is by no means accidental however: if discs are painted, colors are
picked out from palettes that are sorted through a gradient, in order to obtain
a chromatic analogy of the shrinking discs sequence; otherwise, if discs are not
plot, we only draw the end points (by any color of choice) of the orbits, in order
to get the approximation Λd. In some sense, these two approaches highlight the
behavior and fate of the orbits respectively.

The choice between disc images and the pointwise representation is mainly
subjected to styling reasons. The subgroup action could induce the disc images
to overlap each other; therefore displaying isometric circles is no longer useful
because renderings look quite messy and confusing (fig. 3/b). Circles are
dropped in favor of points/pixels (the composite neologism from picture, or
pix, and element) and orbits are not rendered step by step: only their last

https://doi.org/10.21638/11701/spbu35.2024.305 Electronic Journal: http://diffjournal.spbu.ru/ 70

Differential Equations and Control Processes, N. 3, 2024

(a) Generators (b) Disc images (c) Limit set

isometric circles isometric circles points

Figure 3: Renderings of a same subgroup. Let a 2-generators subgroup in the Riley slice
(roughly, subgroups of M where the coefficients of generators satisfy particular relations). (a)
Generators are parabolic. The subgroup action has been rendered through (b) circles and (c)
points/pixels. Colors in (c) are associated to the starting generator of each orbit.

element will be processed (fig. 3/c).

Disc images boils down to the representation via two-dimensional objects,
here the circle, and therefore the visual quality is, in turn, affected by the cov-
ering action of such objects. The shapes of the limit set come to eye during the
disc images, as a consequence from the decreasing size of the images, under the
subgroup action, of the isometric circles associated to the subgroup generators.

The shapes of limits set K for subgroups of M are generally ruled by
fractal patterns, like it happens to Julia sets J , the limits for the iteration

Figure 4: Circle packing. Shapes of limit sets showing ways of packing surfaces.

https://doi.org/10.21638/11701/spbu35.2024.305 Electronic Journal: http://diffjournal.spbu.ru/ 71

Differential Equations and Control Processes, N. 3, 2024

of non-linear functions in one complex variable (fig. 5/b). (These are two well-
known kindred theories, based on orbits built according to the criteria of the
algebraic structures which functions belong to: groups or singletons.) There
exist exceptional groups, called degenerate, cracking such circle-like and fractal
patterns (fig. 14 at p. 87). There exist limit sets K spreading in ways that
their complement (the set of discontinuity Ω) consist of circles that are said
to tessellate a given portion of C (i.e., they cover, or fill, the space by a well-
ordered geometric distribution). Tessellation belongs to a much more intriguing
topic, known as circle packing and focusing on optimal (i.e., aiming at reducing
the gap between the original area and the packing to 0) patterns for filling in
areas by means of circles (fig. 4, 5/a); then packing can be assumed as an
approximation algorithm.

(a) (b) (c)

Figure 5: Resemblances. (a) A limit set for a subgroup of M and belonging to the Riley
slice (see fig. 3); (b) the Julia set for the iteration of sin(z). On the left, each color binds
to the initial generator; on the right, to the final value taken on by the iterated orbit. (c)
Apollonian-like Julia set similar to the limit set in fig. 4 [5].

2 Introduction to the lexicographic approach

A clever strategy for optimizing the computation of the chains (2) is required
because they could include contiguous pairs gk ◦ g−1

k of inverse generators: such
pair resolves into the identity map I(z) which can be safely skipped because
redundant.

The earliest renderings, via disc images or limit sets, were already available
on paper at the end of the XIX century, in the masterpiece by Fricke and
Klein [8]. In the era of digital computing, this problem was tackled through
a lexicographic approach based upon a finite state automata (see [6].) that
generates all the permutations of chains (2) whose length is l = d < ∞ for the
limit set or l ≤ d < ∞ for disc images representation. This approach was not
originally devised for computational goals as it dates back to a time when there

https://doi.org/10.21638/11701/spbu35.2024.305 Electronic Journal: http://diffjournal.spbu.ru/ 72

Differential Equations and Control Processes, N. 3, 2024

Figure 6: Disc images renderings in 1897. See [8, vol. I, p. 429, 437].

was no enough familiarity and confidence with computers, so that its features
were not originally geared to optimizing speed, efficiency, and to saving memory
resources.

2.1 Trees of words

Letter -ized Digit-ized
(abbAABB) (2330011)

Words Numbers

Abstract strings

Figure 7: Materializations.

