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Abstract.

The notion of astatism broadly used in classical linear control theory is ex-
tended to nonlinear systems. Some basic assertions concerning with the prop-
erties of astatic systems are presented. A special attention is paid to robust
control problems of Lagrangian systems and robotic manipulators as a partic-
ular case. It is shown that PID control ensure robust stabilization of a desired
position and tracking with a bounded error if the desired velocities are small
enough.

0This work was partially supported by INTAS, 94-965 and by RFBR, 97-01-01159; it will be presented at
the International Conference on Informatics and Control (June 9-13, 1997, St.Petersburg, Russia).
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1 Introduction

The astatism is an extensively used notion in classical linear theory. Astatic
systems have zero steady-state error if disturbances are constant or tend to
constant values. Moreover, for linear systems the astatism ensure a bounded
reaction under any unbounded disturbances having bounded derivatives. In
linear case the astatism conditions are very simple. It is necessary and sufficient
to have stable transfer function with a numerator having zero root. It is of
practical interest to show what is a nonlinear astatic system, to state some
conditions ensuring the astatism and to clear up if the properties of linear
astatic systems are saved in nonlinear case. The paper gives some answers for
these questions. Moreover, it is demonstrated that the general results can be
used for the explanation of robustness of PID feedback in non-linear Lagrangian
systems and in robotics especially.

2 Astatism and boundedness of reactions

Let a system be presented in the form

ẋ = f(x,w(t)), x(0) = x0; y = g(x,w(t)) (1)

where x is the state vector, y is the output vector, w(t) is the vector of distur-
bances (inputs), and f(x,w) satisfies conditions ensuring existence and unique-
ness of solutions to (1) under any admissible w(t) ∈ W, t ∈ [0,∞).

Definition. The system (1) is internally astatic if it has an isolated
equilibrium point x = 0 and this equilibrium is asymptotically stable under any
w(t) = w = const, w ∈ W .

The system (1) is input–output astatic if it has an asymptotically stable
solution x = x∞(w) under any w(t) = w = const, w ∈ W and

g(x∞(w), w) = 0.

Let f and g be linear in x and w, or more precisely, let

f(x,w) = Ax+Bw, g(x,w) = Cx+Dw

where A,B,C,D are constant matrices. Then the definition presented above
coincides with the definition of classical linear theory (see, f.e. [1]) and the
astatism conditions are equivalent the following ones:
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– A is stable (Hurwitzian),

– A−1B = 0 (for internal astatism) or D − CA−1B = 0 (for input–output
astatism).

However, if f is linear in x only, i.e.

f(x,w) = A(w)x+B(w), (2)

then the astatism conditions have to include the stability of A(w) under all
w ∈ W , i.e. the parametric robustness condition.

It is clear now that the generalized notion of astatism introduced above is
much more sophisticated than the traditional notion of linear theory.

It is evident that if the linearized system having structure of right-hand side
in the form (2) (with A(w) = ∂f

∂x(0, w), B(w) = ∂f
∂w(0, w)) is internally astatic

then the original non-linear system (1) is internally astatic too.

The basic problem under consideration is the following one. Let the system
(1) be internally astatic. Is it true that the output y(t) is bounded under any
w(t) ∈ W which are unbounded but have a bounded derivative?

Theorem 11. Let the system (1) be internally astatic on a set of time–
constant disturbances w ∈ W and moreover, there exists a Lyapunov function
V (x,w) such that

V (x,w) →∞ under ‖x‖ → ∞ for any w ∈W (3)

and its time derivative V̇ defined on trajectories of the system (1) under w =
const satisfies the conditions

V̇ ≤ −β‖x‖2,

∥∥∥∥∂V∂w
∥∥∥∥ ≤ γ‖x‖2 under ‖x‖ ≤ R, w ∈ W (4)

Let for any δ < βγ−1

‖ẇ(t)‖ ≤ δ, w(t) ∈ W (5)

then there exist R0 > 0 such that

‖x0‖ ≤ R0 =⇒ lim
t→∞

‖x(t)‖ = 0.

