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Abstract

The behaviour of solutions to certain third order nonlinear non autonomous stochastic
delay differential equations with constant deviating arguments is considered. The main
procedure lies on the construction of a perfect Lyapunov functional which is used to
obtain suitable conditions which guarantee uniform stability, boundedness and uniqueness
of global solution for t > 0. The obtained results are new and complement related second
order stochastic differential equations that have appeared in the literature. Moreover,
examples are given to illustrate the feasibility and correctness of the main results.
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1 Introduction

In the applications, the future behavior of many phenomena, in science, econ-
omy, medicine, information theory, engineering and so on, are assumed to be

described by the solutions of an ordinary differential equation (ODE). In fact,
the investigation of qualitative behavior of solutions, especially, the discussion
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of uniform stability, boundedness and existence of unique solutions are crucial

problems in the theory and applications of ODEs. Many interesting work on
qualitative behaviour of solutions of second-, third- and higher order ODEs,

have been discussed and are still receiving the attention of authors, see for
instance the book of Burton [21, 22], Yoshizawa [60, 61] which contain the

background to the study and the papers of Ademola et al. [3]-[10],[13, 16],
Burton and Hatvani [20], Ogundare et al. [36, 37], Raffoul [40], Tunç [49],
Yoshizawa [59], Wang and Zhu [55] and the references cited therein.

A more general type of differential equations often called a “functional dif-

ferential equation” is one in which the unknown functions occur with various
different arguments. In the Russian literature these are refereed to as “differ-
ential equations with deviating argument.” The simplest and perhaps the most

natural type of functional differential equations is a “delay differential equation”
(DDE) (or “differential equation with retarded argument”), (see Driver [26]). In

this direction many authors have proposed different approach to discuss qual-
itative behaviour of solutions of second-, third- and higher order DDEs with

deviating arguments (single or multiple, constant or variable). We can mention
the survey books of Burton [21], Hale [25], Yoshizawa [61], and the papers of
Ademola et al. [11, 12, 14, 17, 18], Cahlon and Schmidt [23], Caraballo et al.

[24], Domoshnitsky [27], Mahmoud [33], Ogundare et al. [35], Olutimo and
Adams [39], Remili et al. [41, 42, 43], Tunç et al. [46]-[48], [50]-[54], Xianfeng

and Wei [56], Yeniçerioğlu [57, 58], Zhu [63] and the references cited therein to
mention few.

“Since Itô introduced his stochastic calculus about 50 years ago, the the-
ory of stochastic differential equation (SDE) has been developed very quickly,”

(see Mao [34]). In particular, the randomness or stochastic effects (a con-
cept beyond the scope of ODE and DDE) introduced to ODE and DDE gives

birth to stochastic differential equations (SDE) and stochastic delay differential
equation (SDDE) respectively. In this direction, interesting articles have been

published by authors using different approach, see for instance Arnold [19], Kol-
manovskii and Shaikhet [30], Oksendal [38], Shaikhet [45], which contain the
general results on the subject matters and the dazzling papers of Abou-El-Ela

et al. [1, 2], Ademola et al. [15], Ivanov et al. [28], Kolarova [29], Kolmanovskii
and Shaikhet [30, 31], Liu and Raffoul [32], Mao [34], Zhu et al. [62] and the

references cited therein.

In their contribution the authors in [1] discussed the stability of solutions
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for certain second order SDDE

ẍ(t) + aẋ(t) + bx(t− h) + σx(t)ω̇(t) = 0

and

ẍ(t) + aẋ(t) + f(x(t− h)) + σx(t− τ)ω̇(t) = 0,

where a, b and σ are positive constants, h and τ are two positive constant

delays, ω(t) ∈ R is a standard Wiener Process, the function f is continuous
with respect to x with f(0) = 0.

Moreover, the authors in [2] considered a more general problem (including
and extending the results in [1]) by introducing more nonlinear functions and

they discussed stochastic stability and boundedness of solutions for the SDDE

ẍ(t) + g(ẋ(t)) + bx(t− h) + σx(t)ω̇(t) = p(t, x(t), ẋ(t), x(t− h)),

where a and b are positive constants and h > 0 is a constant delay, g and
p are continuous functions with g(0) = 0, ω(t) = (ω1(t), · · · , ωn(t)) ∈ R

m an

m−dimensional standard Brownian motion defined on the probability space.

Recently, the authors in [15] investigated stability and boundedness of solu-

tions to a certain second order nonautonomous stochastic differential equation

x′′(t) + g(x(t), x′(t))x′(t) + f(x(t)) + σx(t)ω′(t) = p(t, x(t), x′(t)),

where σ is a positive constant, the functions g, f and p are continuous in their
respective arguments on R

2,R and R
+ × R

2.

Motivated by the above discussion, using Lyapunov second method, we pro-

ceed to study the problems of stability, boundedness and uniqueness of solutions
of certain third order stochastic delay differential equations

...
x (t) + aẍ(t) + bẋ(t) + h(x(t− τ)) + σx(t)ω̇(t) = p(t, x(t), ẋ(t), ẍ(t)), (1.1)

where a, b, σ are positives constants, h, p are nonlinear continuous functions in

their respective arguments with h(0) = 0, τ > 0 is a constant delay whose value
will be determined later and ω(t) is defined above. The continuity and local
Lipschitz conditions on the functions h and p are sufficient for the existence

and uniqueness of solutions of equation (1.1) respectively. Also, the dots as
usual stands for the differentiation with respect to the independent variable t.

