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Abstract

In this paper, we study the existence of solutions for a cooperative elliptic systems
governed by Schrödinger operator defined on Rn, then we discuss the optimal control of
boundary type for these systems.

Keywords: Cooperative elliptic systems in Rn, Schrödinger operator, Ex-
istence of solution, Boundary control, Optimality conditions.



Differential Equations and Control Processes, N 4, 2006

1 Introduction

We consider the following cooperative elliptic system :
(−∆ + q)y1 = ay1 + by2 + f1 in Rn

(−∆ + q)y2 = cy1 + dy2 + f2 in Rn

y1 = g1 as |x| → ∞
y2 = g2 as |x| → ∞,

(1)

where :

{
a, b, c and d are given numbers such that b, c > 0

(in this case, we say that the system (1) is cooperative )
(2)

q(x) is a positive function and tending to ∞ at infinity. (3)

In [22], Gali et al. proved the existence of optimal control for system like
(S) with q(x) = 0 and with positive weight function. Also they found the set of
inequalities which described the distributed control for systems (S) with q(x) =
0 and defined on bounded domain [21]. The case of semilinear cooperative
system with q(x) = 0 is discussed in [17].

In [16] Fleckinger, obtained the necessary and sufficient conditions for hav-
ing the maximum principle and the existence of positive solutions for coopera-
tive system (1) which are:{

a < λ(q), d < λ(q)

(λ(q)− a)(λ(q)− d) > bc,
(4)

where λ(q) is defined later.

Here, we shall use the same conditions (4) to prove the existence of the state
of our system (1); then using the theory of Lions [30], we study the existence
of boundary control for system (1). Our model in the problem is Schrodinger
operator.
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2 Operator equation.

To prove the existence of the state y = {y1, y2} of system (1), we state briefly
some results introduced in [15] concerning the eigenvalue problem{

(−∆ + q)φ = λ(q)φ in Rn

φ(x) → 0 as |x| → ∞, φ > 0.
(5)

The associated variational space is Vq(Rn), the completion of D(Rn), with
respect to the norm :

||y||q =

(∫
Rn

|∆y|2 + q|y|2dx

) 1
2

Since the imbedding of Vq(Rn) into L2(Rn) is compact. Then the operator
(−∆+ q) considered as an operator in L2(Rn) is positive self-adjoint with com-
pact inverse. Hence its spectrum consists of an infinite sequence of positive
eigenvalue tending to infinity; moreover the smallest one which is called the
principle eigenvalue denoted by λ(q) is simple and is associated with an eigen-
function which does not change sign in Rn. It is characterized by:

λ(q)

∫
Rn

|y|2dx ≤
∫

Rn

|∆y|2 + q|y|2dx ∀y ∈ Vq(Rn). (6)

Now, to study our system (1) we have the embedding

Vq(Rn)× Vq(Rn) → L2(Rn)× L2(Rn)

is continuous and compact then, we define a bilinear form

π : (Vq(Rn))2 × (Vq(Rn))2 → R

by

π((y1, y2), (φ1, φ2)) =
1

b

∫
Rn

[∆y1∆φ1 + qy1φ1]dx +
1

c

∫
Rn

[∆y2∆φ2 + qy2φ2]dx

−
∫

Rn

y1φ2dx− d

c

∫
Rn

y2φ2dx− a

b

∫
Rn

y1φ1dx−
∫

Rn

y2φ1dx.

(7)

It is easy to check that π is a continuous bilinear form; and then by Lax-
Milgram Lemma, we have the following theorem:
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Theorem 2.1 For f1, f2 ∈ L2(Rn), there exists a unique solution y = {y1, y2} ∈
(Vq(Rn))2 of system (1) if conditions (4) are satisfied.

Proof

We choose m large enough such that a + m > 0 and d + m > 0 and define
on Vq(Rn) the equivalent norm

||y||2q,m =

∫
Rn

[|∆y|2 + (m + q)|y|2]dx

and we write (7) as:

π((y1, y2), (φ1, φ2)) =
1

b

∫
Rn

[∆y1∆φ1 + (q + m)y1φ1]dx− a + m

b

∫
Rn

y1φ1dx

−
∫

Rn

y2φ1dx +
1

c

∫
Rn

[∆y2∆φ2 + (q + m)y2φ2]dx

− d + m

c

∫
Rn

y2φ2dx−
∫

Rn

y1φ2dx.

Then

π((y1, y2), (y1, y2)) =
1

b

∫
Rn

[|∆y1|2 + (q + m)|y1|2]dx− a + m

b

∫
Rn

|y1|2dx

−
∫

Rn

y1y2dx +
1

c

∫
Rn

[|∆y2|2 + (q + m)|y2|2]dx

− d + m

c

∫
Rn

|y2|2dx−
∫

Rn

y1y2dx.