There exists a primitive and abstract concept be-
hind the lexicographic approach and essentially
relying upon symbolic concatenation, which pro-
duces objects known as strings (fig. 7). In
general, the lexicographic approach works on a
bounded set Wn of n symbols, each associated to
one and only one generator in the given subgroup;
here symbols were chosen to be letters ln of the

Western alphabet (a, b, c, d, . . .). The set Wn is defined alphabet, because
of being the base for encoding the abstract chains (2) into strings of letters,
analogously defined words. These words are open to be read from left to right
(LR) or from right to left (RL). In this article, we will read them all in the RL
order. Stepping once back, we see that the abstract symbolization, intended
as a one-to-one relation between a grapheme and a generator, has materialized
into the letter ized form (fig. 7). For what follows, it is essential to disengage
this binding and consider that letters just represent a viable choice.

On this train of ideas, at a larger scale, the lexicographic approach builds
the dictionary, the collection of finite length words w. Dictionaries are filled by
every new word coming by appending single nodes up to some bounded length
l. Along the next sections, we will consider the generic 2-generators subgroup

https://doi.org/10.21638/11701/spbu35.2024.305 Electronic Journal: http://diffjournal.spbu.ru/ 73

Differential Equations and Control Processes, N. 3, 2024

g1 = a, g2 = b, g−1
1 = A, g−1

2 = B, (4)

where each generator and its inverse binds to small and capital form of the
same alphabetic letter. (Unless otherwise specified, the expression ‘n-generators
subgroup’ does not count the inverse maps g−1

n .)

I

a

ba

ca

da

aba

cba
dba

Bba

Figure 8: Tree growth. Identi-
ties aA,Aa, bB,Bb stop the tree
growth.

In this case, letters concatenation into words
can be schemed through a (4−1 = 3)-branched tree
(fig. 8). The writing (4) suggests the composition
of identity words aA, Aa, bB, Bb, which cancel
the action of the last two generators (for example,
in aaA → a) and then prevent the insertion of
new nodes because of getting the formation back to
existing words. Identities show that formality and
action are disjoint, they involve redundant actions
and are then negligible. These remarks open to the problem of checking when
and how identities occur.

I a

b

c

d ba

ca

da

cdbdad

ac

bc

dc

dbcbab

I A

B
a

b bA

BA

AA

bbAbab

ba

Ba
aa

BBABaB

(a) self-inverse (b) non-self-inverse

Figure 9: Multi-branched trees up to depth 2.

2.2 Presentations and multiplication tables

The phyllotaxis, i.e., how the tree grows, is not wild, because the corresponding
subgroup action is defined by a concise list of identity recognition rules. The
following example presents a largely applied form of compact writing that just
reports generators on the left and identity recognition rules on the right:

⟨a, b | aa = bb = I⟩ (5)

We notice that this is a subgroup of self-inverse maps, such as circle inversions
for instance (3). The letter I, meaning to the identity, can be equivalently

https://doi.org/10.21638/11701/spbu35.2024.305 Electronic Journal: http://diffjournal.spbu.ru/ 74

Differential Equations and Control Processes, N. 3, 2024

replaced by the unit value 1. In the example below, we picked subgroup (4),
with identities coming from pairs of mutually inverse generators

⟨a, b, A,B | aA = Aa = bB = Bb = 1⟩, (6)

ensuring that it is in no way a 2-generators subgroup of non-self-inverse maps.
The writings (5) and (6) are called group presentations (or defining relations).
Each identity recognition rule on the right is defined cancellation, as symbols
will be deleted when identities occur. Since the goal of presentations just
amounts to obtaining synthetic writings, they turn obsolete as will not fit the
action of more complicated groups, being endowed with several composition
rules and identity recognitions.

According to the remark at p. 68, there exists no unique and irreducible
presentation. Cancellations often appear along the chain composition, bringing
different words but same action. For example, the word aaBb resolves into the
equivalent aa due to the table (6). Again, let ababBAA: after cancelling bB,
we get abaAA; aA can be dropped too and we finally have abA.

Figure 10 shows four partial trees that have been built up according to pre-
sentations (5) and (6) respectively. The vast casuistry of groups teaches that
phyllotaxis could be more complicated than the sole cancellation rules. Every
cancellation, intended as formal composition, could represent one option for
groups of Möbius transformations, because the latter are closed under composi-
tion: for example, it may happen that we move from one generator to the other:
a3 = aaa = b; or fall into a periodic behavior: a3 = aaa = a. Moreover, all the
previous examples shall not induce to believe that the one-to-one relation from

I
A

bA

BA

AA

abA

bbA

AbA
I

A

bA

BA

AA

abA

bbA

AbA

(a) Disc images Not self-inverse (b) Limit set

I
a

ba

ca

da

aba

cba

dba
I

a

ba

ca

da

aba

cba

dba

(c) Disc images Self-inverse (d) Limit set

Figure 10: Partial trees up to depth 3. The entries in bold are those to be rendered.