Suppose that ẋ(t) = y(t) and ẍ(t) = z(t), then equation (1.1) is equivalent to
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system

ẋ(t) = y(t),

ẏ(t) = z(t),

ż(t) = − h(x)− by − az − σx(t)ω̇(t) +

∫ t

t−τ

h′(x(s))y(s)ds

+ p(t, x(t), ẋ(t), ẍ(t)),

(1.2)

where h′ (the derivative of the function h with respect to x) exists and con-

tinuous for all x. However, to the best of our knowledge, there is no previous
literature on stochastic stability and stochastic boundedness of solutions of

nonlinear non autonomous third order SDDE (1.1). The rest of this paper is
organized as follows. In Section 2, we present definition of terms and some pre-

liminary results on SDDEs. Results and their proofs on stability, boundedness
and uniqueness of solutions of the SDDE (1.1) are discussed in Section 3, while
illustrative special cases of the SDDE (1.1) are presented in the last section.

2 Preliminaries

Let (Ω,F, {Ft}t>0,P) be a complete probability space with a filtration {Ft}t>0

satisfying the usual conditions (i.e. it is right continuous and {F0} contains all
P−null sets). Let B(t) = (B1(t), · · · , Bm(t))

T be an m−dimensional Brownian

motion defined on the probability space. Let ‖·‖ denotes the Euclidean norm in
R

n. If A is a vector or matrix, its transpose is denoted by AT . If A is a matrix,
its trace norm is denoted by

||A|| =
√

trace (ATA).

For more information see Arnold [19] and Mao [34]. Consider a non autonomous
n−dimensional SDDE

dx(t) = F (t, x(t), x(t− τ))dt+G(t, x(t), x(t− τ))dB(t) (2.1)

on t > 0 with initial data {x(θ) : −τ ≤ θ ≤ 0}, x0 ∈ C([−τ, 0];Rn). Here

F : R+ × R
2n → R

n and G : R+ × R
2n → R

n×m are measurable functions.
Suppose that the functions F,G satisfy the local Lipschitz condition, given any

b > 0, p ≥ 2, F (t, 0, 0) ∈ C1([0, b];Rn) and g(t, 0, 0) ∈ Cp([0, b];Rm×n). Then
there must be a stopping time β = β(ω) > 0 such that equation (2.1) with

x0 ∈ C
p
Ft0

[class of Ft-measurable C([−τ, 0];Rn)-valued random variables ξt and
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E‖ξt‖
p < ∞] has a unique maximal solution on t ∈ [t0, β) which is denoted by

x(t, x0). Assume further that

F (t, 0, 0) = G(t, 0, 0) = 0

for all t ≥ 0. Hence, the SDDE admits zero solution x(t, 0) ≡ 0 for any given
initial value x0 ∈ C([−τ, 0];Rn).

Definition 2.1 The zero solution of the stochastic differential equation (2.1)

is said to be stochastically stable or stable in probability, if for every pair
ǫ ∈ (0, 1) and r > 0, there exists a δ0 = δ0(ǫ, r) > 0 such that

Pr{‖x(t; x0)‖ < r for all t ≥ 0} ≥ 1− ǫ whenever ‖x0‖ < δ0.

Otherwise, it is said to be stochastically unstable.

Definition 2.2 The zero solution of the stochastic differential equation (2.1) is
said to be stochastically asymptotically stable if it is stochastically stable and

in addition if for every ǫ ∈ (0, 1) and r > 0, there exists a δ = δ(ǫ) > 0 such
that

Pr{ lim
t→∞

x(t; x0) = 0} ≥ 1− ǫ whenever ‖x0‖ < δ.

Definition 2.3 A solution x(t, x0) of the SDDE (2.1) is said to be stochasti-

cally bounded or bounded in probability, if it satisfies

Ex0‖x(t, x0)‖ ≤ N(t0, ‖x0‖), ∀ t ≥ t0 (2.2)

where Ex0 denotes the expectation operator with respect to the probability law

associated with x0, N : R+ × R
+ → R

+ is a constant function depending on t0
and x0.

Definition 2.4 The solutions x(t0, x0) of the SDDE (2.1) is said to be uni-

formly stochastically bounded if N in (2.2) is independent of t0.

Let K denote the family of all continuous non-decreasing functions ρ : R+ →
R

+ such that ρ(0) = 0 and ρ(r) > 0 if r 6= 0. In addition, K∞ denotes the family

of all functions ρ ∈ K with
lim
r→∞

ρ(r) = ∞.