1A similar assertion is contained in [2, Ch.5]
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Theorem 2. Let x = 0 be asymptotically stable equilibrium of the system
(1) under any constant w ∈ W and moreover there exists a Lyapunov function
V (x,w) satisfying (3) (i.e. radially unbounded) and

V̇ ≤ −Q(x), under ‖x‖ ≤ R

where Q(x) > 0, ‖x‖ 6= 0, Q(0) = 0, Q(x)
‖x‖ →∞ under ‖x‖ → ∞, and∥∥∥∥∂V∂w

∥∥∥∥ ≤ c‖x‖, c = const > 0, under any w ∈ W (6)

Then, under any ∆ > 0, one can show δ > 0 and R0 > 0 such that

lim
t→∞

‖x‖ ≤ ∆

if w(t) satisfying (5) and ‖x0‖ ≤ R0

The Theorem 2 gives some sufficient conditions under which the astatism
yields a boundedness of reactions if the disturbances have a bounded rate of
changements. Naturally, the conditions are much harder and “more local” then
in the linear case.

Note that the conditions of theorems 1,2 concerning with a “regular” be-
havior of Lyapunov functions in w are nontrivial.

Let f(x,w) be continuously differentiable in x and w, and uniformly Lips-
chitzian in x under all w ∈ W . Let the system (1) have an asymptotically stable
solution under w = const ∈ W . Then following Massera theorem (see, f.e. [3]),
one can state only that there exists a smooth Lyapunov function V (x,w) such
that under ‖x‖ ≤ R:

a(‖x‖, w) ≤ V (x,w) ≤ b(‖x‖, w), V̇ (x,w) ≤ −c(‖x‖, w),∥∥∥∥∂V∂x
∥∥∥∥ ≤ d(w),

∥∥∥∥∂V∂w
∥∥∥∥ ≤ e(w),

where a, b, c are smooth positive anywhere (except zero x) functions monoto-
nously increasing with ‖x‖ (i.e. class K functions) and d, e are non-negative
smooth function. Sometimes one can show a limited upper bounds which are
independent on w; and it is possible not only for a bounded W . In those cases
any solutions to (1) are uniformly ultimately bounded, i.e. x(t) converges
in a ball if ‖ẇ‖ and ‖x0‖ are small enough. In other terminology the system
(1) is dissipative. Proof of this assertion is analogous to the proof of Malkin
theorem on dissipativity under nonvanishing bounded disturbances (see, f.e.
[3]).
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3 Astatic servomechanisms

In many cases the description (1) does not allow to express completely the
disturbance influence on the system behavior. In particular, it takes place in
the tracking problems where a desired trajectory plays role of a disturbance, and
zero value of tracking errors is the desired equilibrium point (or it is required
to ensure uniform ultimate boundedness of those errors).

Let, f.e., it be desired that the state x(t) of the closed–loop system

ẋ = F (x, u), u = k(x, xd),

where k(x, xd) is a static feedback control law (F (xd, k(xd, xd)) ≡ 0), converges
to a differentiable process xd(t), i.e. the output y(t) = x(t) − xd(t) tends to
zero. Denoting

y = x− xd and f(x, xd) = F (x, k(x, xd))

one obtain
ẏ = f(y + xd, xd)− ẋd

If one return to the symbols introduced in the astatism definition, i.e. (y → x,
xd → w), one has

ẋ = f(x+ w,w)− ẇ (f(w,w) ≡ 0)

One can see now that the right–hand side depends not only on w as in (1) but
on ẇ also.

Note that the output coincides here with the state of the system and hence
the notion of internal astatism coincides with the notion of input–output as-
tatism.