https://doi.org/10.21638/11701/spbu35.2024.305 Electronic Journal: http://diffjournal.spbu.ru/ 75

Differential Equations and Control Processes, N. 3, 2024

a b A B

a a b � B

b a b A �

A � b A B

B a � A B

a b c d

a � b c d

b a � c d

c a b � d

d a b c �

(a) abABB (b) cabdc

Not self-inverse subgroup Self-inverse subgroup

Table 1: Trasversing the multiplication table. The tree growth in figs. 10 and 9 is driven
by Cayley tables. The cancellations ‘†’ appear in the presentations (6) and (5). We can follow
the zig-zag path through the upper bar with the gray shades gradient.

letters to generators is the sole way to detect identities. Suppose we have the
rule ab = A, then aab turns into aA = I.

In this formally variegated scenario, we require the identity recognition
rules would be structured in a way more versatile than in the presentation:
this task is fulfilled by the so-called multiplication table, also known as Cayley
table, named after Arthur Cayley (1821–1895) and ruling every single step along
the formation of each orbit. Every table features the same number of columns
as of the generators (including the inverse ones), whereas rows list all unique
combinations allowed in a given group, including the cancellation rules. Every
row is announced by one combination of generators on the far left column,
and it is accessed by means of the combination with the cells in the other
columns, following a sort of zig-zag path that ends at a cancellation rule (table
1). Presentations are synthetic versions of the analytic multiplication tables
[10, p. 88], which provide specific composition rules besides cancellations.

The two examples in table 1 are the simplest ever, since the only directive
to follow for trasversing this table amounts to replacing the current symbol by
the next in line, and so, again and again up to some maximal depth or when
we would stumble into a cancellation. The (RL) reading of the word abA is
equivalent to the following path A →

b
b →

a
a, running through three rows, one

per each symbol. There exist groups whose multiplication tables include rows
that are announced by words being longer than one symbol (see the example
at [15, p. 359]), such as the path a →

b
ba →

A
Aba that running over the table

rows announced by a, ba, and Aba. The formal word Bbba will eventually meet
the cancellation rule in the row announced by the letter B. This is an excerpt
of a multiplication table including longer entries than one letter [15, p. 359]:

https://doi.org/10.21638/11701/spbu35.2024.305 Electronic Journal: http://diffjournal.spbu.ru/ 76

Differential Equations and Control Processes, N. 3, 2024

a b A B

bAB I I BA B

Bab ba b I I

In any version, either as presentations or as tables, the tests for identity
recognition are essential to ensure the correct processing of the subgroup action
and they cannot be exempted from implementation of visual rendering algo-
rithms due to the reasons stressed before; otherwise said, missing to perform
the cancellation tests brings inaccurate results. The lexicographic approach pre-
processes words: it builds them in progression and checks if the newly appended
symbol has met an identity rule and then triggered a cancellation.

(a) Generators (b) Final rendering

Figure 11: Disc images by circle inversion. (a) A different disposition of four mutually
tangent circles than fig. 1/a was adopted here to work inversion maps (3). The tangency
condition is preserved along the construction and it prevents images circles from overlapping
each other. Coloring visually enhances the convergent dynamics.

During the early 1990s, digital pictures of limit sets were produced through
the lexicographic approach in a few works, such as Manna and Vicsek’s [12],
Bullets and Mantica’s [4], McShane, Parker and Redfern’s [14], and Parker’s
[16]. None of them hit the technical details of the rendering. This gap in
the literature was filled in the beginnings of the new millennium, inside the
book Indra’s pearls by Mumford, Series and Wright [15], which provided a very
extensive and plain discussion of the lexicographic approach.

3 Drawbacks of the lexicographic approach

Given n generators and chains (2) of maximal depth d, disc images and limit

sets require NT =
d∑

i=1

ni (intermediate nodes and leaves) and NL = nd words

https://doi.org/10.21638/11701/spbu35.2024.305 Electronic Journal: http://diffjournal.spbu.ru/ 77

Differential Equations and Control Processes, N. 3, 2024

(leaves only, i.e. the number of permutations) respectively. The lexicographic
approach features the following additional computation costs:

(1) a first table for binding letters to the indexes of the generators stored in
an array;

(2) a second table for registering the association between the letters of
generators and of their inverses;

(3) the implementation of bread-first (equivalently, depth-first) algorithm
for running through the words tree (i.e., trasversing the tree model) and gener-
ating the words dictionary up to a finite length;

(4) the memory space required to store the dictionary;

(5) the translation of symbols into indexes to pick up the generator.