Suppose that C1,2(R+ × R
n,R+), denotes the family of all non negative func-

tions V = V (t, xt) (Lyapunov functional) defined on R
+ × R

n which are twice

continuously differentiable in x and once in t. By Itô’s formula we have

dV (t, xt) = LV (t, xt)dt+ Vx(t, xt)G(t, xt)dB(t),
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where

LV (t, xt) =
∂V (t, xt)

∂t
+

∂V (t, xt)

∂xi
F (t, x(t))

+
1

2
trace [GT (t, xt)Vxx(t, xt)G(t, xt)]

(2.3)

with

Vxx(t, xt) =

(

∂2V (t, xt)

∂xi∂xj

)

n×n

, i, j = 1, · · · , n

In this study we will use the diffusion operator LV (t, xt) defined in (2.3) to
replace V ′(t, x(t)) = d

dtV (t, x(t)). We now present the basic results that will be

used in the proofs of the main results.

Lemma 2.1 (See [19]) Assume that there exist V ∈ C1,2(R+ × R
n,R+) and

φ ∈ K such that

(i) V (t, 0) = 0, for all t ≥ 0;

(ii) V (t, xt) ≥ φ(‖x(t)‖), φ(r) → ∞ as r → ∞; and

(iii) LV (t, xt) ≤ 0 for all (t, x) ∈ R
+ × R

n.

Then the zero solution of SDDE (2.1) is stochastically stable. If conditions (ii)
and (iii) hold then (2.1) with x0 ∈ C

p
Ft0

has a unique global solution for t > 0

denoted by x(t; x0).

Lemma 2.2 (See [19]) Suppose that there exist V ∈ C1,2(R+ × R
n,R+) and

φ0, φ1, φ2 ∈ K such that

(i) V (t, 0) = 0, for all t ≥ 0;

(ii) φ0(‖x(t)‖) ≤ V (t, xt) ≤ φ1(‖x(t)‖), φ0(r) → ∞ as r → ∞; and

(iii) LV (t, xt) ≤ −φ2(‖x(t)‖) for all (t, xt) ∈ R
+ × R

n.

Then the zero solution of SDDE (2.1) is uniformly stochastically asymptotically
stable in the large

Assumption 2.1 (See [32, 40]) Let V ∈ C1,2(R+ × R
n;R+), suppose that for

any solutions x(t0, x0) of SDDE (2.1) and for any fixed 0 ≤ t0 ≤ T < ∞, we
have

Ex0

{
∫ T

t0

V 2
xi
(t, xt)G

2
ik(t, xt)dt

}

< ∞, 1 ≤ i ≤ n, 1 ≤ k ≤ m. (2.4)
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Assumption 2.2 (See [32, 40]) A special case of the general condition (2.4)

is the following condition. Assume that there exits a function σ(t) such that

|Vxi
(t, xt)Gik(t, xt)| < σ(t), x ∈ R

n 1 ≤ i ≤ n, 1 ≤ k ≤ m, (2.5)

for any fixed 0 ≤ t0 ≤ T < ∞,

∫ T

t0

σ2(t)dt < ∞. (2.6)

Lemma 2.3 (See [32, 40]) Assume there exists a Lyapunov function V ∈

C1,2(R+×R
n;R+), satisfying Assumption 2.1, such that for all (t, xt) ∈ R

+×R
n,

(i) ‖x(t)‖p ≤ V (t, xt) ≤ ‖x(t)‖q,

(ii) LV (t, xt) ≤ −α(t)‖x(t)‖r + β(t),

(iii) V (t, xt)− V r/q(t, xt) ≤ γ,

where α, β ∈ C(R+;R+), p, q, r are positive constants, p ≥ 1 and γ is a non
negative constant. Then all solutions of SDDE (2.1) satisfy

Ex0‖x(t, x0)‖ ≤

{

V (t0, x0)e
−
∫

t

t0
α(s)ds

+ A

}1/p

, (2.7)

for all t ≥ t0, where

A :=

∫ t

t0

(

γα(u) + β(u)

)

e−
∫

t

u
α(s)dsdu.

Lemma 2.4 (See [32, 40]) Assume there exists a Lyapunov function V ∈
C1,2(R+×R

n;R+), satisfying Assumption 2.1, such that for all (t, x) ∈ R
+×R

n,

(i) ‖x(t)‖p ≤ V (t, xt),

(ii) LV (t, xt) ≤ −α(t)V q(t, xt) + β(t),

(iii) V (t, xt)− V q(t, xt) ≤ γ,

where α, β ∈ C(R+;R+), p, q are positive constants, p ≥ 1 and γ is a non

negative constant. Then all solutions of SDDE (2.1) satisfy (2.7) for all t ≥ t0.

Corollary 2.1 (See [32, 40])
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(i) Assume that hypotheses (i) to (iii) of Lemma 2.3 hold. In addition

∫ t

t0

(

γα(u) + β(u)

)

e−
∫

t

u
α(s)dsdu ≤ M, ∀ t ≥ t0 ≥ 0, (2.8)

for some positive constant M, then all solution of SDDE (2.1) are uni-

formly stochastically bounded.

(ii) Assume the hypotheses (i) to (iii) of Lemma 2.4 hold. If condition (2.8) is
satisfied, then all solutions of SDDE (2.1) are stochastically bounded.