In more general case if one desires to estimate the tracking errors for the
closed–loop system described by the differential equations of n-th order

x(n) = F (x, . . . , x(n−1), k(x, . . . , x(n−1), xd)) ≡ f(x, . . . , x(n−1), xd)

one has to consider behavior of solutions to the equations of the following type

x(n) = f(x+ w, . . . , x(n−1) + w(n−1), w)− w(n)

where x,w stand now for the errors and the desired trajectory.

The examples shown above demonstrate that the generalized description

ẋ = f0(x,w) + f1(x,w,w
′, . . . , w(k)) (7)
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where f0(0, w) ≡ 0 and f1(x,w, 0, . . . , 0) ≡ 0
be useful in applications.

Note that the astatism property is defined by f0(x,w) only. However the
system reaction depend on f1 too.

Theorem 3. Let the system

ẋ = f0(x,w) (8)

be astatic and moreover there exists a radially unbounded Lyapunov function
V (x,w) such that∥∥∥∥∂V∂x

∥∥∥∥ ≤ cx‖x‖,
∥∥∥∥∂V∂w

∥∥∥∥ ≤ cw‖x‖, w ∈ W, ‖x‖ ≤ R

and its time derivative along trajectories of the system (8) under w = const ∈
W satisfy

V̇ ≤ −Q(x), under ‖x‖ ≤ R

where Q(x) > 0, ‖x‖ 6= 0, Q(0) = 0, Q(x)
‖x‖ →∞ under ‖x‖ → ∞.

Let f1 be Lipschitzian in all arguments.

Then there exist δ > 0, R0 > 0, such that if

‖w′, . . . w(k)‖ ≤ δ, w(t) ∈ W, ‖x0‖ ≤ R0,

then for any solution to the system (7)

lim
t→∞

‖x(t)‖ ≤ ∆,

under any given ∆ > 0.

Remark. If for any w ∈ W and ‖x‖ ≤ R:

‖f1(x,w,w
′, . . . , w(k))‖ ≤ (L+ β2‖x‖)f2(w

′, . . . , w(k)),

where f2 is a function such that there exists a continuous function f̄2(δ) van-
ishing under δ → 0 and satisfying the inequality

‖w′, . . . wk‖ ≤ δ =⇒ ‖f2(w
′, . . . , w(k))‖ ≤ f̄2(δ),

f1(x,w, . . . , w
(k)) is not necessary to be Lipschitzian, and Q(x) = β‖x‖2, then

lim
t→∞

‖x(t)‖ ≤ ∆ = f̄2(δ)L
β−β2f̄2(δ)

→ 0 under δ → 0. This remark was used in [4].
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4 Integral feedback and astatism

Consider the following system

ż = f(z, u, w), z(0) = z0 (9)

where u is a control. Choose u in the form of integral feedback

u̇ = −µψ(z); u(0) = 0 (10)

where µ > 0, ψ(0) = 0, zTψ(z) 6= 0 under z 6= 0, .

Under w = const the closed–loop system (9), (10) has the unique equilib-
rium

z = 0, u = u∞(w) = const.

The system is astatic if the equilibrium is asymptotically stable. Let under
zero control and w = const ∈ W the system (9) have an asymptotically stable
solution

z = z∞(w), f(z∞(w), 0, w) ≡ 0.

The integral feedback (10) is introduced to shift that equilibrium to the desired
position z = 0 independently on any w = const ∈ W .

First of all, as in the linear theory, one has to know if the stability is not
destroyed.

Theorem 4. Let f and ψ be twice differentiable functions. Let, under any
w ∈ W and u ∈ U, U be bounded and the equation

f(z, u, w) = 0

have a root z∞(u,w) which is locally exponentially stable equilibrium of the
system (9) under w = const ∈ W, u = const ∈ U. Let the system

u̇ = −µψ(z∞(u,w)) (11)

have a locally exponentially stable solution.

Then there exists µ̄ > 0, such that under any µ ∈ (0; µ̄], the closed–loop
system (9), (10) is input–output astatic with input w and output z.