The tables below report the memory sizes of dictionaries including words up to
length 17, a sufficient value for accomplishing average quality renderings. Costs
will dramatically grow, because even longer words are needed for higher quality,
especially to render close-ups or for those groups whose the orbits convergence
rate rapidly decreases to 0 near the limit set, as it happens for groups including
parabolic generators (see the remarks on the trace operator at p. 69).

Compiling the dictionary turns into a very expensive process, which de-
mands long computation times and huge memory resources.

words length 0 1 3 5 7 9 11 13 15 17

Disc images

process steps 1 5 53 485 4373 39365 354293 3188645 28697813 258280325

dictionary size 1B 5B 53B 485B 4.2KB 38KB 346KB 3.04MB 27MB 246.3MB

Limit set

process steps 1 4 9 81 729 6561 59049 531441 4782969 43046721

dictionary size 1B 4B 9B 81B 729B 6.4KB 57.7KB 519KB 4.56MB 41.06MB

Table 2: Memory size for disc images. This upper and the lower table have been compiled
for groups of four generators of self-inverse maps and of non-self-inverse maps respectively.

The need of huge memory loads has been already pointed out at [15, p. 141],
where three approaches were given for working this problem around: one is
based upon recursion, the others on the tree model. They all require consid-
erable resources in terms of function calls stack. The first approach is based
upon recursion and looks as the most onerous, as it triggers as many calls as
the dictionary size, i.e. NT or NL; whereas the other two approaches look ra-

https://doi.org/10.21638/11701/spbu35.2024.305 Electronic Journal: http://diffjournal.spbu.ru/ 78

Differential Equations and Control Processes, N. 3, 2024

ther complicate and expensive, because dropping the dictionary would need to
constantly track down the paths across the tree for trasversing them back and
forth. In whatever version, the lexicographic approach does not care of saving
resources and, in long terms, the running speed eventually slows down. A can-
didate different approach would aim at being lighter and running faster, and
then at dropping storages in any form and devising alternative ways to the tree
model and trasversion.

4 Index generation: the numerical alternative

In order to get away from the lexicographic environment, we have to step back
to the primary level of composition, relying upon the abstraction of symbols,
as discussed in §2 (fig. 7). We recall that letters are just meant as a choice for
opening to rendering operations.

A different materialization of abstract symbols consists in developing an
approach that involves digits and numbers. We start from reviewing the in-
sertion of tree nodes in fig. 9 under this new perspective. According to the
Basis Representation Theorem [1, pp. 8–9], any numerical quantity Q can be
written as a unique string qb in base b ≥ 2. Q acts like an abstract concept
that allows travelling through arbitrary representations. Q is invariant under
base conversion, only the formal appearance change; thus the increasing (or de-
creasing) trend of sequences of numbers in base 10, say 110, 210, 310, . . . , will be
kept up the same trend in another base. Given q2 and q10, then q10 → Q → q2:
for every integer in base 10, there exists one and only one conversion into a
different base. Base conversion stands as unambiguous and reliable approach
to the formalization of orbits. As we already remarked at p. 70, invariance
represents a nice start for developing mathematical ideas.

010 110 210 310 410 510 610 710 810 910 1010 1110 1210 1310 1410 1510
04 14 24 34 104 114 124 134 204 214 224 234 304 314 324 334

Table 3: Conversion from base 10 to 4.

We notice that every base n is equipped with a set of exactly n distinct
digits, which we could, even if improperly, call as alphabet again, because of
performing homologous tasks.

We follow the transition between the lexicographic and the indexed ap-
proach in table 4, by comparing the formal compositions. At this initial stage,
the difference just regards the adopted symbols. Every new number in base

https://doi.org/10.21638/11701/spbu35.2024.305 Electronic Journal: http://diffjournal.spbu.ru/ 79

Differential Equations and Control Processes, N. 3, 2024

Generator g1 g2 g−1
1 g−1

2

Symbol a b A B

Array index 0 1 2 3

Cancellations in letters aA bB Aa Bb aa bb AA BB

Cancellations in digits 02 13 20 31 00 11 22 33

non-self-inverse generators self-inverse generators

Table 4: Environmental arrays for 4-generators groups.

4, for example, shows up as the concatenation of digits, taken from the set [0,
1, 2, 3] (table 3). In every 4-generators subgroup, the letters a, b, c, d are
respectively associated to the digits of the 4-base number system: 0, 1, 2, 3.
The formal expressions of numerical quantities under some given value are per-
mutations of digits. Let the value 10000, then all smaller numbers from 0000
to 9999 are permutations of all digits in the 10-base system. Given an alphabet
of cardinality n = 4, the concatenation of letters up to depth d is equivalent to
writing all numbers in base n up to the value nd. The generation of all words in
the lexicographic approach can be completely replaced by the increasing sequence
of positive integers in some arbitrary base system. We no longer need to build
up dictionaries and store massive bulks of data: the n-base representation can
return the same information as from the combinations built on purpose through
the step-by-step concatenation of letters. Numbers devolve into sequences of
digits, i.e. of strings being managed through the symbols concatenation; they
however keep all we need to render the subgroup action.