3 Main Results

Let x(t) = x, y(t) = y, z(t) = z and Xt = (xt, yt, zt) ∈ R
3 be any solution of the

SDDE (1.2). The Lyapunov functional employed in the proofs of our results is
V (t, Xt) = V (t, xt, yt, zt) defined as

2V (t, Xt) = 2(α+ a)

∫ x

0

h(ξ)dξ + 2by2 + 4yh(x) + 2(α+ a)yz + 2z2

+ (α2 + a2 + β)y2 + βbx2 + 2aβxy + 2βxz

+

∫ 0

−τ

∫ t

t+s

(

λ1y
2(θ) + λ2z

2(θ)

)

dθds,

(3.1)

where a, b are positive constants, α, β are constants satisfying

b−1l < α < a, l > 0, (3.2)

0 < β < min

{

b,
ab− l

2(1 + a)
,
a− α

4

}

, (3.3)

λ1 and λ2 are non-negative constants which will be determined later. In what
follows we will state the main results of the paper and give their proofs.

Theorem 3.1 If a, b, c, l, δ, σ, τ and M0 are positive constants such that

(i) h(0) = 0,

(ii) δx ≤ h(x) ≤ cx for all x 6= 0, |h′(x)| ≤ l for all x,

(iii) σ2 < βδ, l < ab and (α+ β + a+ 2)c < ab− l,

(iv) |p(t, x, y, z)| ≤ M0,
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then the solution (xt, yt, zt) of the SDDE (1.2) is uniformly stochastically

bounded provided that

τ < min

{

2(βδ − σ2)

βc
,
(ab− l)− (α+ β + a+ 2)c

(α+ a)c
,
a− α

4c

}

. (3.4)

Remark 3.1 We give the following observations

(i) Whenever h(x(t−τ)) = cx and σxω̇ = p(t, x, ẋ, ẍ) = 0, then equation (1.1)
specializes to a linear first order homogenous ODE

...
x + aẍ+ bẋ+ cx = 0, (3.5)

and assumptions (i) to (iv) of Theorem 3.1 reduces to Routh Hurwitz crite-
ria a > 0, b > 0, c > 0, ab > c for asymptotic stability of the trivial solution

of the equation (3.5).

(ii) If σxω̇ = 0 = p(t, x, ẋ, ẍ), then equation (1.1) specializes to a DDE dis-
cussed in [63]. Thus Theorem 3.1 includes and extends the stability result

discussed in [63].

(iii) The term σxω̇ in SDDE (1.1) extends all results on third order differential

equation with or without delay.

(iv) The obtained results in [1, 2] and [15] are on second order stochastic dif-

ferential equations.

(v) This is the first paper on nonlinear non-autonomous SDDE as there is no

previous literature on third order.

Next, we will state and proof a result that will be helpful in the proof of Theorem

3.1 and the subsequent results.

Lemma 3.1 Subject to the assumptions of Theorem 3.1, there exist positive

constants D0 = D0(a, b, l, α, β, δ) and D2 = D2(a, b, c, α, β, λ1, λ2) such that

D0(x
2(t) + y2(t) + z2(t)) ≤ V (t, Xt) ≤ D1(x

2(t) + y2(t) + z2(t)), (3.6)

for all t ≥ 0, x, y and z. Furthermore, there exist positive constants D2 =
D2(a, b, c, α, β, δ, τ) and D3 = D3(a, α, β) such that

LV (t, Xt) ≤ −D2(x
2(t) + y2(t) + z2(t)) +D3(|x(t)|+ |y(t)|+ |z(t)|)×

|p(t, x, y, z)|,
(3.7)

for all t ≥ 0, x, y and z.
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Proof. Suppose that (xt, yt, zt) is any solution of the SDDE (1.2). Putting

Xt = 0 = (0, 0, 0) ∈ R
3 in equation (3.1) clearly

V (t, 0) = V (t, 0, 0, 0) = 0, (3.8)

for all t ≥ 0. Furthermore, since h(0) = 0 equation (3.1) becomes

V (t, Xt) = b−1

∫ x

0

[

(a+ α)b− 2h′(ξ)

]

h(ξ)dξ + b−1

(

h(x) + by

)2

+
1

2

(

βx+ ay + z

)2

+
1

2
(αy + z)2 +

1

2
β(b− β)x2 +

1

2
βy2

+

∫ 0

−τ

∫ t

t+s

(

λ1y
2(θ) + λ2z

2(θ)

)

dθds.

(3.9)

Now since the double integrals in equation (3.9) is non-negative, the fact that
δx ≤ h(x) for all x 6= 0, h′(x) ≤ l for all x, applying the inequalities (3.2) and

(3.3), there exists a constant δ0 > 0 such that

V (t, Xt) ≥ δ0(x
2 + y2 + z2), (3.10)

for all t ≥ 0, x, y and z, where

δ0 := min

{

δ

2b
[(α+ a)b− 2l] +

1

2
β(b− β) +

1

b
min{δ, b}+

1

2
min{a, β, 1},

1

b
min{δ, b}+

1

2
min{a, β, 1}+

1

2
min{α, 1}+

1

2
β,

1

2
min{a, β, 1}+

1

2
min{α, 1}

}

.