By Cauchy Schwartz inequality, we have

π((y1, y2), (y1, y2)) ≥
1

b

∫
Rn

[|∆y1|2 + (q + m)|y1|2]dx− a + m

b

∫
Rn

|y1|2dx

+
1

c

∫
Rn

[|∆y2|2 + (q + m)|y2|2]dx− d + m

c

∫
Rn

|y2|2dx

− 2

(∫
Rn

|y1|2dx

)1
2
(∫

Rn

|y2|2dx

) 1
2

,

from (6), we deduce

π((y1, y2), (y1, y2)) ≥
1

b

(
1− a + m

λ(q) + m

)
||y1||2q,m +

1

c

(
1− d + m

λ(q) + m

)
||y2||2q,m

2

λ + m
||y1||q,m||y2||q,m.
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If (5) holds, then

π((y1, y2), (y1, y2)) ≥ C(||y1||2q,m + ||y2||2q,m) (8)

which prove the coerciveness of the bilinear form π. Then for f1, f2 ∈
L2(Rn), system (1) has a unique solution by Lax-Milgram lemma.

3 Formulation of the control problem

The space L2(Γ)× L2(Γ) is the space of controls. For a control u = {u1, u2} ∈
(L2(Γ)2, the state y(u) = {y1(u), y2(u)} of the system is given by the solution
of: 

(−∆ + q)y1(u) = ay1(u) + by2(u) + f1 in Rn

(−∆ + q)y2(u) = cy1(u) + dy2(u) + f2 in Rn

y1 = u1 as |x| → ∞
y2 = u2 as |x| → ∞,

(9)

The observation equation is given by z(u) = {z1(u), z2(u)} = y(u) =
{y1(u), y2(u)}. For given zd = {zd1, zd2} in (L2(Rn))2; the cost function is given
by:

J(v) =

∫
Rn

(y1(v)− zd1)
2 + (y2(v)− zd2)

2dx + (Nv, v)(L2(Γ))2 (10)

where N ∈ L((L2(Γ))2, (L2(Γ))2) is hermitian positive definite operator:

(Nu, u) ≥ η||u||2(L2(Rn))2. (11)

The control problem then is to find{
u = {u1, u2} ∈ Uad such that

J(u) ≤ J(v)

where Uad is a closed convex subset of(L2(Γ))2.

Under the given consideration, we may apply the Theorem 2.4 of Lions [30]
to obtain the following result:

Theorem 3.1 Assume that (8) and (11) hold. If the cost function is given by
(10), then there exists an optimal control u = {u1, u2}; Moreover it is charac-
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terized by the following equations and inequalities:
(−∆ + q)p1(u)− ap2(u)− cp2(u) = y1(u)− z1d in Rn

(−∆ + q)p2(u)− bp1(u)− dp2(u) = y2(u)− z2d in Rn

p1(u) = 0 p2(u) = 0 on Γ∫
Γ

∂p1(u)

∂νA
(v1 − u1) +

∂p2(u)

∂νA
(v2 − u2)dΓ + (Nu, v − u)(L2(Γ))2 ≥ 0 ∀v ∈ Uad,

together with (9), where p(u) = {p1(u), p2(u)} is the adjoint state.

Proof

The control u is characterized by

J ′(u)(v − u) ≥ 0 ∀u ∈ Uad

which is equivalent to

(y(u)− zd, y(v)− y(u))L2(Rn)2 + (Nu, v − u)L2(Γ)2 ≥ 0

i.e.,

(y1(u)−z1d, y1(v)−y1(u))L2(Rn)2+(y2(u)−z2d, y2(v)−y2(u))L2(Rn)2+(Nu, v−u)L2(Γ)2 ≥ 0
(12)

Since (A∗P, Y ) = (P, AY ), where

A(φ = {φ1, φ2}) → Aφ = {(−∆ + q)φ1 − aφ1 − bφ2, (−∆ + q)φ2 − cφ1 − dφ2}

for φ ∈ (V ′
q (Rn))2.

Then

(P, AY ) = (p1, (−∆ + q)y1 − ay1 − by2) + (p2, (−∆ + q)y2 − cy1 − dy2)

= (p1, (−∆ + q)y1)− a(p1, y1)− b(p1, y2) + (p2, (−∆ + q)y2)− c(p2, y1)

− d(p2, y2)

= ((−∆ + q)p1, y1)− a(p1, y1)− c(p2, y1) + ((−∆ + q)p2, y2)− d(p2, y2)

− b(p1, y2)

= ((−∆ + q)p1 − ap1 − cp2, y1) + ((−∆ + q)p2 − bp1 − dp2, y2)

= (A∗P, Y ),

where

A∗(P = {p1, p2}) → {(−∆ + q)p1 − ap1 − cp2, (−∆ + q)p2 − bp1 − dp2}
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where A∗ is the adjoint for A, P is the adjoint state. Then A∗P = Y (u)−Zd

can be written as

(−∆ + q)p1 − ap1 − cp2 = y1(u)− z1d

(−∆ + q)p2 − bp1 − dp2 = y2(u)− z2d

p1(u) = p2(u) = 0.