Zero management. This new approach runs faster, but it shall be han-
dled with care as we are switching from quantities represented by numbers to

Level 0 I

Level 1 A B a b

04 14 24 34
Level 2 AA AB Ab

004 014 034
BB BA Ba

114 104 124
aa aB ab

224 214 234
bb bA ba

334 304 324

Level 0 I

Level 1 a b c d

04 = 010 14 = 110 24 = 210 34 = 310
Level 2 ab ac ad

014 = 110 024 = 210 034 = 310
ba bc bd

104 = 410 124 = 610 134 = 710
ca cb cd

204 = 810 214 = 910 234 = 1110
da db dc

304 = 1210 314 = 1310 324 = 1410
self-inverse generators non-self-inverse generators

Table 5: Applications to subgroups. Some entries have been skipped because of cancellation
rules. Index generation covers all combinations yielded by the lexicographic approach (fig. 9).

https://doi.org/10.21638/11701/spbu35.2024.305 Electronic Journal: http://diffjournal.spbu.ru/ 80

Differential Equations and Control Processes, N. 3, 2024

Figure 12: These limit sets have been rendered via the index generation algorithm. The dots
at the outer sides of the picture at the far left prove that accurate renderings would be very
long time consuming.

the quality (i.e., the visual appearance) of digits, i.e. of symbols deprived from
their native quantitative meaning. This transition goes from positional numer-
ical systems to strings of concatenated symbols and it requires to settle the
ambiguous role played by the digit 0 (table 4), which is applied to encode the
action of the Möbius map stored in the array at the index 0 (arrays are data
structured endowed with zero-based indexing). The digit 0, unlike all others
from 1 to 9, could relate to quantification or not, depending on the position
within the string of digits: it plays the multiplicative role if appended to the
far right (ex: 10000), or none if prepended to the far left (ex: 00001); we mean
to trailing and of leading zeros respectively. For instance, the unit value 1 is
encoded into the word ‘1’; assuming 5 as maximal length, we get the words ‘1’,
‘01’, ‘001’, ‘0001’, ‘00001’. In general, there exist infinitely many formal words
‘0n’, ‘00n’, . . . , ‘0n’, being padded by leading zeros and which encode the same
integer quantity n; they feature a same sub-orbit of iterates of the Möbius map
associated to the index 0. In the formal context of symbols concatenation, the
digit 0 drops the role played in the positional representation of numbers; being
no longer a numerical value but just as a symbol, it is an index that refers to a
generator for the given subgroup; this is another reason why leading zeros are
as important as trailing ones here. We see that the zeros left padding does not
occur for groups of self-inversions for instance, where the composition of words
does not allow contiguous symbols repetition.

The transformation from numerical values to strings of symbols is one-to-
many (= multi-valued); conversely, strings with leading zeros would be encoded
back to the same numerical value in the many-to-one fashion (= single-valued).
Because of the aforementioned reasons, base conversion cannot cover strings

https://doi.org/10.21638/11701/spbu35.2024.305 Electronic Journal: http://diffjournal.spbu.ru/ 81

Differential Equations and Control Processes, N. 3, 2024

with leading zeros; hence we have to implement a separate procedure for manag-
ing these special strings. Resuming, the implementation of the index generation
algorithm consists in

(1◦) taking on a number in base 10, say 9310;

(2◦) encoding it into the new base, say 11314;

(3◦) left padding every string yielded in the step 2 through a sequence of
leading zeros up to a given finite maximal length. Suppose the latter is 8, the
4-base number obtained above would increasingly left padded in order to obtain
the four strings (8− 4 = 4): 011314, 0011314, 00011314, 000011314;

(4) feeding the resulting string in the new base to the rendering engine.

All process boils down to converting numbers into the new base and process-
ing the obtained strings. We no longer need to store them. The index generation
algorithm post-processes words: the base conversion yield a new words which is
checked whether there are subsets triggering cancellations.