Inequality (3.10) gives rise to equation

V (t, Xt) = 0 ⇔ x2 + y2 + z2 = 0 (3.11)

and the inequality

V (t, Xt) > 0 ⇔ x2 + y2 + z2 6= 0, (3.12)

and that
V (t, Xt) → +∞ as x2 + y2 + z2 → ∞. (3.13)

Estimate (3.13) shows that the functional V (t, Xt) is radially unbounded. More-

over, using assumption (ii) of Theorem 3.1 and the fact that 2x1x2 ≤ x2
1 + x2

2,

in equation (3.1) there exists a constant δ1 > 0 such that

V (t, Xt) ≤ δ1(x
2 + y2 + z2), (3.14)
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for all t ≥ 0, x, y and z, where

δ1 := max

{

(a+ b+ 1)β + (α+ β)c+ 2δ, α(α + 1) + (a+ β)(a+ 1)

+ 2(b+ δ) +
1

2
τ 2max{λ1, λ2}, α + β + a+ 2

+
1

2
τ 2max{λ1, λ2}

}

,

thus the inequality (3.14) implies that the functional V (t, Xt) defined by (3.1) is

decrescent. Inequalities (3.10) and (3.14) combined give the following inequal-
ities

δ0(x
2 + y2 + z2) ≤ V (t, Xt) ≤ δ1(x

2 + y2 + z2), (3.15)

for all t ≥ 0, x, y and z. Inequalities (3.15) satisfy (3.6) with δ0 and δ1 equivalent
to D0 and D1 respectively.

Next, applying Itô’s formula (2.3) in equation (3.1) using system (1.2), we

find that

LV (t, Xt) = − βx2h(x)

x
−

[

(α+ a)b− 2h′(x)

]

y2 − (a− α)z2

− α(a− α)yz −

∫ t

t−τ

(

λ1y
2(θ) + λ2z

2(θ)

)

dθ + σ2x2

+ λ1y
2 + λ2z

2 + aβy2 + 2βyz +

(

βx+ (α+ a)y + 2z

)

×

[

p(t, x, y, z) +

∫ t

t−τ

h′(x(s))y(s)ds

]

.

(3.16)

In view of assumption (ii) of Theorem 3.1 |h′(x)| ≤ l for all x and employing

the inequality
α2(a− α)2 < (αb− l)(a− α)

it follows that

(αb− l)y2+α(a− α)yz +
1

4
(a− α)z2 ≥

(

√

(αb− l)|y| −
1

2

√

(a− α)|z|

)2

≥ 0
(3.17)

for all y and z. Using inequality (3.17) and the fact that h(x) ≥ δx for all x 6= 0,
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equation (3.16) becomes

LV (t, Xt) ≤− βδx2 −
1

2
(ab− l)y2 −

1

4
(a− α)z2

−

(

1

2
(ab− l)− (a+ 1)β

)

y2 −

(

1

4
(a− α)− β

)

z2

−

[

λ1 −
c

2
(α+ β + a+ 2)

]
∫ t

t−τ

y2(θ)dθ + λ2

∫ t

t−τ

z2(θ)dθ

+ σ2x2 + λ1y
2 + λ2z

2 +
c

2

(

βx2 + (α+ a)y2 + 2z2
)

τ

+ (β|x|+ (α+ a)|y|+ 2|z|)|p(t, x, y, z)|,

(3.18)

for all t ≥ 0, x, y and z. Choose λ1 := 2−1c(α + β + a + 2), λ2 := 0, using the
inequalities (3.2), (3.3) and (3.4) in estimate (3.18), there exist constants δ2 > 0

and δ3 > 0 such that

LV (t, Xt) ≤ −δ2(x
2 + y2 + z2) + δ3(|x|+ |y|+ |z|)|p(t, x, y, z)|, (3.19)

for all t ≥ 0, x, y and z, where

δ2 := min

{

βδ − σ2 −
1

2
βcτ,

1

2

[

ab− l − (α+ β + a+ 2)c

− (α + a)cτ

]

,
1

4
(a− τ)− cτ

} (3.20)

and

δ3 := max{α + a, β, 2}.

Inequality (3.19) satisfies inequality (3.7) with δ2 and δ3 equivalent to D2 and
D3 respectively. This completes the proof of Lemma 3.1.

Proof of Theorem 3.1. Let (xt, yt, zt) be any solution of the SDDE (1.2). Us-
ing assumption (iii) in estimate (3.19), noting that δ2, δ3 are positive constants

and the fact that
[

|x|+ δ−1
2 δ3M0

]2

+

[

|y|+ δ−1
2 δ3M0

]2

+

[

|z| + δ−1
2 δ3M0

]2

≥ 0

for all x, y and z, there exist constants δ4 > 0 and δ5 > 0 such that

LV (t, Xt) ≤ −δ4(x
2 + y2 + z2) + δ5 (3.21)

for all t ≥ 0, x, y, z where δ4 := 2−1δ2 and δ5 := 3 × 2−1δ−1
2 δ23M

2
0 . Inequalities

(3.15) and (3.21) fulfill assumptions (i) to (iii) of Lemma 2.3 with p = q = r = 2,
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α(t) = δ4, β(t) = δ5 and γ = 0. It follows from the inequality (2.8) that

δ5

∫ t

t0

[

e−δ4
∫

t

u
ds

]

du ≤ δ−1
4 δ5, (3.22)

where M := δ−1
4 δ5. Furthermore, from system (1.2) and equation (3.1) there

exists a constant δ6 > 0 such that
∣

∣

∣

∣

Vxi
(t, X)Gik(t, X)