So (12) is equivalent to

((−∆+ q)p1− ap1− cp2, y1(v)− y1(u))+ ((−∆+ q)p2− bp1− dp2, y2(v)− y2(u))

+(Nu, v − u)(L2(Γ))2 ≥ 0

(p1(u), (−∆ + q)(y1(v)− y1(u))L2(Rn) − (
∂p1(u)

∂νA
, y1(v)− y1(u))L2(Γ) + (p1(u),

∂

∂νA
(y1(v)− y1(u))L2(Γ) − a(p1(u), y1(v)− y1(u))− b(p1(u), y2(v)− y2(u))+

(p2(u), (−∆ + q)(y2(v)− y2(u))L2(Rn) − (
∂p2(u)

∂νA
, y2(v)− y2(u))L2(Γ) + (p2(u),

∂

∂νA
(y2(v)−y2(u)))L2(Γ)−c(p2(u), y1(v)−y1(u))L2(Rn)−d(p2(u), y2(v)−y2(u))L2(Rn)

+(Nu, v − u)(L2(Γ))2 ≥ 0.

From (9), we obtain

(p1(u), a(y1(v)− y1(u)) + b(y2(v)− y2(u)) + f1 − f1 − a(y1(v)− y1(u)))L2(Rn)+

(
∂p1(u)

∂νA
, v1− u1)L2(Γ) + (0,

∂

∂νA
(y1(v)− y1(u))L2(Γ)− c(p2(u), y1(v)− y1(u))L2(Rn)

(p2(u), c(y1(v)− y1(u)) + d(y2(v)− y2(u)) + f2 − f2 − c(y1 − y1(u)))L2(Rn)+

(
∂p2(u)

∂νA
, v2−u2)L2(Γ)+(0,

∂

∂νA
(y2(v)−y2(u))L2(Γ)−d(p2(u), y2(v)−y2(u))L2(Rn)+

(Nu, v − u)(L2(Γ))2 ≥ 0.

Then we have

(
∂p1(u)

∂νA
, v1 − u1)L2(Γ) + (

∂p2(u)

∂νA
, v2 − u2)L2(Γ) + (Nu, v − u)(L2(Γ))2 ≥ 0.

i.e.,∫
Γ
(
∂p1(u)

∂νA
(v1−u1)+

∂p2(u)

∂νA
(v2−u2))dΓ+(Nu, v−u)(L2(Γ))2 ≥ 0 ∀u ∈ Uad, v ∈ Uad.

Which completes the proof of the theorem.
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Remark 3.2 To study the optimal control for the scalar case{
(−∆ + q)y = ay + f in Rn

y(x) = g in Γ,
(13)

we define a bilinear form π : Vq(Rn)× Vq(Rn) → R by

π(y, φ) =

∫
Rn

(∇y∇φ + qyφ)dx− a

∫
Rn

yφdx

As in theorem (1), we can prove π is coercive if a < λ(q) and then there exists
a unique solution of (13) for f ∈ L2(Rn). Therefore, the state of the system is
given by the solution of{

(−∆ + q)y(u) = ay(u) + f + u in Rn

y(u) = u in Γ,
(14)

where u is given in the space L2(Γ) of controls. For given zd in L2(Rn), the
cost function is given by

J(v) =

∫
Rn

|y(v)− zd|2dx +

∫
Γ
(Nv)vdΓ

where N is a given hermitian positive definite operator. Then we have the
following characterization of optimal control for this system :{

(−∆ + q)p(u)− ap(u) = y1(u)− zd in Rn

p(u) = 0 in Γ,∫
Γ

∂p(u)

∂νA
(v − u)dΓ + (Nu, v − u)L2(Γ) ≥ 0, ∀ v ∈ Uad

together with (14), where p(u) is the adjoint state.
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• [31]Tröltzsch, F.“ Optimality Conditions for Parabolic Control
Problems and Applications.” Teubner-Texte zür Mathematik, Band
62, Leipzig, (1984).

• [32] Walczak, S.“ One some control problems.” Acta Universitatis
Lodziensis. Folia Mathematica, 1, (1984), 187-196.

Electronic Journal. http://www.neva.ru/journal 27



Differential Equations and Control Processes, N 4, 2006

• [33] Werner, J. “Optimization Theory and Applications.” Viewag,
Advanced Lectures In Mathematics, Braunschweig, Wiesbaden, (1984).

Electronic Journal. http://www.neva.ru/journal 28