5 The pseudo-code implementation

We will illustrate the code implementation guidelines for the index generation
algorithm, either for rendering disc images or limit sets. Code has been split
into blocks which isolate the services into distinct working compartments; this
way could be also of help to easily follow how each service is implemented and
what its task is. Code is presented in the form of pseudo object-oriented lan-
guage in order to ease the customization into readers’ favorite environment.
Generators have been embedded into class objects, endowed with members :

I 0

3
2

1

10

20

30

312111

12

22

32

332313

00

03

02

01

0

102030 00

100200300 000010110210310

0010101020103010

(a) (b)

Figure 13: (a) The tree in fig. 9/b was rebuilt under the index generation principles. Words
are not filtered by prior multiplication table tests; (b) A branch was picked up from the tree in
fig. 13 and walked through two nodes deeper.

https://doi.org/10.21638/11701/spbu35.2024.305 Electronic Journal: http://diffjournal.spbu.ru/ 82

Differential Equations and Control Processes, N. 3, 2024

namely, they consist of methods and of data containers, referred by the mem-
bership notation to the object: obj.<method id>(parameters) for methods
and for obj.<variable id> for containers (i.e., for variables) respectively.

We begin from instantiating the generators listed in table 4 at p. 80: for
sake of simplicity and with no loss of generalization, we assume to work with 2-
generators groups ruled by the simplest presentation (5) or (6). Our algorithm
is scalable and not affected by the cardinality of the generators set.

The index–generator association is automatically set up by the instantiation
of the logical array (table 4 at p. 80). A number of environmental variables and
containers, related to the sub-services run by the algorithm, are first initialized
for further needs in the code box below.

1 var _gens_objs = [g1, g2, g3, g4], _gens_num = _gens_objs.length;

2 var _max_depth = 10, _max_value = power(_gens_num, _max_depth);

3 var _proc_str = "", _zero_fill_proc_str = "", _index, _circle;

4 var _str_length = 1, _rec_start = 0, _rec_end = -1;

5 var _b_length_change = 0, _b_crash_found = 0;

We stress again that the numerical nature of this algorithm disengages from
the concept of word depth, which is more naturally tied to the transversion of
the lexicographic approach. We will deal with the number of steps instead, and
so we have to set up an arbitrary maximal value that stops the main loop. We
opted to use the for-loop syntax because of being conceptually close to the
increasing sequences of integers discussed in the previous section; but there are
no impediments against the while-loop syntax which, as known, generalizes
and includes the principles of for-loops. For sake of coherence with the initial
remarks at §1, we will work with inversion circles or with pixels/points, for
rendering disc images or limit sets respectively.

1 for(var _i = 0; _i < _max_value; _i++){

2 _proc_str = _i.<convert-to-base>(_gens_num);

3

4 //we chose this test to trigger the leading zeros management below

5 _b_length_change = _str_length != _proc_str.length;

6

7 //the test below may involve the multiplication table

8 //or the subgroup presentation

9 if (<call-to-sub-routine-#1.x:cancellation-rule-test_of_proc_str>) continue;

10

11 <call-to-sub-routine-#2.x:process-the-numerical-string-in-base-n>

12 <call-to-sub-routine-#3:leading-zeros-management>

13 }

We are going to render limit sets first: a string of symbols is returned for each

https://doi.org/10.21638/11701/spbu35.2024.305 Electronic Journal: http://diffjournal.spbu.ru/ 83

Differential Equations and Control Processes, N. 3, 2024

value of the loop counter i and processed by composition of Möbius maps.

Input points. Unlike the rasterized rendering of Julia sets, we do not need to
check every point/pixel inside the region of interest (the escape time method).
According to the theory of function groups (which both fuchsian and kleinian
kinds belong to), it is sufficient to give an arbitrary input value: the definition
of a limit point depends only on the sequence of elements of the subgroup G,
and not on the points belonging to the region U where the action of G is freely
discontinuous [13, p. 22, D.3]. Moreover, since the limit set is transformed into
itself by any transformation of the group [7, p. 43], we found worth picking
up input values from the fixed points belonging to one of the generators of the
subgroup.

The generic label #2.x refers to the code block #2.1 which renders the limit
set. After processing the input word from right to left, we will display on the
screen the last element of every orbit exclusively, as required by the definition
of limit sets.

1 //<sub-routine-#2.1:limit set mode>

2 //right-to-left reading order

3 _index = <turn-the-symbol-to-integer>(_proc_str[_proc_str.length-1]);

4 //initialization

5 _fp = _gens_objs[_index].get_one_fixed_point();

6

7 //process the rest of the string

8 for(var _wr = _proc_str.length-2; _wr >= 0; _wr--){

9 _index = <turn-the-symbol-to-integer>(_proc_str[_wr]);

10 _fp = _gens_objs[_index].map_point(_fp);

11 }

12

13 <call-a-sub-routine-for-drawing-the-pixel-at-the-fixed-point-coordinates>

Disc images based renderings need the subroutine #2.x to be replaced by the
block #2.2, where every new inversion circle is plotted on the screen as each
new symbol in the word is read, from right to left, and processed:

1 //<sub-routine-#2.2:disc images mode>

2 //right-to-left reading order

3 _index = <turn-the-symbol-to-integer>(_proc_str[_proc_str.length-1]);

https://doi.org/10.21638/11701/spbu35.2024.305 Electronic Journal: http://diffjournal.spbu.ru/ 84

Differential Equations and Control Processes, N. 3, 2024

4 //initialization

5 _circle = _gens_objs[_index].get_inversion_circle();

6

7 <call-a-sub-routine-for-drawing-the-circle>

8 //process the rest of the string

9 for(var _wr = _proc_str.length-2; _wr >= 0; _wr--){

10 _index = <turn-the-first-symbol-to-integer>(_proc_str[_wr]);

11 _circle = _gens_objs[_index].map_inversion_circle(_circle);

12 <call-a-sub-routine-for-drawing-the-circle>

13 }

The label <sub-routine-#3:leading-zeros-management> refers to the next
pseudo-code implementing both elaboration and rendering of strings with lead-
ing zeros, as discussed in the previous section. The strategy boils down to
generating such strings from the ones returned inside the main for-loop. We
chose to run this code when the converted string changes in length, e.g. from
3334 to 10004 in base 4. According to the remarks at the end of §4, this code
block mimics the tasks of the main algorithm.

1 //<sub-routine-#3:leading-zeros-management>

2 if (_b_length_change)

3 {

4 _rec_end = _n - 1;

5 for(var _r = _rec_start; _r <= _rec_end; _r++)

6 {

7 _zero_fill_proc_str = _r.toString(_n_gens);

8 for(var _filler = _zero_fill_proc_str.length; _filler <= _max_depth; _filler++)

9 {

10 _zero_fill_proc_str = "0" + _zero_fill_proc_str;

11 if (<call-to-sub-routine-#1.x:cancellation-rule-test_of_proc_str>)

12 continue;

13 <call-to-sub-routine-#2.x:process-the-numerical-string-in-base-n>

14 }

15 }

16

17 _rec_start = _rec_end + 1;

18 _rec_end = -1;

19 _b_length_change = 0;

20 }

We remark that the pseudo-code

https://doi.org/10.21638/11701/spbu35.2024.305 Electronic Journal: http://diffjournal.spbu.ru/ 85

Differential Equations and Control Processes, N. 3, 2024

if (<call-to-sub-routine-#1.x:cancellation-rule-test_of_proc_str>) continue;

refers to tests to be performed according to the Cayley table or presentation
related to the given subgroup. Two examples on how tables 1 at p. 76 are
coded follow below. The equivalent cancellation rules are (5) and (6) in terms
of presentations. Implementation is easy: instead of trasversing table rows and
columns, these cancellation tests check whether every new input string of digits
includes at least one of the rules on the right of the presentation.

1 //<sub-routine-#1.1:group-presentation>

2 function __check__group_presentation__(_digitized_word = "")

3 {

4 <let a boolean flag and set it to 0>

5

6 <for each entry inside the group presentation>

7 <check if the input digitized word includes the current entry>

8 <if so, set the above flag to 1 and break this loop>

9 <end-of-for-loop>

10

11 <return the boolean flag>

12 }

And now the pseudo-code for cancellation tests with regard to the multiplication
table.

1 //<sub-routine-#1.2:multiplication-table-test>

2 function __multiplication-table-test__(_digitized_word = "") {

3 <let a boolean flag and set it to 0>

4

5 //we assume that the index has been converted into the required base

6 <split-the-digitized-word-into-an-array-of-single-digits->

7 <get-the-first-digit-in-the-word>

8 <get a reference pointer to the related row inside the table>

9

10 //we prevent to raise conditional if-statement in the loop

11 <remove the first digit from the word>

12

13 <for each digit in the of rest this array> //sequential read

14 <get the next-index in the current row at the index espressed by the digit>

15 <if the next-index is invalid, then (1) set the above flag to 1>

16 <(2) break the loop and (3) skip this word processing>

17 <get a reference pointer to the row inside the-table and related to the next-index>

https://doi.org/10.21638/11701/spbu35.2024.305 Electronic Journal: http://diffjournal.spbu.ru/ 86

Differential Equations and Control Processes, N. 3, 2024

18 <end-of-for-loop>

19

20 <return the flag>

21 }

6 Comparisons and benefits

Figure 14: This is a close-up
of the limit set for a degenerate
subgroup of 2-generators, whose
coefficients satisfy special and
delicate numerical conditions.