∣

∣

∣

∣

≤ δ6(x
2 + y2 + z2), X ∈ R

3, 1 ≤ i, k ≤ 3, (3.23)

where

δ6 :=
σ

2
max{α+ a, β, α+ β + a+ 4}

and for any fixed 0 ≤ t0 ≤ T < ∞
∫ T

t0

σ2(t)dt =

∫ T

t0

δ26(x
2 + y2 + z2)2dt < ∞. (3.24)

In view of inequalities (3.23) and (3.24) inequalities (2.5) and (2.6) of Assump-

tion 2.2 hold with σ(t) = δ6 < ∞, and hence Assumption 2.1 follows immedi-
ately. Finally, from inequalities (3.14) and (3.22), we have

Ex0‖x(t, x0)‖ ≤

(

δ1X
2
0 + δ−1

4 δ5

)1/2

, (3.25)

for all t ≥ t0, where X0 =

(

x2
0+ y20 + z20

)

∈ R
3. Assumption of Corollary 2.1 (i)

hold, hence by Corollary 2.1 (i) all solutions (xt, yt, zt) of the SDDE (1.2) are
uniformly stochastically bounded. This completes the proof of Theorem 3.1.

Theorem 3.2 If assumptions (i) to (iv) of Theorem 3.1 and the inequality (3.4)

hold, then the solutions (xt, yt, zt) of the SDDE (1.2) are stochastically bounded.

Proof. Let (xt, yt, zt) be any solution of the SDDE (1.2). In view of (3.14) and
(3.19) there exists a constant δ∗ > 0 such that

LV (t, Xt) ≤ −δ∗V (t, Xt) + δ5, (3.26)

for all t ≥ 0, x, y, z where
δ∗ := δ−1

1 δ4.

From inequalities (3.10) and (3.26), assumptions (i) to (iii) of Lemma 2.4 hold
with p = 2, q = 1, γ = 0, α(t) = δ4 and β(t) = δ5. Also, the inequalities (3.22),
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(3.23), (3.24) and (3.25) hold, so that assumption (ii) of Corollary 2.1 hold,

then by assumption (ii) of Corollary 2.1 all solutions of the SDDE (1.2) are
stochastically bounded. This completes the proof of Theorem 3.2.

Next, if p(t, x, ẋ, ẍ) = 0 and p(t, x, y, z) = 0 in equations (1.1) and system
(1.2) respectively, we have

...
x + aẍ + bẋ+ h(x(t− τ)) + σx(t)ω̇(t) = 0 (3.27)

and equation (3.27) is equivalent to the system

ẋ = y,

ẏ = z,

ż = − h(x)− by − az − σx(t)ω̇(t) +

∫ t

t−τ

h′(x(s))y(s)ds

(3.28)

where h and ω are defined in Section 1.

Theorem 3.3 Suppose that assumptions (i) to (iii) of Theorem 3.1 and in-
equality (3.4) hold, then the trivial solution of the SDDE (3.28) is uniformly

stochastically asymptotically stable in the large.

Proof. Let (xt, yt, zt) be any solution of the SDDE (3.28). Equation (3.8),
estimate (3.13) and the inequalities (3.15) satisfy assumptions (i) and (ii) of

Lemma 2.2. Next, using Itô’s formula (2.3) and the system (3.28), we have

LV (t, Xt) ≤ −δ2(x
2 + y2 + z2) (3.29)

for all t ≥ 0, x, y and z, where δ2 is defined in (3.20). Inequality (3.29) satisfies
assumption (iii) of Lemma 2.2, thus by Lemma 2.2 the trivial solution of the
SDDE (3.28) is uniformly stochastically asymptotically stable in the large. This

completes the proof of Theorem 3.3.

Theorem 3.4 Suppose that assumptions (i) to (iii) of Theorem 3.1 and the

inequality (3.4) are satisfied, then the trivial solution of the SDDE (3.28) is
stochastically stable.

Proof. Suppose that (xt, yt, zt) be any solution of the SDDE (3.28). From

equation (3.8) and inequality (3.10), assumptions (i) and (ii) of Lemma 2.1 are
satisfied. Also, from inequality (3.29) we have

LV (t, Xt) ≤ 0, (3.30)
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for all t ≥ 0, X = (x, y, z) ∈ R
3. Inequality (3.30) fulfills assumption (iii) of

Lemma 2.1, hence by Lemma 2.1 the trivial solution of the SDDE (3.28) is
stochastically stable. This completes the proof of Theorem 3.4.

Theorem 3.5 If assumption (i) to (iii) of Theorem 3.1 and the inequality (3.4)
are satisfied, then system (3.28) with X0 ∈ C

p
Ft0

has a unique global solution for

t > 0.

Proof. Let (xt, yt, zt) be any solution of the SDDE (3.28), in view of inequalities

(3.10) and (3.30) assumptions (ii) and (iii) of Lemma 2.1 are satisfied, thus by
Lemma 2.1 assumptions (ii) and (iii) system (3.28) withX0 ∈ C

p
Ft0

, has a unique

global solution for t > 0. This completes the proof of Theorem 3.5.