Proof to the theorem 4 is based on classical results by Tikhonov (see, f.e.
[5, 1]) and Klimushev [6]. In fact, let us introduce a “slow” time τ = µt. Then
(9), (10) can be rewritten in a singular perturbed form

du

dτ
= −ψ(z), µ

dz

dτ
= f(z, u, w) (12)
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Under a small µ, the control u is a “slow” variable in reference to the object
state z(t). The system (11) is the reduced one in reference to (12) and it gives an
appropriate description of the “slow” variables. The conditions of the Theorem
ensure that existence of the exponentially stable solution to the reduced system
yields the convergence of u(t) defined by the original system to a constant value.
However, due to the properties of ψ(z) it is possible only if z(t) → 0.

Remark 1. If the system (9) has globally asymptotically stable and locally
exponentially stable equilibrium (i.e. globally asymptotically stable hyperbolic
equilibrium) under u = const ∈ U and the system (11) also has globally asymp-
totically stable and locally exponentially stable solution under w = const ∈ W
then the closed–loop system (9), (10) has globally stable equilibrium under
positive µ, small enough. It follows from Hoppensteadt theorem [7].

Remark 2. Under some properties of the functions f, ψ ensuring the uni-
queness of zero equilibrium point, the condition zTψ(z) 6= 0 under z 6= 0 may
be omitted. Moreover all results are true if f, ψ smoothly depend on µ.

5 Astatism of controlled Lagrangian system and a slow

tracking

Consider a dynamical system described by the Lagrangian equation

A(q)q̈ + C(q, q̇)q̇ + g(q) = Q (13)

where, by definition, q is n-vector of generalized coordinates, A(q) is a positive
definite inertia matrix, C(q, q̇)q̇ is a vector of centrifugal and Coriolis forces
such that

Ȧ(q) = C(q, q̇) + CT (q, q̇)

and g(q) is a vector of gravitational forces,

Let
Q = w + v

where v is a control and w is an external disturbance. Introduce a proportional–
differential (PD) feedback, i.e.

v = −Kp(q − qd)−Kvq̇ + û (14)

where Kp, Kv are positive definite matrix of gains and qd = const defines a
desired position.
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Under û = const, one can show [8] that the system (13), (14) has globally
asymptotically stable (GAS) equilibrium q = q̄, q̇ = 0, satisfying the condition

g(q̄) = w + û−Kp(q̄ − qd) (15)

if only

Kp > αI, (16)

where α is a Lipschitz constant for g(q).

Introduce now û as an additional integral feedback

û = −F (u), u̇ = µ(q − qd) (17)

where F (u) = [F1(u1), . . . , Fn(un)]
T and Fi(ui) are twice continuously differen-

tiable functions such that

uiFi(ui) > 0 under ui 6= 0, i = 1 . . . n

|Fi(ui)| ≥ F̄ under |ui| > Ū and dFi(ui)
dui

> 0 under |ui| ≤ Ū

F̄ > max
1≤i≤n

{|wi|+ |gi(qd)|}, w ∈ W ∀i = 1 . . . n

(18)

Theorem 5. Under the conditions (16), (18) and µ > 0 small enough the
closed–loop system (13), (14), (17) has GAS equilibrium (q, u) = (qd, u∞) ≡
(qd,−F−1[g(qd)− w]).

The result follows from the Theorem 4 and Remark 1 if one uses special
types of Lyapunov functions (energy like one as in [9, 10, 11] and Lur’e –

Postnikov like one:
[
V (u,w) =

∫ u−u∞
0 {F (s+ u∞)− F (u∞)}Tds

]
) for the fast

and reduced systems corresponding to (13), (14) and (17) with q = q̄ given by
(15) and for their first approximation systems.

It proves the astatism of the Lagrangian system with PID feedback in ref-
erence to constant external forces.

For the particular case of linear feedback that result was shown early in
[12].