The digital nature of the index generation algo-
rithm could take away some of the charm tied to
the theory of word processing performed by the
lexicographic approach (refer to the algebraic the-
ory of commutators at [15, p. 168]) and emanating
from the related literature ([6] über alles). Anyway,
for practical purposes, the numerical base conver-
sion enjoys the benefit of generating every chain
of generators in just one step and so it runs much
faster than the lexicographic approach. The trans-
formational character of the index generation algo-
rithm relies upon the simpler and quicker genera-
tion of words, no longer coming from a construc-
tive progression, like in the lexicographic approach
which sets up a tortuous track disseminated by the technical drawbacks already
discussed in §3, i.e., appending symbols, checking words and storing them into
(possibly, huge) containers, the dictionaries. The only (and necessary) compu-
tational costs of the index generation algorithm are the essential multiplication
table and the correlated testings.

One more drawback of lexicographic approach concerns the sequential build-
ing of words of n symbols, which are deduced from those of length n−1. At this
regard, we observe that the intrinsic tree structure involves nodes dependency,
which demands to start from the root and walk through the consecutive nodes

https://doi.org/10.21638/11701/spbu35.2024.305 Electronic Journal: http://diffjournal.spbu.ru/ 87

Differential Equations and Control Processes, N. 3, 2024

in order to get to the given depth. On the contrary, the index generation algo-
rithm enjoys the benefits of numerical sequences which is based upon, allowing
to start, stop and resume the generation of strings at any arbitrary element of
the sequence. If needed, we can jump from end to end here, instead of walking

through the interval. It is known that d =
⌊ log(i)
log(n)

⌋
returns the number d of

digits required to convert i from base 10 to base n; thus, we can explore limit
sets inside some interval of integer values, which match with words of length l,
given d ≤ l ≤ D for instance.

The author has developed a web application that implements both the lex-
icographic and the index generation algorithm at http://alessandrorosa.altervista.

org/circles/; a number of demos can be run for introductory purposes, or groups
be built either geometrically through inversion circles or algebraically via input
of arbitrary coefficients into Möbius maps. Refer to [17] for related examples.

References

[1] Andrews G.E., Number Theory, Saunders, 1971.

[2] Beardon A., The Geometry of Discrete Groups, Springer, 1983.

[3] Bessis D., Demka S. Generalized Apollonian packings, Commun. Math.
Phys., 134, 1990, pp. 293–319.

[4] Bullets S., Mantica G., Group theory of hyperbolic circle packings, Non-
linearity, 5, 1992, pp. 1085–1109.

[5] Devaney R. L., Marotta S. M., Mandelpinski necklaces in the parame-
ter plane of rational maps, Springer Proceedings in Mathematics and
Statistics, 2021, pp. 95-119.

[6] Epstein D.B.A. et alia, Word processing in Groups, Jones and Bartlett
Publishers, Boston, 1992.

[7] Ford L., Automorphic functions, McGraw-Hill, New York, 1929.

[8] Fricke R., Klein F., Vorlesungen über die Theorie der automorphen Func-
tionen, Teubner, Leipzig, 1897.

[9] Krushkal S.L., Apanasov B.N., Gusevskĭı N. A., Kleinian Groups and
Uniformization in Examples and Problems, Translations of Mathematical
Monographs, AMS, 1986.

https://doi.org/10.21638/11701/spbu35.2024.305 Electronic Journal: http://diffjournal.spbu.ru/ 88

http://alessandrorosa.altervista.org/circles/
http://alessandrorosa.altervista.org/circles/

Differential Equations and Control Processes, N. 3, 2024

[10] Lyndon R.C., Schupp P.E., Combinatorial Group Theory, Springer, 2001.

[11] Magnus W., Non-Euclidean Tesselations and their Groups, Elsevier,
1974.

[12] Manna S.S., Vicsek T., Multifractality of Space-Filling Bearings and
Apollonian Packings, Journal of Statistical Physics, 64, 3/4, 1991.

[13] Maskit B., Kleinian Groups, Springer, 1988.

[14] McShane G., Parker J.R., Redfern I., Drawing limit sets of Kleinian
groups using finite state automata, Experimental Mathematics, vol. 3, 2
(1994), pp. 153–170.

[15] Mumford D., Series C., Wright D., Indra’s pearls: The Vision of Felix
Klein, Cambridge University Press, 2002 (reprinted in 2015).

[16] Parker J.R., Kleinian circle packings, Topology, vol. 34, No. 3, 1995, pp.
489–496.

[17] Rosa A., The pearls of Heavens: A gallery of Kleinian Groups, 2023,
https://www.academia.edu/95460195/

https://doi.org/10.21638/11701/spbu35.2024.305 Electronic Journal: http://diffjournal.spbu.ru/ 89

https://www.academia.edu/95460195/

	The framework
	No fuzzy pictures

	Introduction to the lexicographic approach
	Trees of words
	Presentations and multiplication tables

	Drawbacks of the lexicographic approach
	Index generation: the numerical alternative
	The pseudo-code implementation
	Comparisons and benefits