Next, if the function p(t, x, ẋ, ẍ) is replaced by p(t) defined on R
+, equation

(1.1) specializes to

...
x + aẍ+ bẋ+ h(x(t− τ)) + σx(t)ω̇(t) = p(t) (3.31)

and equation (3.31) is equivalent to the system

ẋ = y,

ẏ = z,

ż = − h(x)− by − az − σx(t)ω̇(t) +

∫ t

t−τ

h′(x(s))y(s)ds+ p(t).

(3.32)

We have the following results

Corollary 3.1 Suppose that assumptions (i) to (iii) of Theorem 3.1 are satis-
fied, assumption (iv) is replaced by

|p(t)| ≤ M1, 0 < M1 < ∞

and inequality (3.4) holds, then the solutions of the SDDE (3.32) are

(i) uniformly stochastically bounded, and

(ii) stochastically bounded.

Proof. The proof of Corollary 3.1 is similar to the proofs of Theorem 3.1 and

Theorem 3.2, hence it is omitted. This completes the proof of Corollary 3.1.
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4 Examples

In this section, we present examples to check the validity and effectiveness of

our results obtained in the previous section.

Example 4.1 Consider a third order scalar SDDE

...
x + ẍ+ 20ẋ+ x(t− τ) +

sinx2(t− τ)

x(t− τ)
+

1

11
xω̇ =

2 + t2 + x2 + ẋ2 + ẍ2

1 + t2 + x2 + ẋ2 + ẍ2
. (4.1)

Equation (4.1) can be written in the equivalent form

ẋ = y,

ẏ = z,

ż = −

(

x+
sinx2

x

)

− 20y − z −
1

11
xω̇ +

2 + t2 + x2 + y2 + z2

1 + t2 + x2 + y2 + z2

+

∫ t

t−τ

[

1 + 2 cosx2(s)−
sin x2(s)

x2(s)

]

y(s)ds.

(4.2)

Comparing system (1.2) with system (4.2) we have the following relations

(i) a = 1, b = 20;

Figure 1: The Behaviour of functions H(x) and x−1h(x)

(ii) the nonlinear function

h(x) := x+
sinx2

x
or

h(x)

x
= 1 +

sin x2

x2
,
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for all x 6= 0. Let

H(x) =
sinx2

x2

for all x 6= 0, since

−0.3 ≤ H(x) ≤ 1

for all x 6= 0, it follows that

0.7 ≤
h(x)

x
≤ 2

for all x 6= 0, where δ := 0.7 and c := 2. See the behaviour of and bounds
on functions H(x) and h(x)

x
in Figure 1. Furthermore, the derivative of the

function h(x) with respect to x is

h′(x) := 1 + 2 cosx2 −
sinx2

x2
.

It is not difficult to show that

|h′(x)| ≤ 3.5

for all x, where l := 3.5. The behaviour of |h′(x)| is shown in Figure 2.

The estimated values of a, b, c, δ and l facilitate the determination of α, β in
(3.2), (3.3), λ1 and λ2 as

Figure 2: The Behaviour of function |h′(x)| for all x

(iii) 0.2 < α < 1, we choose α = 0.3;

(iv) 0 < β < min{20, 4.1, 0.2} = 0.2, we choose β = 0.1;

(v) λ1 := 3.4, λ2 := 0;

Substituting the values of a, b, c, l, α, β and δ, inequality (3.4) becomes

Electronic Journal. http://www.math.spbu.ru/diffjournal 40



Differential Equations and Control Processes, N 2, 2017

(vii) τ < min{0.65, 0.09, 3.78}= 0.09 and we choose τ = 0.01.

(vi) Finally, the function

p(t, x, y, z) := 1 +
1

1 + t2 + x2 + y2 + z2
.

Clearly
|p(t, x, y, z)| ≤ 2 = M0 < ∞,

for all t ≥ 0, x, y and z.

Next, the functional V (t, Xt) defined in equation (3.1) becomes

2V (t, Xt) = 2.6

∫ x

0

(ξ + sin ξ2)dξ + 2x2 + 41.19y2 + 2z2 + 4(x+ sin x2)y

+ 2.6yz + 0.2(xy + xz) + 3.4

∫ 0

−0.01

∫ t

t+s

y2(θ)dθds.

(4.3)

From (4.3) it is not difficult to show that

0.2(x2 + y2 + z2) ≤ V (t, Xt) ≤ 44(x2 + y2 + z2) (4.4)

for all x, y, z where δ0 := 0.2 and δ1 = 44. Inequalities (4.4) satisfy the inequal-

ities (3.15). It must be noted that the first inequality in (4.4) satisfies estimates
(3.11), (3.12) and (3.13) in the proof of Lemma 3.1.