Using the Theorem 3 and the Lyapunov function presented in [4] one can
show now that PID feedback ensures a tracking of a desired trajectory qd(t)
with a bounded error if qd(t) is changed slowly enough.

Theorem 6. Let qd(t) be twice differentiable and there exist constants

a1 > 0, α, a2, c1, c2, d1, d2 ≥ 0
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such that for all x, y, z ∈ <n

a1I ≤ A(x) ≤ (a2 + c2‖x‖+ d2‖x‖2)I,

‖C(x, y)z‖ ≤ (c1 + d1‖x‖)‖y‖‖z‖, ‖g(x)− g(y)‖ ≤ α‖x− y‖;

and either the desired motion is bounded or d1, c2, d2 = 0.

Moreover, let there exist ε > 0 and R > 0 such that

Kv>εmax
‖x‖≤R

{A(x+qd) + (c1+d1‖x+qd‖)‖x‖I}, ε(Kp − αI) > Ki > 0

and there exist δ1, δ2 > 0 such that

‖q̇d‖ ≤ δ1, ‖q̈d‖ ≤ δ2

Then all solutions to the system (13), (14), (17) are uniformly ultimately
bounded.

6 Conclusion

The results presented in the paper allow to extend the useful notion of astatism
to nonlinear systems. It is necessary to have in mind that in non–linear systems
the astatism does not ensure a boundedness of tracking errors if the desired ve-
locities are very large. However, some numerical simulations for robotic manip-
ulators show that the upper level of admissible velocities may have practically
reasonable high value.

References

[1] Pervozvanski A.A. Theory of automatic control. Nauka, Moscow, 1996,
615 pp. (In Russian).

[2] Khalil H.W. Nonlinear systems. Macmillan, New York, 1992.

[3] Rouche N., Habets P., Laloy M. Stability theory by Liapunov’s direct
method. Springer–Verlag, New York, 1977, 300 pp.

[4] Freidovich L.B., Pervozvanski A.A. Some estimates of performance for
PID-like control of robotic manipulators. Prepr. of IFAC Symposium on
Robot Control, Nantes, 1997.

Electronic Journal. http://www.neva.ru/journal 130



Differential Equations and Control Processes, N 1, 1997

[5] Vasil’eva A.B., Butuzov V. F. Asymptotic expansion of solutions to sin-
gularly perturbed equations. Nauka, Moscow, 1973. (In Russian).

[6] Klimushev A. I. Stability of nonlinear systems of differential equations
with small parameter multiplying the derivatives // Trudy Ural’skogo
Politekhn. Inst., 1973, N o 211, pp 44-54. (In Russian).

[7] Hoppensteadt F. Asymptotic stability in singular perturbation problems.
II // J. Diff. Equat., 1974, V. 15, N o 3, pp. 510-521.

[8] Tomei P. Adaptive PD Controller for Robot Manipulators // IEEE Trans.
Robot. Autom, 1991, V. 7, N o 4, pp. 565-570.

[9] Pozharicki G.K. On asymptotic stability of equilibria and stationary
movements of mechanical systems with partial dissipation // Prikl.
Matem. i Mekh., 1961, V. 25, N o 4, pp. 657-667. Engl. transl. in J. Appl.
Mathem. and Mech.

[10] Salvadori L. Sull’estensione ai sistemi dissipativi del criterio di stabilità
del Routh // Richerche Mat., 1966, V. 15, pp. 162-167.

[11] Takegaki M., Arimoto S. A new feedback method for dynamic control
of manipulators // J. of Dyn. Syst., Meas., and Control, 1981, V. 102,
pp. 109-125.

[12] Burkov I. V., Pervozvanski A.A., Freidovich L.B. Global asymptotic sta-
bilization of Lagrangian systems via PID regulators // Abst. of 4th Intern.
Seminar “Stability and oscillations of nonlinear control systems”, 1996,
Moscow, p. 50.

Electronic Journal. http://www.neva.ru/journal 131