Moreover, applying Itô’s formula using system (4.2), we have

LV (t, Xt) = [1.3(x+ sin x2) + 2y(1 + 2 cosx2 − x−2 sinx2) + 2x

+ 0.1(y + z)]y + [0.1x+ 41.19y + 1.3z + 2(x+ sin x2)]z

+
1

121
x2 + 0.034y2 − 3.4

∫ t

t−0.01

y2(θ)dθ

+ (0.1x+ 1.3y + 2z)

[

2 + t2 + x2 + y2 + z2

1 + t2 + x2 + y2 + z2

−

(

(x+ sin x2) + 20y + z

)

+

∫ t

t−0.01

(

1 + 2 cosx2(s)−
sinx2(s)

x2(s)

)

ds

]

(4.5)

Simplifying equation (4.5), noting that

1 +
sinx2

x2
≥ 0.7
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for all x 6= 0 and

1 + 2 cosx2 −
sin x2

x2
≤

∣

∣

∣

∣

1 + 2 cosx2 −
sin x2

x2

∣

∣

∣

∣

≤ 3.5

for all x, we obtain

LV (t, Xt) ≤ −0.06(x2+y2+z2)+2(|x|+ |y|+ |z|)

∣

∣

∣

∣

2 + t2 + x2 + y2 + z2

1 + t2 + x2 + y2 + z2

∣

∣

∣

∣

(4.6)

for all t ≥ 0, x, y and z. Inequality (4.6) satisfies inequality (3.19) with δ2 :=

0.06 and δ3 := 2. Next, using item (vi) above, inequality (4.6) becomes

LV (t, Xt) ≤ −0.03(x2 + y2 + z2) + 24000 (4.7)

for all t ≥ 0, x, y and z. Inequality (4.7) satisfies (3.21) with δ4 := 0.03 and
δ5 := 24000. Also, with the values of δ4 and δ5 inequality (3.22) becomes

24000

∫ t

t0

[

e−0.03
∫

t

u
ds

]

du = 8.0× 105
[

1− e−0.03(t−t0)

]

< 8.0× 105, (4.8)

where 8.0× 105 = δ−1
4 δ5. Furthermore, inequality (3.23) specializes to

|Vx3
(t, Xt)G33(t, Xt)| ≤ 0.24(x2 + y2 + z2), (4.9)

for all t ≥ 0, x, y, z where δ6 = 0.24. Inequality (3.24) likewise follows from
(4.9) for any fixed 0 ≤ t0 ≤ T < ∞. In view of estimate (4.9) Assumptions 2.2
and 2.1 hold immediately. By Corollary 2.1 (i), all solutions of system (4.2)

are uniformly stochastically bounded and satisfy

EX0‖X(t, X0)‖ ≤

{

44X2
0 + 8.0× 105

}1/2

. (4.10)

Also, to apply Theorem 3.2, since the functional V (t, Xt) defined by (4.3)

is positive definite (i.e. V (t, 0) = 0 and V (t, Xt) ≥ 0.2(x2+y2+ z2)). It follows
from the upper inequality (4.4) that

V (t, Xt) ≤ 44(x2 + y2 + z2),

for all t ≥ 0, x, y and z. Using this inequality in (4.7) we obtain

LV (t, Xt) ≤ −6.8× 10−4V (t, Xt) + 2.4× 104, (4.11)

for all t ≥ 0, x, y, z where δ∗ := 6.8×10−4 and δ5 = 2.4×104. In view of inequal-
ities (4.8), (4.9) and (4.11) assumptions of Lemma 2.4 and Corollary 2.1 (ii)

hold, thus by Corollary 2.1 (ii), all solutions of system (4.2) are stochastically
bounded and satisfy estimate (4.10).
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Example 4.2 As an application of Theorems 3.3 and 3.4, we consider the third

order SDDE

...
x + ẍ+ 20ẋ+ x(t− τ) +

sinx2(t− τ)

x(t− τ)
+

1

11
xω̇ = 0. (4.12)

Equation (4.12) is equivalent to system

ẋ = y,

ẏ = z,

ż = − (x+
sinx2

x
)− 20y − z −

1

11
xω̇

+

∫ t

t−τ

[

1 + 2 cosx2(s)−
sinx2(s)

x2(s)

]

y(s)ds.

(4.13)

Items (i) to (vi) of Example 4.1 and the Lyapunov functional V (t, Xt) of equa-

tion (4.3) are still valid for system (4.13), and that

V (t,0) = 0, (4.14)

for all t ≥ 0 where 0 = (0, 0, 0) ∈ R
3. Furthermore, inequalities (4.4) hold and

from the first inequality in (4.4) we have

V (t, Xt) → +∞ as x2 + y2 + z2 → ∞,

so that from estimates (4.4) and (4.14), conditions (i) and (ii) of Lemma 2.2
hold.

Applying Itô’s formula using equation (4.3) and system (4.13), we have

LV (t, Xt) ≤ −0.06(x2 + y2 + z2) (4.15)

for all t ≥ 0, x, y and z. Inequality (4.15) fulfills condition (iii) of Lemma
2.2, thus by Lemma 2.2 the trivial solution of the SDDE (4.13) is uniformly
stochastically stable in the large. This completes the verification of Theorem

3.3.

Next, to apply Theorem 3.4 we employed the functional V (t, Xt) defined
by equation (4.3), this function is positive definite (see (4.14) and the first
inequality in (4.4)). In addition, from inequality (4.15) we have

LV (t, Xt) ≤ 0, (4.16)

for all t ≥ 0, x, y and z. Inequality (4.16) satisfies (3.30). All conditions of

Lemma 2.1 hold hence by Lemma 2.1 the trivial solution of system (4.13) is
stochastically stable. This completes the verification of Theorem 3.4.
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